Package ‘jaccard’

October 13, 2022

Type Package
Title Test Similarity Between Binary Data using Jaccard/Tanimoto Coefficients
Version 0.1.0
Date 2018-06-06
Author Neo Christopher Chung <nchchung@gmail.com>, Błażej Miasojedow <bmiasojedow@gmail.com>, Michał Startek <M.Startek@mimuw.edu.pl>, Anna Gammelin <aniag@mimuw.edu.pl>
Maintainer Neo Christopher Chung <nchchung@gmail.com>
Description Calculate statistical significance of Jaccard/Tanimoto similarity coefficients for binary data.
biocViews
License GPL-2
Encoding UTF-8
LazyData true
Imports Rcpp (>= 0.12.6), qvalue, dplyr, magrittr
LinkingTo Rcpp
NeedsCompilation yes
SystemRequirements C++11
RoxygenNote 6.0.1
Repository CRAN
Date/Publication 2018-06-14 17:53:00 UTC

R topics documented:

jaccard .. 2
jaccard.ev ... 3
jaccard.rahman ... 3
jaccard.test ... 4
Compute a Jaccard/Tanimoto similarity coefficient

Description
Compute a Jaccard/Tanimoto similarity coefficient

Usage
jaccard(x, y, center = FALSE, px = NULL, py = NULL)

Arguments
x a binary vector (e.g., fingerprint)
y a binary vector (e.g., fingerprint)
center whether to center the Jaccard/Tanimoto coefficient by its expectation
px probability of successes in x (optional)
py probability of successes in y (optional)

Value
jaccard returns a Jaccard/Tanimoto coefficient.

Examples
set.seed(1234)
x = rbinom(100, 1,.5)
y = rbinom(100, 1,.5)
jaccard(x,y)
jaccard.ev

Compute an expected Jaccard/Tanimoto similarity coefficient under independence

Description

Compute an expected Jaccard/Tanimoto similarity coefficient under independence

Usage

```r
jaccard.ev(x, y, px = NULL, py = NULL)
```

Arguments

- **x**: a binary vector (e.g., fingerprint)
- **y**: a binary vector (e.g., fingerprint)
- **px**: probability of successes in **x** (optional)
- **py**: probability of successes in **y** (optional)

Value

jaccard.ev returns an expected value.

Examples

```r
set.seed(1234)
x = rbinom(100, 1,.5)
y = rbinom(100, 1,.5)
jaccard.ev(x,y)
```

jaccard.rahman

Compute p-value using an extreme value distribution

Description

Rahman et al. (2014) proposes a method to compute a p-value of a Jaccard/Tanimoto coefficient using an extreme value distribution. Their paper provides the following description: The mean (mu) and s.d. (sigma) of the similarity scores are used to define the z score, \(z = (T_w - \mu)/\sigma \). For the purpose of calculating the P value, only hits with \(T > 0 \) are considered. The P value \(w \) is derived from the z score using an extreme value distribution \(P = 1 - \exp(-e^{-z}\pi/\sqrt{6} - G'(1)) \), where the Euler=Mascheroni constant \(G'(1) = 0.577215665 \).

Usage

```r
jaccard.rahman(j)
```
jaccard.test

Arguments

j a numeric vector of observed Jaccard coefficients (uncentered)

Value

jaccard.rahman returns a numeric vector of p-values

References

jaccard.test Test for Jaccard/Tanimoto similarity coefficients

Description

Compute statistical significance of Jaccard/Tanimoto similarity coefficients between binary vectors, using four different methods.

Usage

jaccard.test(x, y, method = "mca", px = NULL, py = NULL, verbose = TRUE, ...)

Arguments

x a binary vector (e.g., fingerprint)
y a binary vector (e.g., fingerprint)
method a method to compute a p-value ("mca", "bootstrap", "asymptotic", or "exact")
px probability of successes in x (optional)
py probability of successes in y (optional)
verbose whether to print progress messages
... optional arguments for specific computational methods

Details

There exist four methods to compute p-values of Jaccard/Tanimoto similarity coefficients: mca, bootstrap, asymptotic, and exact. This is simply a wrapper function for corresponding four functions in this package: jaccard.test.mca, jaccard.test.bootstrap, jaccard.test.asymptotic, and jaccard.test.exact.

We recommend using either mca or bootstrap methods, since the exact solution is slow for a moderately large vector and asymptotic approximation may be inaccurate depending on the input vector size. The bootstrap method uses resampling with replacement binary vectors to compute a p-value (see optional arguments). The mca method uses the measure concentration algorithm that estimates the multinomial distribution with a known error bound (specified by an optional argument accuracy).
Value

\texttt{jaccard.test} returns a list mainly consisting of

- \texttt{statistics} centered Jaccard/Tanimoto similarity coefficient
- \texttt{pvalue} \texttt{p-value}
- \texttt{expectation} expectation

Optional arguments for \texttt{method="bootstrap"}

- \texttt{fix} whether to fix (i.e., not resample) \(x \) and/or \(y \)
- \texttt{B} a total bootstrap iteration
- \texttt{seed} a seed for a random number generator

Optional arguments for \texttt{method="mca"}

- \texttt{accuracy} an error bound on approximating a multinomial distribution
- \texttt{error.type} an error type on approximating a multinomial distribution ("average", "upper", "lower")
- \texttt{seed} a seed for the random number generator.

