Package ‘jSDM’

July 2, 2019

Type Package
Title Joint Species Distribution Models
Version 0.1.0
Date 2019-05-30
Imports Rcpp (>= 1.0.0), graphics, stats, coda, corrplot
LinkingTo Rcpp, RcppArmadillo, RcppGSL
NeedsCompilation yes
SystemRequirements GNU GSL
Suggests knitr, raster, sp, rmarkdown, bookdown, testthat, boral
Maintainer Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>
License GPL-3 | file LICENSE
URL https://ecology.ghislainv.fr/jSDM,
https://github.com/ghislainv/jSDM
BugReports https://github.com/ghislainv/jSDM/issues
LazyLoad yes
Encoding UTF-8
RoxygenNote 6.1.1
VignetteBuilder knitr
Author Ghislain Vieilledent [aut, cre]
 (https://orcid.org/0000-0002-1685-4997),
 Jeanne Clément [aut] (https://orcid.org/0000-0002-5228-5015),
 CIRAD [cph, fnd]
Repository CRAN
Date/Publication 2019-07-02 09:10:03 UTC
R topics documented:

- jSDM-package ... 2
- frogs ... 2
- get_residual_cor ... 3
- jSDM_binomial .. 5
- jSDM_probit_block ... 8
- logit ... 13
- plot_residual_cor ... 15
- predict.jSDM ... 16

Index 18

jSDM-package

joint species distribution models

Description

jSDM is an R package for fitting joint species distribution models in a hierarchical Bayesian framework.

Details

- **Package:** jSDM
- **Type:** Package
- **Version:** 0.1.0
- **Date:** 2019-01-11
- **License:** GPL-3
- **LazyLoad:** yes

Author(s)

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>
Matthieu Authier <matthieu.authier@univ-lr.fr>

frogs

frogs dataset
get_residual_cor

Description

Presence or absence of 9 species of frogs on 104 sites, 3 covariates collected on those site and their coordinates.

Usage

frogs

Format

frogs is a data frame with 104 observations on the following 14 variables.
Species_ 1 to 9 indicate by a 0 the absence of the species on one site and by a 1 its presence
Covariates_ 1 and 3 continuous variables
Covariates_ 2 discrete variables
x a numeric vector of first coordinates corresponding to each site
y a numeric vector of second coordinates corresponding to each site

Source

Examples

data(frogs, package="jSDM")
head(frogs)

get_residual_cor Calculate the residual correlation matrix from a LVM.

Description

This function use coefficients \((\lambda_j)\) with \(j = 1, \ldots, n_{\text{species}}\) and \(l = 1, \ldots, n_{\text{latent}}\) corresponding to latent variables to calculate the variance-covariance matrix which controls correlation between species.

Usage

get_residual_cor(mod)

Arguments

mod An object of class "jSDM"
Value

- **cov.mean**: Average over the MCMC samples of the variance-covariance matrix.
- **cov.median**: Median over the MCMC samples of the variance-covariance matrix.
- **cor.mean**: Average over the MCMC samples of the residual correlation matrix.
- **cor.median**: Median over the MCMC samples of the residual correlation matrix.

Author(s)

Jeanne Clement <jeanne.clement16@laposte.net>, adapted from function boral::get.residual.cor() written by Francis K. Hui <fhui28@gmail.com>.

Examples

```r
# frogs data
data(frogs, package="jSDM")

# Arranging data
PA_frogs <- frogs[,4:12]

# Normalized continuous variables
Env_frogs <- cbind(scale(frogs[,1]),frogs[,2],scale(frogs[,3]))
colnames(Env_frogs) <- colnames(frogs[,1:3])

# Parameter inference
# Increase the number of iterations to reach MCMC convergence
mod_jSDM_block_frogs <- jSDM::jSDM_probit_block(
  # Response variable
  presence_site_sp = as.matrix(PA_frogs),
  # Explanatory variables
  site_suitability = ~,
  site_data = as.data.frame(Env_frogs), n_latent=2,
  # Chains
  burnin=1000, mcmc=1000, thin=1,
  # Starting values
  alpha_start=0, beta_start=0,
  lambda_start=0, W_start=0,
  V_alpha_start=1,
  # Priors
  shape=0.5, rate=0.0005,
  mu_beta=0, V_beta=1.0E6,
  mu_lambda=0, V_lambda=10,
  # Various
  seed=1234, verbose=1)

# Calcul of residual correlation between species
result <- get_residual_cor(mod_jSDM_block_frogs)
result$ cov.mean
result$ cor.mean
```
Description

The jSDM_binomial function performs a Binomial logistic regression in a Bayesian framework. The function calls a Gibbs sampler written in C++ code which uses an adaptive Metropolis algorithm to estimate the conditional posterior distribution of model’s parameters.

