Package ‘ivreg’

October 13, 2022

Title Instrumental-Variables Regression by ‘2SLS’, ‘2SM’, or ‘2SMM’, with Diagnostics

Version 0.6-1

Description Instrumental variable estimation for linear models by two-stage least-squares (2SLS) regression or by robust-regression via M-estimation (2SM) or MM-estimation (2SMM). The main ivreg() model-fitting function is designed to provide a workflow as similar as possible to standard lm() regression. A wide range of methods is provided for fitted ivreg model objects, including extensive functionality for computing and graphing regression diagnostics in addition to other standard model tools.

License GPL (>= 2)

Depends R (>= 3.6.0)

Imports car (>= 3.0-9), Formula, lmtest, MASS, stats

Suggests AER, effects (>= 4.2.0), knitr, insight, parallel, rmarkdown, sandwich, testthat, modelsummary, ggplot2

Encoding UTF-8

LazyData true

VignetteBuilder knitr

BugReports https://github.com/john-d-fox/ivreg/issues/

URL https://john-d-fox.github.io/ivreg/

RoxygenNote 7.1.2

NeedsCompilation no

Author John Fox [aut, cre] (<https://orcid.org/0000-0002-1196-8012>), Christian Kleiber [aut] (<https://orcid.org/0000-0002-6781-4733>), Achim Zeileis [aut] (<https://orcid.org/0000-0003-0918-3766>), Nikolas Kuschnig [ctb] (<https://orcid.org/0000-0002-6642-2543>)

Maintainer John Fox <jfox@mcmaster.ca>

Repository CRAN

Date/Publication 2021-10-15 09:10:05 UTC
R topics documented:

CigaretteDemand ... 2
coef.ivreg ... 4
influence.ivreg ... 7
ivreg ... 12
ivreg.fit .. 15
Kmenta ... 18
SchoolingReturns ... 19

Index ... 22

CigaretteDemand U.S. Cigarette Demand Data

Description

Usage

data("CigaretteDemand", package = "ivreg")

Format

A data frame with 48 rows and 10 columns.

packs Number of cigarette packs per capita sold in 1995.
rprice Real price in 1995 (including sales tax).
rincome Real per capita income in 1995.
salestax Sales tax in 1995.
cigtax Cigarette-specific taxes (federal and average local excise taxes) in 1995.
salestaxdiff Difference in salestax (between 1995 and 1985).
cigtaxdiff Difference in cigtax (between 1995 and 1985).

Details

The data are taken from the online complements to Stock and Watson (2007) and had been prepared as panel data (in long form) in CigarettesSW from the AER package (Kleiber and Zeileis 2008). Here, the data are provided by state (in wide form), readily preprocessed to contain all variables needed for illustrations of OLS and IV regressions. More related examples from Stock and Watson (2007) are provided in the AER package in StockWatson2007. A detailed discussion of the various cigarette demand examples with R code is provided by Hanck et al. (2020, Chapter 12).
CigaretteDemand

Source

Online complements to Stock and Watson (2007).

References

See Also

CigarettesSW.

Examples

```r
## load data
data("CigaretteDemand", package = "ivreg")

## basic price elasticity: OLS vs. IV
cig_ols <- lm(log(packs) ~ log(rprice), data = CigaretteDemand)
cig_iv <- ivreg(log(packs) ~ log(rprice) | salestax, data = CigaretteDemand)
cbind(OLS = coef(cig_ols), IV = coef(cig_iv))

## adjusting for income differences (exogenous)
cig_iv2 <- ivreg(log(packs) ~ log(rprice) + log(rincome) | salestax + log(rincome),
data = CigaretteDemand)

## adding a second instrument for log(rprice)
cig_iv3 <- update(cig_iv2, . ~ . | . + cigtax)

## comparison using heteroscedasticity-consistent standard errors
library("lmtest")
library("sandwich")
coeftest(cig_iv2, vcov = vcovHC, type = "HC1")
coeftest(cig_iv3, vcov = vcovHC, type = "HC1")

## long-run price elasticity using differences between 1995 and 1985
cig_ivdiff1 <- ivreg(packsdiff ~ pricediff + incomediff + salestaxdiff,
data = CigaretteDemand)
cig_ivdiff2 <- update(cig_ivdiff1, . ~ . | . - salestaxdiff + cigtaxdiff)
cig_ivdiff3 <- update(cig_ivdiff1, . ~ . | . + cigtaxdiff)
coeftest(cig_ivdiff1, vcov = vcovHC, type = "HC1")
coeftest(cig_ivdiff2, vcov = vcovHC, type = "HC1")
coeftest(cig_ivdiff3, vcov = vcovHC, type = "HC1")
```
Description

Various methods for processing "ivreg" objects; for diagnostic methods, see ivregDiagnostics.