See Also

\texttt{jaccard.test.bootstrap jaccard.test.mca jaccard.test.exact jaccard.test.asymptotic}

Examples

```r
set.seed(1234)
x = rbinom(100, 1, .5)
y = rbinom(100, 1, .5)
jaccard.test(x, y, method="bootstrap")
jaccard.test(x, y, method="mca")
jaccard.test(x, y, method="exact")
jaccard.test(x, y, method="asymptotic")
```

\texttt{jaccard.test.asymptotic}

\textit{Compute p-value using an asymptotic approximation}

Description

Compute statistical significance of Jaccard/Tanimoto similarity coefficients.

Usage

\texttt{jaccard.test.asymptotic(x, y, px = NULL, py = NULL, verbose = TRUE)}
Arguments

- **x**: a binary vector (e.g., fingerprint)
- **y**: a binary vector (e.g., fingerprint)
- **px**: probability of successes in x (optional)
- **py**: probability of successes in y (optional)
- **verbose**: whether to print progress messages

Value

`jaccard.test.asymptotic` returns a list consisting of:

- **statistics**: centered Jaccard/Tanimoto similarity coefficient
- **pvalue**: p-value
- **expectation**: expectation

Examples

```r
set.seed(1234)
x = rbinom(100,1,.5)
y = rbinom(100,1,.5)
jaccard.test.asymptotic(x,y)
```

Description

Compute statistical significance of Jaccard/Tanimoto similarity coefficients.

Usage

```r
jaccard.test.bootstrap(x, y, px = NULL, py = NULL, verbose = TRUE, fix = "x", B = 1000, seed = NULL)
```

Arguments

- **x**: a binary vector (e.g., fingerprint)
- **y**: a binary vector (e.g., fingerprint)
- **px**: probability of successes in x (optional)
- **py**: probability of successes in y (optional)
- **verbose**: whether to print progress messages
- **fix**: whether to fix (i.e., not resample) x and/or y
- **B**: a total bootstrap iteration
- **seed**: a seed for a random number generator
Value

jaccard.test.bootstrap returns a list consisting of

- statistics: centered Jaccard/Tanimoto similarity coefficient
- pvalue: p-value
- expectation: expectation

Examples

```r
set.seed(1234)
x = rbinom(100, 1, .5)
y = rbinom(100, 1, .5)
jaccard.test.bootstrap(x, y, B = 500)
```

jaccard.test.exact
Compute p-value using the exact solution

Description

Compute statistical significance of Jaccard/Tanimoto similarity coefficients.

Usage

```r
jaccard.test.exact(x, y, px = NULL, py = NULL, verbose = TRUE)
```

Arguments

- `x`: a binary vector (e.g., fingerprint)
- `y`: a binary vector (e.g., fingerprint)
- `px`: probability of successes in `x` (optional)
- `py`: probability of successes in `y` (optional)
- `verbose`: whether to print progress messages

Value

jaccard.test.exact returns a list consisting of

- statistics: centered Jaccard/Tanimoto similarity coefficient
- pvalue: p-value
- expectation: expectation

Examples

```r
set.seed(1234)
x = rbinom(100, 1, .5)
y = rbinom(100, 1, .5)
jaccard.test.exact(x, y)
```
Description

Compute statistical significance of Jaccard/Tanimoto similarity coefficients.

Usage

jaccard.test.mca(x, y, px = NULL, py = NULL, accuracy = 1e-05, error.type = "average", verbose = TRUE)

Arguments

- `x`: a binary vector (e.g., fingerprint)
- `y`: a binary vector (e.g., fingerprint)
- `px`: probability of successes in `x` (optional)
- `py`: probability of successes in `y` (optional)
- `accuracy`: an error bound on approximating a multinomial distribution
- `error.type`: an error type on approximating a multinomial distribution ("average", "upper", "lower")
- `verbose`: whether to print progress messages

Value

jaccard.test.mca returns a list consisting of

- `statistics`: centered Jaccard/Tanimoto similarity coefficient
- `pvalue`: p-value
- `expectation`: expectation

Examples

```r
set.seed(1234)
x = rbinom(100,1,.5)
y = rbinom(100,1,.5)
jaccard.test.mca(x,y,accuracy = 1e-05)
```
jaccard.test.pairwise
Pair-wise tests for Jaccard/Tanimoto similarity coefficients

Description
Given a data matrix, it computes pair-wise Jaccard/Tanimoto similarity coefficients and p-values among rows (variables). For fine controls, use "jaccard.test".

Usage
```
jaccard.test.pairwise(dat, method = "mca", verbose = TRUE, 
                      compute.qvalue = TRUE, ...)```

**Arguments**
- `dat`: a data matrix
- `method`: a method to compute a p-value ("mca", "bootstrap", "asymptotic", or "exact")
- `verbose`: whether to print progress messages
- `compute.qvalue`: whether to compute q-values
- `...`: optional arguments for specific computational methods

**Value**
`jaccard.test.pairwise` returns a list of matrices
- `statistics`: Jaccard/Tanimoto similarity coefficients
- `pvalues`: p-values
- `qvalues`: q-values

**See Also**
`jaccard.test`
Index

jaccard, 2
jaccard.ev, 3
jaccard.rahman, 3
jaccard.test, 4, 9
jaccard.test.asymptotic, 4, 5, 5
jaccard.test.bootstrap, 4, 5, 6
jaccard.test.exact, 4, 5, 7
jaccard.test.mca, 4, 5, 8
jaccard.test.pairwise, 9