Package ‘jacobi’

November 19, 2023

Type Package
Title Jacobi Theta Functions and Related Functions
Version 3.1.1
Description Evaluation of the Jacobi theta functions and related
functions: Weierstrass elliptic function, Weierstrass sigma function,
Weierstrass zeta function, Klein j-function, Dedekind eta function,
lambda modular function, Jacobi elliptic functions, Neville theta
functions, Eisenstein series, lemniscate elliptic functions, elliptic
alpha function, Rogers-Ramanujan continued fractions, and Dixon
elliptic functions. Complex values of the variable are supported.

License GPL-3

BugReports https://github.com/stla/jacobi

Imports Carlson, Rcpp (>= 1.0.8), rgl, Rvcg

Suggests testthat (>= 3.0.0), elliptic, RcppColors

LinkingTo Rcpp

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation yes

Author Stéphane Laurent [aut, cre],
 Mikael Fremling [aut] (author of the original Fortran code for the
 theta functions)

Maintainer Stéphane Laurent <laurent_step@outlook.fr>

Repository CRAN

Date/Publication 2023-11-18 23:50:03 UTC
Description

Evaluation of the arithmetic-geometric mean of two complex numbers.

Usage

\texttt{agm(x, y)}

Arguments

\texttt{x, y} \hspace{1em} complex numbers
am

Value

A complex number, the arithmetic-geometric mean of x and y.

Examples

\[\text{agm}(1, \sqrt{2}) \]
\[2 \pi^{3/2} \times \sqrt{2} / \Gamma(1/4)^2 \]

am

Amplitude function

Description

Evaluation of the amplitude function.

Usage

\[\text{am}(u, m) \]

Arguments

- **u**: complex number
- **m**: square of elliptic modulus, a complex number

Value

A complex number.

Examples

```r
library(Carlson)
phi <- 1 + 1i
m <- 2
u <- elliptic_F(phi, m)
am(u, m) # should be phi
```
CostaMesh

\textit{Costa surface}

\textbf{Description}

Computes a mesh of the Costa surface.

\textbf{Usage}

\texttt{CostaMesh(nu = 50L, nv = 50L)}

\textbf{Arguments}

\texttt{nu, nv} \quad \text{numbers of subdivisions}

\textbf{Value}

A triangle \texttt{rgl} mesh (object of class \texttt{mesh3d}).

\textbf{Examples}

\begin{verbatim}
library(jacobi)
library(rgl)

mesh <- CostaMesh(nu = 250, nv = 250)
open3d(windowRect = c(50, 50, 562, 562), zoom = 0.9)
bg3d("#15191E")
shade3d(mesh, color = "darkred", back = "cull")
shade3d(mesh, color = "orange", front = "cull")
\end{verbatim}

disk2H

\textit{Disk to upper half-plane}

\textbf{Description}

Conformal map from the unit disk to the upper half-plane. The function is vectorized.

\textbf{Usage}

\texttt{disk2H(z)}

\textbf{Arguments}

\texttt{z} \quad \text{a complex number in the unit disk}
disk2square

Value
A complex number in the upper half-plane.

Examples

```r
# map the disk to H and calculate kleinj
f <- function(x, y) {
  z <- complex(real = x, imaginary = y)
  K <- rep(NA_complex_, length(x))
  inDisk <- Mod(z) < 1
  K[inDisk] <- kleinj(disk2H(z[inDisk]))
  K
}
n <- 1024L
x <- y <- seq(-1, 1, length.out = n)
Grid <- expand.grid(X = x, Y = y)
K <- f(Grid$X, Grid$Y)
dim(K) <- c(n, n)
# plot
if(require("RcppColors")) {
  img <- colorMap5(K)
} else {
  img <- as.raster(1 - abs(Im(K))/Mod(K))
}
par <- par(mar = c(0, 0, 0, 0))
plot(NULL, xlim = c(0, 1), ylim = c(0, 1), asp = 1,
     axes = FALSE, xaxs = "i", yaxs = "i", xlab = NA, ylab = NA)
rasterImage(img, 0, 0, 1, 1)
par(opar)
```

disk2square

Disk to square

Description
Conformal map from the unit disk to the square \([-1, 1] \times [-1, 1]\). The function is vectorized.