Usage

S3 method for class 'ivreg'
coef(object, component = c("stage2", "stage1"), complete = TRUE, ...)

S3 method for class 'ivreg'
vcov(object, component = c("stage2", "stage1"), complete = TRUE, ...)

S3 method for class 'ivreg'
confint(
 object,
 parm,
 level = 0.95,
 component = c("stage2", "stage1"),
 complete = TRUE,
 vcov. = NULL,
 df = NULL,
 ...)

S3 method for class 'ivreg'
bread(x, ...)

S3 method for class 'ivreg'
estfun(x, ...)

S3 method for class 'ivreg'
vcovHC(x, ...)

S3 method for class 'ivreg'
terms(x, component = c("regressors", "instruments", "full"), ...)

S3 method for class 'ivreg'
model.matrix(
 object,
 component = c("regressors", "projected", "instruments"),
 ...)

S3 method for class 'ivreg_projected'
model.matrix(object, ...)
S3 method for class 'ivreg'
predict(
 object,
 newdata,
 type = c("response", "terms"),
 na.action = na.pass,
 ...)
S3 method for class 'ivreg'
print(x, digits = max(3, getOption("digits") - 3), ...)
S3 method for class 'ivreg'
summary(object, vcov. = NULL, df = NULL, diagnostics = NULL, ...)
S3 method for class 'summary.ivreg'
print(x, digits = max(3, getOption("digits") - 3),
 signif.stars = getOption("show.signif.stars"), ...
)
S3 method for class 'ivreg'
anova(object, object2, test = "F", vcov. = NULL, ...)
S3 method for class 'ivreg'
update(object, formula., ..., evaluate = TRUE)
S3 method for class 'ivreg'
residuals(
 object,
 type = c("response", "projected", "regressors", "working", "deviance", "pearson",
 "partial", "stage1"),
 ...
)
S3 method for class 'ivreg'
Effect(focal.predictors, mod, ...)
S3 method for class 'ivreg'
formula(x, component = c("complete", "regressors", "instruments"), ...)
S3 method for class 'ivreg'
find_formula(x, ...)
Arguments

object, object2, model, mod
An object of class "ivreg".

component
For terms, "regressors", "instruments", or "full"; for model.matrix, "projected", "regressors", or "instruments"; for formula, "regressors", "instruments", or "complete"; for coef and vcov, "stage2" or "stage1".

complete
If TRUE, the default, the returned coefficient vector (for coef()) or coefficient-covariance matrix (for vcov) includes elements for aliased regressors.

... arguments to pass down.

parm
parameters for which confidence intervals are to be computed; a vector or numbers or names; the default is all parameters.

level
confidence level; the default is 0.95.

vcov.
Optional coefficient covariance matrix, or a function to compute the covariance matrix, to use in computing the model summary.

df
Optional residual degrees of freedom to use in computing model summary.

x
An object of class "ivreg" or "summary.ivreg".

newdata
Values of predictors for which to obtain predicted values.

type
For predict, one of "response" (the default) or "terms"; for residuals, one of "response" (the default), "projected", "regressors", "working", "deviance", "pearson", or "partial"; type = "working" and "response" are equivalent, as are type = "deviance" and "pearson"; for weights, "variance" (the default) for invariance-variance weights (which is NULL for an unweighted fit) or "robustness" for robustness weights (available for M or MM estimation).
Methods for computing deletion and other regression diagnostics for 2SLS regression. It's generally more efficient to compute the deletion diagnostics via the influence method and then to extract the various specific diagnostics with the methods for "influence.ivreg" objects. Other diagnostics for linear models, such as added-variable plots (avPlots) and component-plus-residual plots (crPlots), also work, as do effect plots (e.g., predictorEffects) with residuals (see the examples below). The pointwise confidence envelope for the qqPlot method assumes an independent random sample from the t distribution with degrees of freedom equal to the residual degrees of freedom for the model and so are approximate, because the studentized residuals aren't independent.

For additional information, see the vignette Diagnostics for 2SLS Regression.

Usage

```r
## S3 method for class 'ivreg'
influence(
  model,
  sigma. = n <= 1000,
)```
```r
influence.ivreg

 type = c("stage2", "both", "maximum"),
 applyfun = NULL,
 ncores = NULL,
 ...

