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1 Introduction

This is a vignette for the jackstraw package, which performs association
tests between variables and estimated latent variables [1]. Latent variables
are unobserved and must be estimated directly from the data, using various
techniques such as principal component analysis, logistic factor analysis, and
others. However, treating estimated latent variables as independent variables in
a conventional regression framework would results in an anti-conservative bias
(i.e., artificially inflated significance). The jackstraw account for this fact that
latent variables are estimated from the data and to protect association tests
from an anti-conservative bias.

2 Latent Variable Models

Latent variables (LVs) can be seen as underlying sources of variation, that
are hidden and/or undefined. In some cases, underlying sources of variation may
be directly measured, such as disease status or sex, and conventional association
tests (e.g., F-test) can be utilized to assess statistical significance of association
between variables and such measurements. However, underlying sources of vari-
ation may be impossible to measure or poorly defined, such as cancer subtypes
and population structure. For example, cancer subtypes based on histological
tumor classification are highly imprecise.

When we have a high-dimensional data where a large number of variables
are measured for each observation, LVs may be estimated from the data itself.
For example, principal component analysis (PCA) is a popular technique to
estimate LVs from a family of continuous data. After applying PCA to the
observed data, one may like to identify variables associated with a set of princi-
pal components (PCs). We must be very careful when “re-using” PCs (or other
estimated latent variables) to examine the observed data. In other words, an un-
adjusted association test between variables and PCs results in anti-conservative
p-values. The jackstraw method adjust this over-fitting problem and produces
valid association p-values.
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Figure 1: Diagram of the latent variable model. The latent variable basis L is
not observable, but may be estimated from Y . The noise term E is independent
random variation. We are interested in performing statistical hypothesis tests
on bi (i = 1, . . . ,m), which quantifies the relationship between L and yi (i =
1, . . . ,m). This figure is reprinted from [1]

3 Example of Continuous Data

3.1 Simulation of Gene Expression Data

We simulate a simple gene expression data with m = 1000 genes (or vari-
ables) and n = 20 samples (or observations). The following simulation code
generates a dichonomous mean shift between the first set of 10 samples and the
second set of 10 samples (e.g., this may represent a case-control study). This
mean shift affects 10% of m = 1000 genes:

library(jackstraw)

library(corpcor)

set.seed(1)

B = c(runif(100, min = 0.1, max = 1), rep(0, 900))

L = c(rep(1, 10), rep(-1, 10))

L = L/sd(L)

E = matrix(rnorm(1000 * 20), nrow = 1000)

Y = B %*% t(L) + E

dim(Y)

## [1] 1000 20

Y[1:5, 1:5]

## [,1] [,2] [,3] [,4]
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## [1,] 0.7284811 0.3723739 1.95390743 -0.7057011

## [2,] -0.1881271 0.6473216 -1.16625940 2.7916857

## [3,] 0.9411012 -0.4104836 -0.01000972 1.1611355

## [4,] -0.2352048 3.2953804 0.58087712 0.4482182

## [5,] 1.7074094 1.0763474 -0.64774412 -0.6600309

## [,5]

## [1,] 0.46568781

## [2,] -0.03370393

## [3,] 0.55156033

## [4,] 0.70186429

## [5,] -0.74646792

3.2 Application of the Jackstraw using PCA

When we have a dataset, we first need to understand the type(s) of latent
variables (e.g., continuous, categorical, ordinal) and to decide on a method to
estimate latent variables. Let’s use principal component analysis (PCA).

In practice, we have to rely on a scree plot or other graphical and statistical
means to estimate r. One particular method is called parallel analysis from
Buja and Eyuboglu (1992), which is implemented in the jackstraw package.
The permutationPA function compares the observed percent variance explained
(PVE) for each PC to their “null” counterparts computed from a randomly
permuted dataset.1

PA = permutationPA(Y, B = 10, threshold = 0.05)

## Estimating a number of significant principal component:

## 1 2 3 4 5 6 7 8 9 10

plot(PA$p, pch = 20, main = "Permutation Parallel Analysis P-values",

ylab = "P-values", xlab = "Principal Component")

