Package ‘ivx’

October 13, 2022

Type Package

Title Robust Econometric Inference

Version 1.1.0

License GPL-3

URL https://github.com/kvasilopoulos/ivx

BugReports https://github.com/kvasilopoulos/ivx/issues

Depends R (>= 3.1)
Imports methods, Rcpp (>= 0.12.18)
Suggests covr (>= 3.2.1), forecast (>= 8.12), spelling (>= 2.1), testthat (>= 2.1.1), lmtest

Enhances texreg

LinkingTo Rcpp (>= 1.0.1), RcppArmadillo (>= 0.9.300.2.0)

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.1.1

NeedsCompilation yes

Author Kostas Vasilopoulos [cre, aut], Efthymios Pavlidis [aut]

Maintainer Kostas Vasilopoulos <k.vasilopoulos@gmail.com>

Repository CRAN

Date/Publication 2020-11-24 13:50:02 UTC
R topics documented:

- `ac_test` .. 2
- `ac_test_` ... 3
- `delta` ... 4
- `extract.ivx` ... 4
- `ivx` ... 5
- `ivx_ar` .. 7
- `ivx_ar_fit` ... 9
- `ivx_fit` ... 10
- `kms` ... 11
- `kms_quarterly` ... 12
- `summary.ivx` .. 13
- `summary.ivx_ar` 13
- `vcov.ivx` ... 14
- `ylpc` ... 15

Index

<table>
<thead>
<tr>
<th>ac_test</th>
<th>Autocorrelation tests</th>
</tr>
</thead>
</table>

Description

Autocorrelation tests

Usage

```r
ac_test(x, lag_max = 5)
```

Arguments

- `x`
 the residuals or an `ivx` object.
- `lag_max`
 the maximum length of lags.

Examples

```r
obj <- ivx(hpi ~ cpi + def + int + log(res), data = ylpc)
lmtest::bgtest(hpi ~ cpi + def + int + log(res), data = ylpc)
ac_test(obj, 5)
```
Description

- `ac_test_wald`: Wald test
- `ac_test_lb`: Ljung-Box
- `ac_test_bp`: Box-Pierce
- `ac_test_bg`: Breusch-Godfrey

Usage

```r
ac_test_wald(x, lag)
ac_test_lb(x, lag)
ac_test_bp(x, lag)
ac_test_bg(x, order, type, fill)
```

Arguments

- `x`: an ivx model or a numeric vector, usually the residuals from an ols regression.
- `lag`: the number of lags.
- `order`: lag TODO
- `type`: the type of test statistic to be returned. Either "Chisq" for the Chi-squared test statistic or "F" for the F test statistic.
- `fill`: starting values for the lagged residuals in the auxiliary regression. By default 0 but can also be set to NA.

Details

`#` If p-value < 0.051: You can reject the null hypothesis assuming a 5% chance of making a mistake. So you can assume that your values are showing dependence on each other.

Value

a numeric scalar or numeric vector.

See Also

- `Box.test`
- `lmtest::bgtest`
Examples

md1 <- ivx(hpi ~ cpi + inv, data = ylpc)
ac_test_wald(md1)

delta(object)

Arguments

 object on object of class "ivx"

Value

 A vector of the estimated correlation coefficients. This should have row and column names corre-
 sponding to the parameter names given by the coef method.

Examples

mod <- ivx(Ret ~ LTY, data = monthly)
delta(mod)
ivx

Usage

```r
extract.ivx(
model,
include.wald = TRUE,
include.nobs = TRUE,
include.aic = FALSE,
include.bic = FALSE,
include.rsquared = FALSE,
include.adjrs = FALSE,
...
)
```

```r
extract.ivx_ar(
model,
include.wald = TRUE,
include.nobs = TRUE,
include.aic = FALSE,
include.bic = FALSE,
include.rsquared = FALSE,
include.adjrs = FALSE,
...
)
```

Arguments

- **model**: A statistical model object.
- **include.wald**: Report the Wald statistic.
- **include.nobs**: Report the number of observations in the GOF block?
- **include.aic**: Report Akaike’s Information Criterion (AIC) in the GOF block?
- **include.bic**: Report the Bayesian Information Criterion (BIC) in the GOF block?
- **include.rsquared**: Report the R-squared.
- **include.adjrs**: Report the Adjusted R-squared.
- **...**: Custom parameters, which are handed over to subroutines. Currently not in use.