S3 method for class 'ivreg'
 rstudent(model, ...)

S3 method for class 'ivreg'
 cooks.distance(model, ...)

S3 method for class 'influence.ivreg'
 dfbeta(model, ...)

S3 method for class 'ivreg'
 dfbeta(model, ...)

S3 method for class 'ivreg'
 hatvalues(model, type = c("stage2", "both", "maximum", "stage1"), ...)

S3 method for class 'influence.ivreg'
 rstudent(model, ...)

S3 method for class 'influence.ivreg'
 hatvalues(model, ...)

S3 method for class 'influence.ivreg'
 cooks.distance(model, ...)

S3 method for class 'influence.ivreg'
 qqPlot(
 x,
 ylab = paste("Studentized Residuals(" , deparse(substitute(x)), ")", sep = ""),
 distribution = c("t", "norm"),
 ...
)

S3 method for class 'ivreg'
 influencePlot(x, ...)

S3 method for class 'influence.ivreg'
 influencePlot(model, ...)

S3 method for class 'ivreg'
 infIndexPlot(model, ...)

S3 method for class 'influence.ivreg'
```
infIndexPlot(model, ...)
## S3 method for class 'influence.ivreg'
model.matrix(object, ...)
## S3 method for class 'ivreg'
avPlots(model, terms, ...)
## S3 method for class 'ivreg'
avPlot(model, ...)
## S3 method for class 'ivreg'
mcPlots(model, terms, ...)
## S3 method for class 'ivreg'
mcPlot(model, ...)
## S3 method for class 'ivreg'
Boot(
  object,
  f = coef,
  labels = names(f(object)),
  R = 999,
  method = "case",
  ncores = 1,
  ...
)
## S3 method for class 'ivreg'
crPlots(model, terms, ...)
## S3 method for class 'ivreg'
crPlot(model, ...)
## S3 method for class 'ivreg'
ceresPlots(model, terms, ...)
## S3 method for class 'ivreg'
ceresPlot(model, ...)
## S3 method for class 'ivreg'
plot(x, ...)
## S3 method for class 'ivreg'
qqPlot(x, distribution = c("t", "norm"), ...)
## S3 method for class 'ivreg'
outlierTest(x, ...)
## S3 method for class 'ivreg'
influencePlot(x, ...)

## S3 method for class 'ivreg'
spreadLevelPlot(x, main = "Spread-Level Plot", ...)

## S3 method for class 'ivreg'
ncvTest(model, ...)

## S3 method for class 'ivreg'
deviance(object, ...)

## S3 method for class 'rivreg'
influence(model, ...)

### Arguments

`model`, `x`, `object`  
A "ivreg" or "influence.ivreg" object.

`sigma`  
If TRUE (the default for 1000 or fewer cases), the deleted value of the residual standard deviation is computed for each case; if FALSE, the overall residual standard deviation is used to compute other deletion diagnostics.

`type`  
If "stage2" (the default), hatvalues are for the second stage regression; if "both", the hatvalues are the geometric mean of the casewise hatvalues for the two stages; if "maximum", the hatvalues are the larger of the casewise hatvalues for the two stages. In computing the geometric mean or casewise maximum hatvalues, the hatvalues for each stage are first divided by their average (number of coefficients in stage regression/number of cases); the geometric mean or casewise maximum values are then multiplied by the average hatvalue from the second stage.

`applyfun`  
Optional loop replacement function that should work like `lapply` with arguments `function(X, FUN, ...)`. The default is to use a loop unless the `ncores` argument is specified (see below).

`ncores`  
Numeric, number of cores to be used in parallel computations. If set to an integer the applyfun is set to use either `parLapply` (on Windows) or `mclapply` (otherwise) with the desired number of cores.

`...`  
Arguments to be passed down.

`ylab`  
The vertical axis label.

`distribution`  
"t" (the default) or "norm".

`terms`  
Terms for which added-variable plots are to be constructed; the default, if the argument isn’t specified, is the "regressors" component of the model formula.

`f, labels, R`  
see `Boot`.

`method`  
only "case" (case resampling) is supported: see `Boot`.

`main`  
Main title for the graph.
**influence.ivreg**

**Value**

In the case of `influence.ivreg`, an object of class "influence.ivreg" with the following components:

- **coefficients** the estimated regression coefficients
- **model** the model matrix
- **dfbeta** influence on coefficients
- **sigma** deleted values of the residual standard deviation
- **dffits** overall influence on the regression coefficients
- **cookd** Cook's distances
- **hatvalues** hatvalues
- **rstudent** Studentized residuals
- **df.residual** residual degrees of freedom

In the case of other methods, such as `rstudent.ivreg` or `rstudent.influence.ivreg`, the corresponding diagnostic statistics. Many other methods (e.g., `crPlot.ivreg`, `avPlot.ivreg`, `Effect.ivreg`) draw graphs.

**See Also**

- `ivreg`, `avPlots`, `crPlots`, `predictorEffects`, `qqPlot`, `influencePlot`, `infIndexPlot`, `Boot`, `outlierTest`, `spreadLevelPlot`, `ncvTest`.

**Examples**