Usage

```r
disk2square(z)
```

Arguments

- `z` a complex number in the unit disk

Value
A complex number in the square \([-1, 1] \times [-1, 1]\).
Examples

```r
n <- 70L
r <- seq(0, 1, length.out = n)
theta <- seq(0, 2*pi, length.out = n+1L)[-1L]
Grid <- transform(
  expand.grid(R = r, Theta = theta),
  Z = R*exp(1i*Theta)
)
s <- vapply(Grid$Z, disk2square, complex(1L))
plot(Re(s), Im(s), pch = ".", asp = 1, cex = 2)
#
# a more insightful plot ####
r_ <- seq(0, 1, length.out = 10L)
theta_ <- seq(0, 2*pi, length.out = 33)[-1L]
plot(
  NULL, xlim = c(-1, 1), ylim = c(-1, 1), asp = 1, xlab = "x", ylab = "y"
)
for(r in r_)
  
  theta <- sort(  
    c(seq(0, 2, length.out = 200L), c(1/4, 3/4, 5/4, 7/4))
  )
  z <- r*(cospi(theta) + 1i*sinpi(theta))
  s <- vapply(z, disk2square, complex(1L))
  lines(Re(s), Im(s), col = "blue", lwd = 2)
for(theta in theta_)
  
  r <- seq(0, 1, length.out = 30L)
  z <- r*exp(1i*theta)
  s <- vapply(z, disk2square, complex(1L))
  lines(Re(s), Im(s), col = "green", lwd = 2)
```

Dixon elliptic functions

Description

The Dixon elliptic functions.

Usage

- `sm(z)`
- `cm(z)`

Arguments

- `z` a real or complex number
Value

A complex number.

Examples

```r
# cubic Fermat curve x^3+y^3=1
pi3 <- beta(1/3, 1/3)
epsilon <- 0.7
t_ <- seq(-pi3/3 + epsilon, 2*pi3/3 - epsilon, length.out = 100)
pts <- t(vapply(t_, function(t) {
  c(Re(cm(t)), Re(sm(t)))
}, FUN.VALUE = numeric(2L)))
plot(pts, type = "l", asp = 1)
```

EisensteinE

Description

Evaluation of Eisenstein series with weight 2, 4 or 6.

Usage

```r
EisensteinE(n, q)
```

Arguments

- `n`: the weight, can be 2, 4 or 6
- `q`: nome, complex number with modulus smaller than one

Value

A complex number, the value of the Eisenstein series.

ellipticAlpha

Description

Evaluates the elliptic alpha function.

Usage

```r
ellipticAlpha(z)
```
Arguments

\(z \)
a complex number

Value

A complex number.

References

Weisstein, Eric W. "Elliptic Alpha Function".

ellipticInvariants
Elliptic invariants

Description

Elliptic invariants from half-periods.

Usage

\texttt{ellipticInvariants(omega1,omega2)}

Arguments

\texttt{omega1,omega2}
the half-periods, a vector of two complex numbers

Value

The elliptic invariants, a vector of two complex numbers.

eta
Dedekind eta function

Description

Evaluation of the Dedekind eta function.

Usage

\texttt{eta(tau)}

Arguments

\texttt{tau}
a vector of complex numbers with strictly positive imaginary parts
halfPeriods

Value

A vector of complex numbers.

Examples

\[
\eta(2i) \\
gamma(1/4) / 2^{(11/8)} / \pi^{(3/4)}
\]

Description

Half-periods from elliptic invariants.

Usage

\[
\text{halfPeriods}(g2g3)
\]

Arguments

- `g2g3`: the elliptic invariants, a vector of two complex numbers

Value

The half-periods, a vector of two complex numbers.

jellip

Jacobi elliptic functions

Description

Evaluation of the Jacobi elliptic functions.

Usage

\[
\text{jellip}(\text{kind, u, tau = NULL, m = NULL})
\]
Arguments

- **kind**: a string with two characters among "s", "c", "d" and "n"; this string specifies the function: the two letters respectively denote the basic functions \(sn, cn, dn \) and 1, and the string specifies the ratio of two such functions, e.g. \(ns = 1/sn \) and \(cd = cn/dn \)

- **u**: a complex number, vector or matrix

- **tau**: complex number with strictly positive imaginary part; it is related to \(m \) and only one of them must be supplied

- **m**: the "parameter", square of the elliptic modulus; it is related to \(\tau \) and only one of them must be supplied

Value

A complex number, vector or matrix.