ivx

Fitting IVX Models

Description

ivx fits predictive regression models. The method allows standard chi-square testing for regressors with different degrees of persistence, from stationary to mildly explosive, and can be used for both short- and long-horizon predictive regressions.
Usage

\begin{verbatim}
ivx(
 formula,
 data,
 horizon,
 na.action,
 weights,
 contrasts = NULL,
 offset,
 model = TRUE,
 x = FALSE,
 y = FALSE,
 ...
)
\end{verbatim}

S3 method for class 'ivx'

\begin{verbatim}
print(x, digits = max(3L, getOption("digits") - 3L), ...)
\end{verbatim}

Arguments

- **formula**: an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
- **data**: an optional data frame, list or environment (or object coercible by \texttt{as.data.frame} to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which \texttt{lm} is called.
- **horizon**: is the horizon (default horizon = 1 corresponds to a short-horizon regression).
- **na.action**: a function which indicates what should happen when the data contain NAs. The default is set by the na.action setting of \texttt{options}, and is \texttt{na.fail} if that is unset. The ‘factory-fresh’ default is \texttt{na.omit}. Another possible value is \texttt{NULL}, no action. Value \texttt{na.exclude} can be useful.
- **weights**: an optional vector of weights to be used in the fitting process. Should be \texttt{NULL} or a numeric vector. If non-\texttt{NULL}, weighted least squares is used with weights \texttt{weights} (that is, minimizing \texttt{sum(w*e^2)}); otherwise ordinary least squares is used.
- **contrasts**: an optional list. See the \texttt{contrasts.arg} of \texttt{model.matrix.default}.
- **offset**: this can be used to specify an a priori known component to be included in the linear predictor during fitting. This should be \texttt{NULL} or a numeric vector or matrix of extents matching those of the response. One or more offset terms can be included in the formula instead or as well, and if more than one are specified their sum is used. See \texttt{model.offset}
- **model**: logical. If \texttt{TRUE} the model.frame of the fit is returned.
- **x**: an object of class "ivx", usually, a result of a call to \texttt{ivx}.
- **y**: logical. If \texttt{TRUE} the response of the fit is returned.
- **...**: additional arguments to be passed to the low level regression fitting functions (see \texttt{lm}).
digits the number of significant digits to use when printing.

Value

an object of class "ivx".

References

Examples

Univariate
ivx(Ret ~ LTY, data = kms)

Multivariate
ivx(Ret ~ LTY + TBL, data = kms)

Longer horizon
ivx(Ret ~ LTY + TBL, data = kms, horizon = 4)

wt <- runif(nrow(kms))
ivx(Ret ~ LTY, data = kms, weights = wt)
na.action,
contrasts = NULL,
offset,
model = TRUE,
x = FALSE,
y = FALSE,
...
)

S3 method for class 'ivx_ar'
print(x, digits = max(3L,getOption("digits") - 3L), ...)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted.
data n optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data, the
variables are taken from environment(formula), typically the environment from
which lm is called.

horizon is the horizon (default horizon = 1 corresponds to a short-horizon regression).
ar Method to include the autoregressive terms. "auto" find the optimal ar order by
using the information criteria. ar = 0 reduces to simple ivx. ar > 1 uses a fixed
order to estimate the model.
ar_ic Information criterion to be used in model selection.
ar_max Maximum ar order of model to fit.
ar_grid The ar grid sequence of which to iterate.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is un-set. The ‘factory-fresh’ default is na.omit. Another possible value is NULL, no
action. Value na.exclude can be useful.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. This should be NULL or a numeric vector or
matrix of extents matching those of the response. One or more offset terms can
be included in the formula instead or as well, and if more than one are specified
their sum is used. See model.offset

model logical. If TRUE the model.frame of the fit is returned.

x an object of class "ivx_ar", usually, a result of a call to ivx_ar.

y logical. If TRUE the response of the fit is returned.