Usage

jSDM_binomial(presences, trials, suitability, data,
burnin = 5000, mcmc = 10000, thin = 10,
beta_start, mubeta = 0, Vbeta = 1e+06, seed = 1234, ropt = 0.44, verbose = 1)

Arguments

- **presences** A vector indicating the number of successes (or presences) for each observation.
- **trials** A vector indicating the number of trials for each observation. t_n should be superior or equal to y_n, the number of successes for observation n. If $t_n = 0$, then $y_n = 0$.
- **suitability** A one-sided formula of the form ‘~x1+...+xp’ with p terms specifying the explicative variables for the suitability process of the model.
- **data** A data frame containing the model’s explicative variables.
- **burnin** The number of burnin iterations for the sampler.
- **mcmc** The number of Gibbs iterations for the sampler. Total number of Gibbs iterations is equal to $\text{burnin}+\text{mcmc}$. $\text{burnin}+\text{mcmc}$ must be divisible by 10 and superior or equal to 100 so that the progress bar can be displayed.
- **thin** The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value.
- **beta_start** Starting values for beta parameters of the suitability process. If beta_start takes a scalar value, then that value will serve for all of the betas.
- **mubeta** Means of the priors for the β parameters of the suitability process. mubeta must be either a scalar or a p-length vector. If mubeta takes a scalar value, then that value will serve as the prior mean for all of the betas. The default value is set to 0 for an uninformative prior.
- **Vbeta** Variances of the Normal priors for the β parameters of the suitability process. Vbeta must be either a scalar or a p-length vector. If Vbeta takes a scalar value, then that value will serve as the prior variance for all of the betas. The default variance is large and set to 1.0E6 for an uninformative flat prior.
- **seed** The seed for the random number generator. Default to 1234.
- **ropt** Target acceptance rate for the adaptive Metropolis algorithm. Default to 0.44.
- **verbose** A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler.
Details

We model an ecological process where the presence or absence of the species is explained by habitat suitability.

Ecological process:

\[y_i \sim \text{Binomial}(\theta_i, t_i) \]

\[\logit(\theta_i) = X_i \beta \]

Value

- **mcmc**: An mcmc object that contains the posterior sample. This object can be summarized by functions provided by the coda package. The posterior sample of the deviance \(D \), with \(D = -2 \log(\prod_i P(y_i|\beta, t_i)) \), is also provided.
- **theta_latent**: Predictive posterior mean of the probability associated to the suitability process for each observation.
- **spec**: Model’s specifications

Author(s)

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>

References

See Also

plot.mcmc, summary.mcmc

Examples

```r
# Example with simulated data
#============================================
# jSDM_binomial()
# Example with simulated data
#============================================

# Load libraries
library(jSDM)

# Data simulation
# Number of sites
```
```
nsite <- 200

# Set seed for repeatability
seed <- 1234

# Number of visits associated to each site
set.seed(seed)
visits <- rpois(nsite, 3)
visits[visits==0] <- 1

# Ecological process (suitability)
set.seed(seed)
x1 <- rnorm(nsite, 0, 1)
set.seed(2*seed)
x2 <- rnorm(nsite, 0, 1)
X <- cbind(rep(1, nsite), x1, x2)
beta.target <- c(-1, 1, -1)
logit.theta <- X %*% beta.target
theta <- inv_logit(logit.theta)
set.seed(seed)
Y <- rbinom(nsite, visits, theta)

# Data-sets
data.obs <- data.frame(Y, visits, x1, x2)

# Site-occupancy model
mod_jsdm_binomial <- jsdm_binomial(presences=data.obs$Y,
trials=data.obs$visits,
suitability=-x1+x2,
data=data.obs,
burnin=1000, mcmc=1000, thin=1,
beta_start=0,
mubeta=0, Vbeta=1.0E6,
seed=1234, ropt=0.44, verbose=1)

# Outputs
# Parameter estimates
summary(mod_jsdm_binomial$mcmc)
pdf(file=file.path(tempdir(), "Posterior_jsdm_binomial.pdf"))
plot(mod_jsdm_binomial$mcmc)
dev.off()

# glm resolution to compare
mod_glm <- glm(cbind(Y, visits-Y)~x1+x2, family="binomial", data=data.obs)
summary(mod_glm)

# Predictions
summary(mod_jsdm_binomial$theta_latent)
pdf(file=file.path(tempdir(), "Pred-Init.pdf"))
```
Description

The *jsdm_probit_block* function performs a Binomial probit regression in a Bayesian framework. The function calls a Gibbs sampler written in C++ code which uses conjugate priors to estimate the conditional posterior distribution of model’s parameters.