```r
kmenta.eq1 <- ivreg(Q ~ P + D | D + F + A, data = Kmenta)
summary(kmenta.eq1)
car::avPlots(kmenta.eq1)
car::mcPlots(kmenta.eq1)
car::crPlots(kmenta.eq1)
car::ceresPlots(kmenta.eq1)
car::influencePlot(kmenta.eq1)
car::influenceIndexPlot(kmenta.eq1)
car::qqPlot(kmenta.eq1)
car::spreadLevelPlot(kmenta.eq1)
plot(effects::predictorEffects(kmenta.eq1, residuals = TRUE))
set.seed <- 12321 # for reproducibility
confint(car::Boot(kmenta.eq1, R = 250)) # 250 reps for brevity
car::outlierTest(kmenta.eq1)
car::ncvTest(kmenta.eq1)
```
**Description**

Fit instrumental-variable regression by two-stage least squares (2SLS). This is equivalent to direct instrumental-variables estimation when the number of instruments is equal to the number of regressors. Alternative robust-regression estimators are also provided, based on M-estimation (2SM) and MM-estimation (2SMM).

**Usage**

```r
ivreg(
 formula, instruments,
 data, subset, na.action, weights, offset,
 contrasts = NULL,
 model = TRUE, y = TRUE, x = FALSE,
 method = c("OLS", "M", "MM"),
 ...
)
```

**Arguments**

- `formula, instruments` formula specification(s) of the regression relationship and the instruments. Either `instruments` is missing and `formula` has three parts as in `y ~ x1 + x2 | z1 + z2 + z3` (recommended) or `formula` is `y ~ x1 + x2` and `instruments` is a one-sided formula `~ z1 + z2 + z3` (only for backward compatibility).
- `data` an optional data frame containing the variables in the model. By default the variables are taken from the environment of the `formula`.
- `subset` an optional vector specifying a subset of observations to be used in fitting the model.
- `na.action` a function that indicates what should happen when the data contain NAs. The default is set by the `na.action` option.
- `weights` an optional vector of weights to be used in the fitting process.
- `offset` an optional offset that can be used to specify an a priori known component to be included during fitting.
- `contrasts` an optional list. See the `contrasts.arg` of `model.matrix.default`.
model, x, y logicals. If TRUE the corresponding components of the fit (the model frame, the
model matrices, the response) are returned. These components are necessary for
computing regression diagnostics.

method the method used to fit the stage 1 and 2 regression: "OLS" for traditional 2SLS
regression (the default), "M" for M-estimation, or "MM" for MM-estimation, with
the latter two robust-regression methods implemented via the rlm function in the
MASS package.

... further arguments passed to ivreg.fit.

Details

ivreg is the high-level interface to the work-horse function ivreg.fit. A set of standard methods
(including print, summary, vcov, anova, predict, residuals, terms, model.matrix, bread,
estfun) is available and described in ivregMethods. For methods related to regression diagnostics,
see ivregDiagnostics.

Regressors and instruments for ivreg are most easily specified in a formula with two parts on the
right-hand side, e.g., y ~ x1 + x2 | z1 + z2 + z3, where x1 and x2 are the explanatory variables and
z1, z2, and z3 are the instrumental variables. Note that exogenous regressors have to be included
as instruments for themselves.

For example, if there is one exogenous regressor ex and one endogenous regressor en with instru-
ment in, the appropriate formula would be y ~ en + ex | in + ex. Alternatively, a formula with
three parts on the right-hand side can also be used: y ~ ex | en | in. The latter is typically more
convenient, if there is a large number of exogenous regressors.

Moreover, two further equivalent specification strategies are possible that are typically less con-
venient compared to the strategies above. One option is to use an update formula with a . in the
second part of the formula is used: y ~ en + ex | . - en + in. Another option is to use a separate
formula for the instruments (only for backward compatibility with earlier versions): formula = y ~
en + ex, instruments = ~ in + ex.

Internally, all specifications are converted to the version with two parts on the right-hand side.

Value

ivreg returns an object of class "ivreg" that inherits from class "lm", with the following compo-
nents:

coefficients parameter estimates, from the stage-2 regression.
residuals vector of model residuals.
residuals1 matrix of residuals from the stage-1 regression.