... additional arguments to be passed to the low level regression fitting functions
(see lm).

digits the number of significant digits to use when printing.
References

Examples

ivx_ar(hpi ~ log(res) + cpi, ylpc)

ivx_ar(hpi ~ log(res) + cpi, ylpc, ar_ic = "aic")

ivx_ar(hpi ~ log(res) + cpi, ylpc, ar = 1)

ivx_ar_fit

Fitter Functions for IVX-AR Models

Description

Basic function called by ivx_ar to fit predictive models. These should only be used directly by experienced users.

Usage

ivx_ar_fit(
 y,
 x,
 horizon = 1,
 offset = NULL,
 ar = "auto",
 ar_max = 5,
 ar_ic = "bic",
 ar_grid = function(x) seq(x - 0.3, x + 0.3, by = 0.02),
 ...
)

Arguments

y vector of observations of length n, or a matrix with n rows.
x design matrix of dimension n * p.
horizon is the horizon (default horizon = 1 corresponds to a short-horizon regression).
offset (numeric of length n). This can be used to specify an a priori known component to be included in the linear predictor during fitting.
ar Method to include the autoregressive terms. "auto" find the optimal ar order by using the information criteria. ar = 0 reduces to simple ivx. ar > 1 uses a fixed order to estimate the model.
ar_max Maximum ar order of model to fit.
ar_ic Information criterion to be used in model selection.
ar_grid The ar grid sequence of which to iterate.
...
Further arguments passed to the function which is fitting the best AR model. If ar = "auto" then the internal function auto_ar is used, if ar = "forecast" then the the function forecast::auto.arima is used. If ar is of fixed length then arima is used.

Examples

ivx_ar_fit(monthly$Ret, as.matrix(monthly$LTY))
ivx_ar_fit(monthly$Ret, as.matrix(monthly$LTY), ar = 1)

ivx_fit Fitter Functions for IVX Models

Description
Basic function called by ivx to fit predictive models. These should only be used directly by experienced users.

Usage
ivx_fit(y, x, horizon = 1, offset = NULL, ...)
ivx_wfit(y, x, w, horizon = 1, offset = NULL, ...)

Arguments
y vector of observations of length n, or a matrix with n rows.
x design matrix of dimension n * p.
horizon is the horizon (default horizon = 1 corresponds to a short-horizon regression).
offset (numeric of length n). This can be used to specify an a priori known component to be included in the linear predictor during fitting.
... currently disregarded.
w vector of weights (length n) to be used in the fitting process for the wfit functions. Weighted least squares is used with weights w, i.e., sum(w * e^2) is minimized.

Examples
ivx_fit(monthly$Ret, as.matrix(monthly$LTY))
Description

The dataset that was used in Kostakis et al (2015), containing a range of financial variables.

- Date: year-month-date (monthly frequency)
- DE: dividend payout ratio
- LTY: long-term yield
- DY: dividend yield
- DP: dividend-price ratio
- TBL: T-bill rate
- EP: earnings-price ratio
- BM: book-to-market value ratio
- INF: inflation rate
- DFY: default yield spread
- NTIS: net equity expansion
- TMS: term spread
- Ret: S&P 500 value-weighted log excess returns

Usage

kms

Format

A data.frame with 13 variables and 1,033 observations.

Source

https://drive.google.com/open?id=1FdT2STHO2Lnlweom4AwICVf-rpVMfgV4
kms_quarterly

KMS Quarterly data

Description

The dataset that was used in Kostakis et al (2015), containing a range of financial variables.

- Date: year-month-date
- DE: dividend payout ratio
- LTY: long-term yield
- DY: dividend yield
- DP: dividend-price ratio
- TBL: T-bill rate
- EP: earnings-price ratio
- BM: book-to-market value ratio
- INF: inflation rate
- DFY: default yield spread
- NTIS: net equity expansion
- TMS: term spread
- Ret: S&P 500 value-weighted log excess returns

Usage

kms_quarterly

Format

A data.frame with 13 variables and 345 observations.

Source

https://drive.google.com/open?id=1FdT2STHO2Ln1weom4AwICVf-rpVMfV4
Summary

Summary.ivx
Summarizing IVX Model Fits

Description

summary method for class "ivx".