Usage

```r
jsdm_probit_block(presence_site_sp, site_suitability, site_data, n_latent=2, burnin=5000, mcmc=15000, thin=10, alpha_start=0, beta_start=0, lambda_start=0, W_start=0, V_alpha_start=1, beta_start=0, lambda_start=0, V_start=1, shape=0.5, rate=0.0005, mu_beta=0, V_beta=1.0E6, mu_lambda=0, V_lambda=10, seed=1234, verbose=1)
```

Arguments

- **presence_site_sp**: A matrix \(n_{site} \times n_{species} \) indicating the presence by a 1 (or the absence by a 0) of each species on each site.
- **n_latent**: An integer indicating the number of latent variables.
- **site_suitability**: A one-sided formula of the form ‘~x1+...+xp’ with \(p \) terms specifying the explicative variables for the suitability process of the model.
- **site_data**: A data frame containing the model’s explicative variables by site.
- **burnin**: The number of burnin iterations for the sampler.
- **mcmc**: The number of Gibbs iterations for the sampler. Total number of Gibbs iterations is equal to burnin+mcmc. burnin+mcmc must be divisible by 10 and superior or equal to 100 so that the progress bar can be displayed.
- **thin**: The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value.
- **beta_start**: Starting values for beta parameters of the suitability process for each species must be either a scalar or a \(p \times n_{species} \) matrix. If beta_start takes a scalar value, then that value will serve for all of the betas.
- **lambda_start**: Starting values for lambda parameters corresponding to the latent variables for each species must be either a scalar or a \(n_{latent} \times n_{species} \) upper triangular matrix with strictly positive values on the diagonal. If lambda_start takes a scalar value, then that value will serve for all of the lambdas except those concerned by the constraints explained above.
alpha_start: Starting values for random site effect parameters must be either a scalar or a nsite-length vector. If alpha_start takes a scalar value, then that value will serve for all of the alphas.

V_alpha_start: Starting value for variance of random site effect must be a strictly positive scalar.

W_start: Starting values for latent variables must be either a scalar or a nsite × nlatent matrix. If W_start takes a scalar value, then that value will serve for all of the Ws.

shape: Shape parameter of the Inverse-Gamma prior for the random site effect variance. Must be a strictly positive scalar. Default to 0.5 for weak informative prior.

rate: Rate parameter of the Inverse-Gamma prior for the random site effect variance. Must be a strictly positive scalar. Default to 0.0005 for weak informative prior.

mu_beta: Means of the Normal priors for the \(\beta \) parameters of the suitability process. mu_beta must be either a scalar or a p-length vector. If mu_beta takes a scalar value, then that value will serve as the prior mean for all of the betas. The default value is set to 0 for an uninformative prior.

V_beta: Variances of the Normal priors for the \(\beta \) parameters of the suitability process. V_beta must be either a scalar or a p × p symmetric positive semi-definite square matrix. If V_beta takes a scalar value, then that value will serve as the prior variance for all of the betas, so the variance covariance matrix used in this case is diagonal with the specified value on the diagonal. The default variance is set to 1.0E6 for an uninformative flat prior.

mu_lambda: Means of the Normal priors for the \(\lambda \) parameters corresponding to the latent variables. mu_lambda must be either a scalar or a n_latent-length vector. If mu_lambda takes a scalar value, then that value will serve as the prior mean for all of the lambdas. The default value is set to 0 for an uninformative prior.

V_lambda: Variances of the Normal priors for the \(\lambda \) parameters corresponding to the latent variables. V_lambda must be either a scalar or a n_latent × n_latent symmetric positive semi-definite square matrix. If V_lambda takes a scalar value, then that value will serve as the prior variance for all of the lambdas, so the variance covariance matrix used in this case is diagonal with the specified value on the diagonal. The default variance is set to 10 for an uninformative flat prior.

seed: The seed for the random number generator. Default to 1234.

verbose: A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler.

Details

We model an ecological process where the presence or absence of the species is explained by habitat suitability.