residuals2 vector of residuals from the stage-2 regression.
fitted.values vector of predicted means for the response.
weights either the vector of weights used (if any) or NULL (if none).
offset either the offset used (if any) or NULL (if none).
estfun a matrix containing the empirical estimating functions.
n number of observations.
nobs number of observations with non-zero weights.
number of columns in the model matrix $x$ of regressors.

$q$ number of columns in the instrumental variables model matrix $z$

$\text{rank}$ numeric rank of the model matrix for the stage-2 regression.

$\text{df.residual}$ residual degrees of freedom for fitted model.

$\text{cov.unscaled}$ unscaled covariance matrix for the coefficients.

$\text{sigma}$ residual standard deviation.

$\text{qr}$ QR decomposition for the stage-2 regression.

$\text{qr1}$ QR decomposition for the stage-1 regression.

$\text{rank1}$ numeric rank of the model matrix for the stage-1 regression.

$\text{coefficients1}$ matrix of coefficients from the stage-1 regression.

$\text{df.residual1}$ residual degrees of freedom for the stage-1 regression.

$\text{exogenous}$ columns of the "regressors" matrix that are exogenous.

$\text{endogenous}$ columns of the "regressors" matrix that are endogenous.

$\text{instruments}$ columns of the "instruments" matrix that are instruments for the endogenous variables.

$\text{method}$ the method used for the stage 1 and 2 regressions, one of "OLS", "M", or "MM".

$\text{rweights}$ a matrix of robustness weights with columns for each of the stage-1 regressions and for the stage-2 regression (in the last column) if the fitting method is "M" or "MM", NULL if the fitting method is "OLS".

$\text{hatvalues}$ a matrix of hatvalues. For method = "OLS", the matrix consists of two columns, for each of the stage-1 and stage-2 regression; for method = "M" or "MM", there is one column for each stage=1 regression and for the stage-2 regression.

$\text{df.residual}$ residual degrees of freedom for fitted model.

$\text{call}$ the original function call.

$\text{formula}$ the model formula.

$\text{na.action}$ function applied to missing values in the model fit.

$\text{terms}$ a list with elements "regressors" and "instruments" containing the terms objects for the respective components.

$\text{levels}$ levels of the categorical regressors.

$\text{contrasts}$ the contrasts used for categorical regressors.

$\text{model}$ the full model frame (if $\text{model} = \text{TRUE}$).

$y$ the response vector (if $y = \text{TRUE}$).

$x$ a list with elements "regressors", "instruments", "projected", containing the model matrices from the respective components (if $x = \text{TRUE}$). "projected" is the matrix of regressors projected on the image of the instruments.

References

See Also

ivreg.fit, ivregDiagnostics, ivregMethods, lm, lm.fit

Examples

```
data
data("CigaretteDemand", package = "ivreg")

model
m <- ivreg(log(packs) ~ log(rprice) + log(rincome) | salestax + log(rincome),
 data = CigaretteDemand)
summary(m)
summary(m, vcov = sandwich::sandwich, df = Inf)

ANOVA
m2 <- update(m, . ~ . - log(rincome) | . - log(rincome))
anova(m, m2)
car::Anova(m)

same model specified by formula with three-part right-hand side
ivreg(log(packs) ~ log(rincome) | log(rprice) | salestax, data = CigaretteDemand)

Robust 2SLS regression
data("Kmenta", package = "ivreg")
Kmenta1 <- Kmenta
Kmenta1[20, "Q"] <- 95 # corrupted data
deq <- ivreg(Q ~ P + D | D + F + A, data=Kmenta) # demand equation, uncorrupted data
deq1 <- ivreg(Q ~ P + D | D + F + A, data=Kmenta1) # standard 2SLS, corrupted data
deq2 <- ivreg(Q ~ P + D | D + F + A, data=Kmenta1, subset=-20) # standard 2SLS, removing bad case
deq3 <- ivreg(Q ~ P + D | D + F + A, data=Kmenta1, method="MM") # 2SLS MM estimation
car::compareCoefs(deq, deq1, deq2, deq3)
round(d eq3$rweights, 2) # robustness weights
```

ivreg.fit

Fitting Instrumental-Variable Regressions by 2SLS, 2SM, or 2SMM Estimation

Description

Fit instrumental-variable regression by two-stage least squares (2SLS). This is equivalent to direct instrumental-variables estimation when the number of instruments is equal to the number of predictors. Alternative robust-regression estimation is also supported, based on M-estimation (22M) or MM-estimation (2SMM).

Usage

ivreg.fit(
  x,
ivreg.fit