Usage

```r
## S3 method for class 'ivx'
summary(object, ...)

## S3 method for class 'summary.ivx'
print(
  x,
  digits = max(3L,getOption("digits") - 3L),
  signif.stars = getOption("show.signif.stars"),
  ...
)
```

Arguments

- `object` object of class "ivx", usually, a result of a call to `ivx`.
- `...` further arguments passed to or from other methods.
- `x` an object of class "summary.lm", usually, a result of a call to `summary.lm`.
- `digits` the number of significant digits to use when printing.
- `signif.stars` logical. If TRUE, 'significance stars' are printed for each coefficient.

Examples

```r
mod <- ivx(Ret ~ LTY, data = monthly)
summary(mod)
```

Summary.ivx_ar
Summarizing IVX-AR Model Fits

Description

summary method for class "ivx".
Usage

```r
## S3 method for class 'ivx_ar'
summary(object, ...)

## S3 method for class 'summary.ivx_ar'
print(
  x,
  digits = max(3L, getOption("digits") - 3L),
  signif.stars = getOption("show.signif.stars"),
  ...
)
```

Arguments

- `object`: object of class "ivx_ar", usually, a result of a call to `ivx_ar`.
- `...`: further arguments passed to or from other methods.
- `x`: an object of class "summary.lm", usually, a result of a call to `summary.lm`.
- `digits`: the number of significant digits to use when printing.
- `signif.stars`: logical. If `TRUE`, ‘significance stars’ are printed for each coefficient.

Examples

```r
mod <- ivx_ar(Ret ~ LTY, data = kms)
summary(mod)
```

vcov.ivx

Calculate Variance-Covariance Matrix for a Fitted Model Object

Description

Calculate Variance-Covariance Matrix for a Fitted Model Object

Usage

```r
## S3 method for class 'ivx'
v cov(object, complete = TRUE, ...)

## S3 method for class 'summary.ivx'
v cov(object, complete = TRUE, ...)
```

Arguments

- `object`: a fitted ivx and summary.ivx object.
- `complete`: logical indicating if the full variance-covariance matrix should be returned. When `complete = TRUE`, `vcov()` is compatible with `coef()`.
- `...`: additional arguments for method functions.
Value
A matrix of the estimated covariances between the parameter estimates of the model. This should have row and column names corresponding to the parameter names given by the `coef` method.

Examples
```r
mod <- ivx(Ret ~ LTY, data = monthly)
vcov(mod)
```

<table>
<thead>
<tr>
<th>ylpc</th>
<th>YLPC Quarterly data</th>
</tr>
</thead>
</table>

Description
The dataset that was used in ..., containing a range of variables.

Usage
```r
ylpc
```

Format
An object of class `spec_tbl_df` (inherits from `tbl_df`, `tbl`, `data.frame`) with 174 rows and 12 columns.

Source
Index

* datasets
 kms, 11
 kms_quarterly, 12
 ylpc, 15
 ac_test, 2
 ac_test_, 3
 ac_test_bg(ac_test_), 3
 ac_test_bp(ac_test_), 3
 ac_test_lb(ac_test_), 3
 ac_test_wald(ac_test_), 3
 as.data.frame, 6, 8
 delta, 4
 extract.ivx, 4
 extract.ivx_ar(extract.ivx), 4
 ivx, 5, 8, 9
 ivx_ar, 7
 ivx_ar_fit, 9
 ivx_fit, 10
 ivx_wfit(ivx_fit), 10
 kms, 11
 kms_quarterly, 12
 lm, 6, 8
 model.matrix.default, 6, 8
 model.offset, 6, 8
 na.exclude, 6, 8
 na.fail, 6, 8
 na.omit, 6, 8
 options, 6, 8
 print.ivx(ivx), 5
 print.ivx_ar(ivx_ar), 7
 print.summary.ivx(summary.ivx), 13
 print.summary.ivx_ar(summary.ivx_ar), 13
 summary.ivx, 13
 summary.ivx_ar, 13
 vcov.ivx, 14
 vcov.summary.ivx(vcov.ivx), 14
 ylpc, 15