1Determining the number of “statistically significant” PCs is an active area of research,
and defining a number of significant PCs depends on the data structure and the context.
Refer to Anderson (1963), Tracy and Widom (1996), Johnstone (2001), Leek (2010). We do
not advocate the blind use of parallel analysis to obtain r̂.
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The permutation parallel analysis suggests r = 1, which is corroborated by
the scree plot (a scatter plot of ordered PVE). Furthermore, we can visualize
the first principal component (PC).

svd.out = fast.svd(Y)

par(mfrow = c(2, 1))

plot(svd.out$d^2/sum(svd.out$d^2), pch = 20, main = "The scree plot",

xlab = "PC", ylab = "Percent Variance Explained")

plot(svd.out$d[1] * svd.out$v[, 1], pch = 20, main = "1st PC",

xlab = "Observation", ylab = "Magnitude")
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We are now ready to apply the jackstraw to our data, in order to assess
statistical significance of association between variables and the first PC:

js.pca = jackstraw_pca(Y, r = 1, s = 100, B = 100,

verbose = FALSE)

hist(js.pca$p.value, 10, col = "black")
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Histogram of js.pca$p.value
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By setting method="PCA", the jackstraw uses a corresponding method to
estimate latent variables. In this instance, this wrapper function passes along all
the arguments to jackstraw.PCA to perform association tests between variables
and principal components.

Since the data was simulated, we can visualize the “null” p-values for the
truly null variables and the “alternative” p-values for the truly alternative vari-
ables. Note that the null p-values is approximating the uniform distribution
between 0 and 1:

par(mfrow = c(1, 2))

hist(js.pca$p.value[1:100], 10, col = "black", main = "Alternative P-values")

hist(js.pca$p.value[101:1000], 10, col = "black", main = "Null P-values")
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Alternative P−values
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4 Example of Categorical Data

4.1 Simulation of Genotype Data

We simulate a genotype matrix with m = 5000 loci (or variables) and n =
100 people (or observations). And a population structure was generated to affect
only among 50% of loci. This is parametized by π0 = .5. In other words, 50%
of loci are independent of population structure:

library(jackstraw)

library(lfa)

set.seed(2)

m = 5000

n = 100
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pi0 = 0.5

m0 = round(m * pi0)

m1 = m - round(m * pi0)

B = matrix(0, nrow = m, ncol = 1)

B[1:m1, ] = matrix(runif(m1 * n, min = -0.5, max = 0.5),

nrow = m1, ncol = 1)

L = matrix(rnorm(n), nrow = 1, ncol = n)

BL = B %*% L

prob = exp(BL)/(1 + exp(BL))

dat = list(Y = matrix(rbinom(m * n, 2, as.numeric(prob)),

m, n), H = c(rep(1, m1), rep(0, m0)))

dim(dat$Y)

## [1] 5000 100

dat$Y[1:5, 1:5]

## [,1] [,2] [,3] [,4] [,5]

## [1,] 1 0 1 0 0

## [2,] 1 0 1 2 2

## [3,] 0 0 2 2 2

## [4,] 2 0 0 0 1

## [5,] 1 0 1 2 2

The output includes the genotype matrix dat$Y, the status of hypothesis
dat$H, and the true probability from which the data is simulated dat$prob.
See that the simulated genotype matrix is encoded in 0, 1, 2.

4.2 Application of the Jackstraw using LFA

With a genotype matrix, we can use the Logistic Factor Analysis from [2].
We are interested in identifying loci which are truly associated with an underly-
ing population structure (which we must directly estimated from the genotype
matrix). LFA estimates this underlying population structure with “logistic fac-
tors (LFs)” and we will carry out association tests between loci and LFs.

js.lfa = jackstraw_lfa(dat$Y, r = 2, FUN = function(x) lfa.corpcor(x,

2)[, , drop = FALSE], s = 200, B = 10, devR = TRUE)

##

## Computating null statistics (10 total iterations): 1 2 3 4 5 6 7 8 9 10

hist(js.lfa$p.value, 10, col = "black")

8



Histogram of js.lfa$p.value
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Since the data was simulated, we can look at p-values according to their
true status. In this case, we see that the null p-values are again approximately
distributed uniformly between 0 and 1:

par(mfrow = c(1, 2))

hist(js.lfa$p.value[which(dat$H == 1)], 10, col = "black",

main = "Alternative P-values")

hist(js.lfa$p.value[which(dat$H == 0)], 10, col = "black",

main = "Null P-values")
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Alternative P−values
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Null P−values
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