```r
ivreg.fit = function(y, z, weights, offset, method = c("OLS", "M", "MM"), rlm.args = list(), ...)
```

### Arguments

- **x**: regressor matrix.
- **y**: vector for the response variable.
- **z**: instruments matrix.
- **weights**: an optional vector of weights to be used in the fitting process.
- **offset**: an optional offset that can be used to specify an a priori known component to be included during fitting.
- **method**: the method used to fit the stage 1 and 2 regression: "OLS" for traditional 2SLS regression (the default), "M" for M-estimation, or "MM" for MM-estimation, with the latter two robust-regression methods implemented via the `rlm` function in the `MASS` package.
- **rlm.args**: a list of optional arguments to be passed to the `rlm` function in the `MASS` package if robust regression is used for the stage 1 and 2 regressions.
- **...**: further arguments passed to `lm.fit` or `lm.wfit`, respectively.

### Details

`ivreg` is the high-level interface to the work-horse function `ivreg.fit`. `ivreg.fit` is essentially a convenience interface to `lm.fit` (or `lm.wfit`) for first projecting `x` onto the image of `z`, then running a regression of `y` on the projected `x`, and computing the residual standard deviation.

### Value

`ivreg.fit` returns an unclassed list with the following components:

- **coefficients**: parameter estimates, from the stage-2 regression.
- **residuals**: vector of model residuals.
- **residuals1**: matrix of residuals from the stage-1 regression.
- **residuals2**: vector of residuals from the stage-2 regression.
- **fitted.values**: vector of predicted means for the response.
- **weights**: either the vector of weights used (if any) or `NULL` (if none).
- **offset**: either the offset used (if any) or `NULL` (if none).
- **estfun**: a matrix containing the empirical estimating functions.
- **n**: number of observations.
- **nobs**: number of observations with non-zero weights.
p  
number of columns in the model matrix \( x \) of regressors.

q  
number of columns in the instrumental variables model matrix \( z \)

rank  
numeric rank of the model matrix for the stage-2 regression.

df.residual  
residual degrees of freedom for fitted model.

cov.unscaled  
unscaled covariance matrix for the coefficients.

sigma  
residual standard error; when method is "M" or "MM", this is based on the MAD of the residuals (around 0) — see \texttt{mad}.

x  
projection of \( x \) matrix onto span of \( z \).

qr  
QR decomposition for the stage-2 regression.

qr1  
QR decomposition for the stage-1 regression.

rank1  
numeric rank of the model matrix for the stage-1 regression.

coefficients1  
matrix of coefficients from the stage-1 regression.

df.residual1  
residual degrees of freedom for the stage-1 regression.

exogenous  
columns of the "regressors" matrix that are exogenous.

endogenous  
columns of the "regressors" matrix that are endogenous.

instruments  
columns of the "instruments" matrix that are instruments for the endogenous variables.

method  
the method used for the stage 1 and 2 regressions, one of "OLS", "M", or "MM".

rweights  
a matrix of robustness weights with columns for each of the stage-1 regressions and for the stage-2 regression (in the last column) if the fitting method is "M" or "MM", NULL if the fitting method is "OLS".

hatvalues  
a matrix of hatvalues. For \texttt{method} = "OLS", the matrix consists of two columns, for each of the stage-1 and stage-2 regression; for \texttt{method} = "M" or "MM", there is one column for \texttt{each} stage-1 regression and for the stage-2 regression.

See Also

\texttt{ivreg}, \texttt{lm.fit}, \texttt{lm.wfit}, \texttt{rlm}, \texttt{mad}

Examples