Ecological process:

\[
y_{i,j} \sim Bernoulli(\theta_{i,j})
\]

\[
probit(\theta_{i,j}) = \beta_{0j} + X_{ij}\beta_j + W_i\lambda_j + \alpha_i
\]
Value

- `mcmc.alpha` An mcmc object that contains the posterior samples for alphas. This object can be summarized by functions provided by the coda package.
- `mcmc.valpha` An mcmc object that contains the posterior samples for variance of random site effect.
- `mcmc.latent` A list by latent variable of mcmc objects that contains the posterior samples for latent variables Ws.
- `mcmc.sp` A list by species of mcmc objects that contains the posterior samples for betas and lambdas.
- `mcmc.Deviance` The posterior sample of the deviance D, with $D = -2 \log(\prod_{i,j} P(y_{i,j} | \beta_j, \lambda_j, \alpha_i, W_i))$, is also provided.
- `Z_latent` Predictive posterior mean of the latent variable Z.
- `probit_theta_pred` Predictive posterior mean of the probability to each species to be present on each site, transformed by probit link function.
- `model_spec` Model’s specifications

Author(s)

Jeanne Clement <jeanne.clement16@laposte.net> Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>

References

See Also

`plot.mcmc`, `summary.mcmc`

Examples

```r
# jSDM_probit_block()
# Example with simulated data

# Load libraries
library(jSDM)

# Data simulation
# Number of sites
```
nsite <- 50

Set seed for repeatability
seed <- 1234
set.seed(seed)

Number of species
nsp <- 5

Number of latent variables
n_latent <- 2

Ecological process (suitability)
x1 <- rnorm(nsite, 0, 1)
x2 <- rnorm(nsite, 0, 1)
X <- data.frame(Int=rep(1, nsite), x1=x1, x2=x2)
W <- cbind(rnorm(nsite, 0, 1), rnorm(nsite, 0, 1))
data <- cbind(X, W)
beta.target <- t(matrix(runif(nsp*nLatent), -2, 2), byrow=TRUE, nrow=nsp)
1.zero <- 0
1.diag <- runif(2, 0, 2)
1.other <- runif(nsp*nLatent-3, -2, 2)
lambda.target <- t(matrix(c(1.diag[1], 1.zero, 1.other[1], 1.diag[2], 1.other[-1]), byrow=TRUE, nrow=nsp))
param.target <- rbind(beta.target, lambda.target)
Valpha.target <- 0.5
V <- 1
alpha.target <- rnorm(nsite, 0, sqrt(Valpha.target))
probit.theta <- as.matrix(X) %*% beta.target + W %*% lambda.target + alpha.target
e <- matrix(rnorm(nsp*nsite, 0, sqrt(V)), nsite, nsp)
Z.true <- probit.theta + e
Y <- matrix(NA, nsite, nsp)
for (i in 1:nsite){
 for (j in 1:nsp){
 if (Z.true[i, j] > 0) {Y[i, j] <- 1}
 else {Y[i, j] <- 0}
 }
}

Site-occupancy model

mod_jSDM_probit_block <- jSDM::jSDM_probit_block (presence_site_sp = Y,
 site.suitability = -x1 + x2,
 site.data = X[, -1], n_latent=2,
 burnin=3000, mcmc=3000, thin=3,
 alpha.start=0, beta.start=0,
 lambda.start=0, W.start=0,
 V_alpha.start=1, shape=0.5, rate=0.0005,
 mu_beta=0, V_beta=1.0E6,
 mu_lambda=0, V_lambda=10,
seed=1234, verbose=1)

===========
Result analysis
===========

#== Outputs

Parameter estimates

alpha

summary(mod_jsdm_probit_block$mcmc.alpha)

pdf(file=file.path(tempdir(), "Posteriors_alpha_jSDM_probit_block.pdf"))

plot(alpha.target,

summary(mod_jsdm_probit_block$mcmc.alpha)[[1]][,"Mean"],
xlab = "alphas target", ylab = "alphas estimated")

abline(a=0,b=1,col='red')

dev.off()