```r
data
data("CigaretteDemand", package = "ivreg")

high-level interface
m <- ivreg(log(packs) ~ log(rprice) + log(rincome) | salestax + log(rincome),
data = CigaretteDemand)

low-level interface
y <- m$y
x <- model.matrix(m, component = "regressors")
z <- model.matrix(m, component = "instruments")
ivreg.fit(x, y, z)$coefficients
```
Description

These are partly contrived data from Kmenta (1986), constructed to illustrate estimation of a simultaneous-equation econometric model. The data are an annual time-series for the U.S. economy from 1922 to 1941. The values of the exogenous variables D, and F, and A are real, while those of the endogenous variables Q and P are simulated according to the linear simultaneous equation model fit in the examples.

Usage

data("Kmenta", package = "ivreg")

Format

A data frame with 20 rows and 5 columns.

Q  food consumption per capita.
P  ratio of food prices to general consumer prices.
D  disposable income in constant dollars.
F  ratio of preceding year’s prices received by farmers to general consumer prices.
A  time in years.

Source


See Also

ivreg.

Examples

data("Kmenta", package = "ivreg")
deq <- ivreg(Q ~ P + D | D + F + A, data = Kmenta) # demand equation
seq <- ivreg(Q ~ P + F + A | D + F + A, data = Kmenta) # supply equation
summary(d eq, tests = TRUE)
summary(seq, tests = TRUE)
Description

Data from the U.S. National Longitudinal Survey of Young Men (NLSYM) in 1976 but using some variables dating back to earlier years.

Usage

data("SchoolingReturns", package = "ivreg")

Format

A data frame with 3010 rows and 22 columns.

- **wage**: Raw wages in 1976 (in cents per hour).
- **education**: Education in 1976 (in years).
- **experience**: Years of labor market experience, computed as age - education - 6.
- **ethnicity**: Factor indicating ethnicity. Is the individual African-American ("afam") or not ("other")?
- **smsa**: Factor. Does the individual reside in a SMSA (standard metropolitan statistical area) in 1976?
- **south**: Factor. Does the individual reside in the South in 1976?
- **age**: Age in 1976 (in years).
- **nearcollege**: Factor. Did the individual grow up near a 4-year college?
- **nearcollege2**: Factor. Did the individual grow up near a 2-year college?
- **nearcollege4**: Factor. Did the individual grow up near a 4-year public or private college?
- **enrolled**: Factor. Is the individual enrolled in college in 1976?
- **married**: Factor. Is the individual married in 1976?
- **education66**: Education in 1966 (in years).
- **smsa66**: Factor. Does the individual reside in a SMSA in 1966?
- **south66**: Factor. Does the individual reside in the South in 1966?
- **feducation**: Father’s educational attainment (in years). Imputed with average if missing.
- **meducation**: Mother’s educational attainment (in years). Imputed with average if missing.
- **fameducation**: Ordered factor coding family education class (from 1 to 9).
- **kww**: Knowledge world of work (KWW) score.
- **iq**: Normed intelligence quotient (IQ) score.
- **parents14**: Factor coding living with parents at age 14: both parents, single mother, step parent, other.
- **library14**: Factor. Was there a library card in home at age 14?
Details

Investigating the causal link of schooling on earnings in a classical model for wage determinants is problematic because it can be argued that schooling is endogenous. Hence, one possible strategy is to use an exogenous variable as an instrument for the years of education. In his well-known study, Card (1995) uses geographical proximity to a college when growing up as such an instrument, showing that this significantly increases both the years of education and the wage level obtained on the labor market. Using instrumental variables regression Card (1995) shows that the estimated returns to schooling are much higher than when simply using ordinary least squares.

The data are taken from the supplementary material for Verbeek (2004) and are based on the work of Card (1995). The U.S. National Longitudinal Survey of Young Men (NLSYM) began in 1966 and included 5525 men, then aged between 14 and 24. Card (1995) employs labor market information from the 1976 NLSYM interview which also included information about educational attainment. Out of the 3694 men still included in that wave of NLSYM, 3010 provided information on both wages and education yielding the subset of observations provided in SchoolingReturns.

The examples replicate the results from Verbeek (2004) who used the simplest specifications from Card (1995). Including further region or family background characteristics improves the model significantly but does not affect much the main coefficients of interest, namely that of years of education.

Source

Supplementary material for Verbeek (2004).

References


Examples

```r
load data
data("SchoolingReturns", package = "ivreg")

Table 5.1 in Verbeek (2004) / Table 2(1) in Card (1995)
Returns to education: 7.4%
m_ols <- lm(log(wage) ~ education + poly(experience, 2, raw = TRUE) + ethnicity + smsa + south, data = SchoolingReturns)
summary(m_ols)

Table 5.2 in Verbeek (2004) / similar to Table 3(1) in Card (1995)
m_red <- lm(education ~ poly(age, 2, raw = TRUE) + ethnicity + smsa + south + nearcollege, data = SchoolingReturns)
summary(m_red)

Table 5.3 in Verbeek (2004) / similar to Table 3(5) in Card (1995)
Returns to education: 13.3%
m_iv <- ivreg(log(wage) ~ education + poly(experience, 2, raw = TRUE) + ethnicity + smsa + south |
nearcollege + poly(age, 2, raw = TRUE) + ethnicity + sma + south,
data = SchoolingReturns
summary(m_iv)
Index