Valpha

summary(mod_jsdm_probit_block$mcmc.Valpha)

pdf(file=file.path(tempdir(), "Posteriors_Valpha_jSDM_probit_block.pdf"))

par(mfrow=c(1,2))

coda::traceplot(mod_jsdm_probit_block$mcmc.Valpha)
coda::densplot(mod_jsdm_probit_block$mcmc.Valpha)

abline(v=Valpha.target,col='red')

dev.off()

beta_j

summary(mod_jsdm_probit_block$mcmc.sp[,1:ncol(X)])

pdf(file=file.path(tempdir(), "Posteriors_beta_jSDM_probit_block.pdf"))

par(mfrow=c(ncol(X),2))

for (j in 1:nsp) {
 for (p in 1:ncol(X)) {
 coda::traceplot(coda::as.mcmc(mod_jsdm_probit_block$mcmc.sp[[paste("sp_",j)][,p]])
coda::densplot(coda::as.mcmc(mod_jsdm_probit_block$mcmc.sp[[paste("sp_",j)][,p]],
 main = paste(colnames(mod_jsdm_probit_block$mcmc.sp[[paste("sp_",j)][,p]], species = ",j))
 abline(v=beta.target[p,j],col='red')
 }
}

dev.off()

lambda_j

summary(mod_jsdm_probit_block$mcmc.sp[,1:(ncol(X)+1):(ncol(X)+n_latent)])

summary(mod_jsdm_probit_block$mcmc.sp[,2:(ncol(X)+1):(ncol(X)+n_latent)])

pdf(file=file.path(tempdir(), "Posteriors_lambda_jSDM_probit_block.pdf"))

par(mfrow=c(n_latent*2,2))

for (j in 1:nsp) {
 for (l in 1:n_latent) {
 coda::traceplot(coda::as.mcmc(mod_jsdm_probit_block$mcmc.sp[[paste("sp_",j)][,ncol(X)+l]])
coda::densplot(coda::as.mcmc(mod_jsdm_probit_block$mcmc.sp[[paste("sp_",j)][,ncol(X)+l]])
logit

Description

Compute generalized logit and generalized inverse logit functions.

Usage

logit(x, min = 0, max = 1)
inv_logit(x, min = 0, max = 1)
Arguments

\(x\) value(s) to be transformed

\(\text{min}\) Lower end of logit interval

\(\text{max}\) Upper end of logit interval

Details

The generalized logit function takes values on \([\text{min}, \text{max}]\) and transforms them to span \([-\text{Inf}, \text{Inf}]\) it is defined as:

\[
y = \log\left(\frac{p}{1 - p}\right)
\]

where

\[
p = \frac{(x - \text{min})}{(\text{max} - \text{min})}
\]

The generalized inverse logit function provides the inverse transformation:

\[
x = p'(\text{max} - \text{min}) + \text{min}
\]

where

\[
p' = \frac{\exp(y)}{1 + \exp(y)}
\]

Value

Transformed value(s).

Author(s)

Gregory R. Warnes <greg@warnes.net>

Examples

\[
x <- \text{seq}(0, 10, \text{by}=0.25)
x_t <- \text{JSOM::logit}(x, \text{min}=0, \text{max}=10)
cbind(x, x_t)
y <- \text{JSOM::inv_logit}(x_t, \text{min}=0, \text{max}=10)
cbind(x, x_t, y)
\]
Description

Plot the posterior mean estimator of residual correlation matrix reordered by first principal component.

Usage

plot_residual_cor(mod)

Arguments

mod An object of class "jSDM".

Author(s)

Jeanne Clement <jeanne.clement16@laposte.net>

Examples

frogs data
data(frogs, package="jSDM")

Arranging data
PA_frogs <- frogs[,4:12]

Normalized continuous variables
Env_frogs <- cbind(scale(frogs[,1]),frogs[,2],scale(frogs[,3]))
colnames(Env_frogs) <- colnames(frogs[,1:3])

Parameter inference
Increase the number of iterations to reach MCMC convergence
mod_jSDM_block_frogs <- jSDM::jSDM_probit_block (
 # Response variable
 presence_site_sp = as.matrix(PA_frogs),
 # Explanatory variables
 site_suitability = ~.,
 site_data = as.data.frame(Env_frogs), nlatent=2,
 # Chains
 burnin=1000, mcmc=1000, thin=1,
 # Starting values
 alpha_start=0, beta_start=0,
 lambda_start=0, W_start=0,
 V_alpha_start=1,
 # Priors
 shape=0.5, rate=0.0005,
 mu_beta=0, V_beta=1.0E6,
predict.jSDM

Description

Predicted values for models fitted with jSDM

Usage

```r
## S3 method for class 'jSDM'
predict(object, newdata=NULL, Id_species, Id_sites, type="mean",
        probs=c(0.025,0.975), ...)
```