* datasets
 CigaretteDemand, 2
 Kmenta, 18
 SchoolingReturns, 19
* regression
 ivreg, 12
 ivreg.fit, 15
 alias.ivreg (coef.ivreg), 4
 Anova.ivreg (coef.ivreg), 4
 anova.ivreg (coef.ivreg), 4
 avPlot.ivreg (influence.ivreg), 7
 avPlots, 7, 11
 avPlots.ivreg (influence.ivreg), 7
 Boot, 10, 11
 Boot.ivreg (influence.ivreg), 7
 bread.ivreg (coef.ivreg), 4
 ceresPlot.ivreg (influence.ivreg), 7
 ceresPlots.ivreg (influence.ivreg), 7
 CigaretteDemand, 2
 CigarettesSW, 2, 3
 coef, 6
 coef.ivreg, 4
 confint.ivreg (coef.ivreg), 4
 cooks.distance.influence.ivreg (influence.ivreg), 7
 cooks.distance.ivreg (influence.ivreg), 7
 crPlot.ivreg (influence.ivreg), 7
 crPlots, 7, 11
 crPlots.ivreg (influence.ivreg), 7
 deviance.ivreg (influence.ivreg), 7
 dfbeta.influence.ivreg (influence.ivreg), 7
 dfbeta.ivreg (influence.ivreg), 7
 Effect, 7
 Effect(ivreg(coef.ivreg), 4
 estfun(ivreg(coef.ivreg), 4
 find_formula.ivreg (coef.ivreg), 4
 formula, 6
 formula(ivreg(coef.ivreg), 4
 hatvalues.influence.ivreg (influence.ivreg), 7
 hatvalues.ivreg (influence(ivreg), 7
 infIndexPlot, 11
 infIndexPlot.influence(ivreg
 (influence.ivreg), 7
 infIndexPlot.ivreg (influence(ivreg), 7
 influence(ivreg, 7
 influence.rivreg(influence(ivreg), 7
 influencePlot, 11
 influencePlot.influence.ivreg (influence(ivreg), 7
 influencePlot.ivreg(influence(ivreg), 7
 ivreg, 7, 11, 12, 16–18
 ivreg.fit, 7, 13, 15, 15
 ivregDiagnostics, 4, 7, 13, 15
 ivregDiagnostics(influence.ivreg), 7
 ivregMethods, 13, 15
 ivregMethods(coef.ivreg), 4
 Kmenta, 18
 lapply, 10
 linearHypothesis, 7
 linearHypothesis(ivreg(coef.ivreg), 4
 lm, 15
 lm.fit, 15–17
 lm.wfit, 16, 17
 mad, 17
 mclapply, 10
 mcPlot.ivreg(influence.ivreg), 7
 mcPlots.ivreg(influence(ivreg), 7
 model.matrix, 6
INDEX

model.matrix.default, 12
model.matrix.influence.ivreg
 (influence.ivreg), 7
model.matrix.ivreg(coef.ivreg), 4
model.matrix.ivreg_projected
 (coef.ivreg), 4

na.pass, 7
ncvTest, 11
ncvTest.ivreg(influence.ivreg), 7

outlierTest, 11
outlierTest.ivreg(influence.ivreg), 7

parLapply, 10
plot.ivreg(influence.ivreg), 7
predict.ivreg(coef.ivreg), 4
predictorEffects, 7, 11
print.ivreg(coef.ivreg), 4
print.summary.ivreg(coef.ivreg), 4

qqPlot, 7, 11
qqPlot.influence.ivreg
 (influence.ivreg), 7
qqPlot.ivreg(influence.ivreg), 7
qr.ivreg(coef.ivreg), 4

residuals.ivreg(coef.ivreg), 4
rlm, 13, 16, 17
rstudent.influence.ivreg
 (influence.ivreg), 7
rstudent.ivreg(influence.ivreg), 7

SchoolingReturns, 19
spreadLevelPlot, 11
spreadLevelPlot.ivreg
 (influence.ivreg), 7
StockWatson2007, 2
summary.ivreg(coef.ivreg), 4

terms, 6
terms.ivreg(coef.ivreg), 4

update.ivreg(coef.ivreg), 4

vcov, 6
vcov.ivreg(coef.ivreg), 4
vcovHC.ivreg(coef.ivreg), 4

weights.ivreg(coef.ivreg), 4