Arguments

- `object`: An object of class "jSDM".
- `newdata`: An optional data frame in which to look for variables with which to predict. If omitted, the fitted values are used.
- `Id_species`: An vector of character or integer indicating for which species the probabilities of presence on chosen sites will be predicted.
- `Id_sites`: An vector of integer indicating for which sites the probabilities of presence of specified species will be predicted.
- `type`: Type of prediction. Can be "mean" for predictive posterior mean, "quantile" for producing sample quantiles from the predictive posterior corresponding to the given probabilities (see probs argument) or "posterior" for the full predictive posterior for each prediction. Using "quantile" or "posterior" might lead to memory problem depending on the number of predictions and the number of samples for the jSDM model’s parameters.
- `probs`: Numeric vector of probabilities with values in [0,1] and used when type="quantile".
- `...`: Further arguments passed to or from other methods.

Value

Return a vector for the predictive posterior mean when type="mean", a data-frame with the mean and quantiles when type="quantile" or an mcmc object (see coda package) with posterior distribution for each prediction when type="posterior".
Author(s)

Jeanne Clement <jeanne.clement@laposte.net> Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>

See Also

jSDM

Examples

```r
# frogs data
data(frogs, package="jSDM")

# Arranging data
PA_frogs <- frogs[,4:12]

# Normalized continuous variables
Env_frogs <- cbind(scale(frogs[,1]),frogs[,2],scale(frogs[,3]))
colnames(Env_frogs) <- colnames(frogs[,1:3])

# Parameter inference
# Increase the number of iterations to reach MCMC convergence
mod_jSDM_block_frogs <- jSDM::jSDM_probit_block(
  # Response variable
  presence_site_sp = as.matrix(PA_frogs),
  # Explanatory variables
  site_suitability = ~.,
  site_data = as.data.frame(Env_frogs), n_latent=2,
  # Chains
  burnin=1000, mcmc=1000, thin=1,
  # Starting values
  alpha_start=0, beta_start=0,
  lambda_start=0, W_start=0,
  V_alpha_start=1,
  # Priors
  shape=0.5, rate=0.0005,
  mu_beta=0, V_beta=1.0E6,
  mu_lambda=0, V_lambda=10,
  # Various
  seed=1234, verbose=1)

# Select site and species for predictions
## 30 sites
Id_sites <- sample.int(nrow(PA_frogs), 30)
## 5 species
Id_species <- sample(colnames(PA_frogs), 5)

# Predictions
theta_pred <- jSDM::predict.jSDM(mod_jSDM_block_frogs,
  Id_species=Id_species, Id_sites=Id_sites, type="mean")
hist(theta_pred, main="Predicted theta with simulated covariates")
```
Index

*Topic **Binomial logistic regression**
 jSDM_binomial, 5

*Topic **Binomial probit regression**
 jSDM_probit_block, 8

*Topic **Gibbs Sampling**
 jSDM_probit_block, 8

*Topic **MCMC**
 jSDM-package, 2
 jSDM_binomial, 5
 jSDM_probit_block, 8

*Topic **Markov Chains Monte Carlo**
 jSDM-package, 2
 jSDM_binomial, 5
 jSDM_probit_block, 8

*Topic **Metropolis algorithm**
 jSDM-package, 2
 jSDM_binomial, 5

*Topic **biodiversity**
 jSDM-package, 2
 jSDM_binomial, 5
 jSDM_probit_block, 8

*Topic **conditional autoregressive model**
 jSDM-package, 2

*Topic **corrplot**
 plot_residual_cor, 15

*Topic **credible interval**
 predict.jSDM, 16

*Topic **datasets**
 frogs, 2

*Topic **hierarchical Bayesian models**
 jSDM-package, 2
 jSDM_binomial, 5
 jSDM_probit_block, 8

*Topic **intrinsic CAR model**
 jSDM-package, 2

*Topic **joint species distribution models**
 jSDM_probit_block, 8

*Topic **math**
 logit, 13

*Topic **prediction**
 predict.jSDM, 16

*Topic **predictive posterior**
 predict.jSDM, 16

*Topic **spatial correlation**
 jSDM-package, 2

*Topic **species distribution models**
 jSDM-package, 2
 jSDM_binomial, 5

*Topic **stats::cov2cor**
 get_residual_cor, 3

frogs, 2

get_residual_cor, 3

inv_logit(logit), 13

jSDM, 17

jSDM(jSDM-package), 2

jSDM-package, 2

jSDM_binomial, 5

jSDM_probit_block, 8

logit, 13

plot.mcmc, 6, 10

plot_residual_cor, 15

predict.jSDM, 16

summary.mcmc, 6, 10