Examples

```r
u <- 2 + 2i
tau <- 1i
jellip("cn", u, tau)^2 + jellip("sn", u, tau)^2 # should be 1
```

jtheta1
Jacobi theta function one

Description

Evaluates the first Jacobi theta function.

Usage

```r
jtheta1(z, tau = NULL, q = NULL)
ljtheta1(z, tau = NULL, q = NULL)
```

Arguments

- **z**: complex number, vector, or matrix

- **tau**: lattice parameter, a complex number with strictly positive imaginary part; the two complex numbers \(\tau \) and \(q \) are related by \(q = \exp(1i*\pi*\tau) \), and only one of them must be supplied

- **q**: the nome, a complex number whose modulus is strictly less than one, but not zero

Value

A complex number, vector or matrix; \(jtheta1 \) evaluates the first Jacobi theta function and \(ljtheta1 \) evaluates its logarithm.
Examples

\texttt{jtheta2(1 + 1i, q = \exp(-\pi/2))}

\textit{jtheta2} \hspace{1cm} \textit{Jacobi theta function two}

Description

Evaluates the second Jacobi theta function.

Usage

\texttt{jtheta2(z, tau = NULL, q = NULL)}

\texttt{ljtheta2(z, tau = NULL, q = NULL)}

Arguments

- \texttt{z}: complex number, vector, or matrix
- \texttt{tau}: lattice parameter, a complex number with strictly positive imaginary part; the two complex numbers \(\tau \) and \(q \) are related by \(q = \exp(1i\pi\tau) \), and only one of them must be supplied
- \texttt{q}: the nome, a complex number whose modulus is strictly less than one, but not zero

Value

A complex number, vector or matrix: \texttt{jtheta2} evaluates the second Jacobi theta function and \texttt{ljtheta2} evaluates its logarithm.

Examples

\texttt{jtheta2(1 + 1i, q = \exp(-\pi/2))}

\textit{jtheta3} \hspace{1cm} \textit{Jacobi theta function three}

Description

Evaluates the third Jacobi theta function.

Usage

\texttt{jtheta3(z, tau = NULL, q = NULL)}

\texttt{ljtheta3(z, tau = NULL, q = NULL)}
jtheta4

Arguments

- **z**: complex number, vector, or matrix
- **tau**: lattice parameter, a complex number with strictly positive imaginary part; the two complex numbers \(\tau \) and \(q \) are related by \(q = \exp(1i\pi\times\tau) \), and only one of them must be supplied
- **q**: the nome, a complex number whose modulus is strictly less than one, but not zero

Value

A complex number, vector or matrix; \(jtheta3 \) evaluates the third Jacobi theta function and \(ljtheta3 \) evaluates its logarithm.

Examples

\[
jtheta3(1 + 1i, q = \exp(-\pi/2))
\]

jtheta4

Jacobi theta function four

Description

Evaluates the fourth Jacobi theta function.

Usage

\[
\text{jtheta4}(z, \text{tau} = \text{NULL}, q = \text{NULL})
\]

\[
\text{ljtheta4}(z, \text{tau} = \text{NULL}, q = \text{NULL})
\]

Arguments

- **z**: complex number, vector, or matrix
- **tau**: lattice parameter, a complex number with strictly positive imaginary part; the two complex numbers \(\tau \) and \(q \) are related by \(q = \exp(1i\pi\times\tau) \), and only one of them must be supplied
- **q**: the nome, a complex number whose modulus is strictly less than one, but not zero

Value

A complex number, vector or matrix; \(jtheta4 \) evaluates the fourth Jacobi theta function and \(ljtheta4 \) evaluates its logarithm.

Examples

\[
jtheta4(1 + 1i, q = \exp(-\pi/2))
\]
jtheta_ab

Jacobi theta function with characteristics

Description
Evaluates the Jacobi theta function with characteristics.

Usage

\[
jtheta_ab(a, b, z, \text{tau} = \text{NULL}, q = \text{NULL})
\]

Arguments

- `a, b`: the characteristics, two complex numbers
- `z`: complex number, vector, or matrix
- `tau`: lattice parameter, a complex number with strictly positive imaginary part; the two complex numbers \(\tau\) and \(q\) are related by \(q = \exp(1i\pi \tau)\), and only one of them must be supplied
- `q`: the nome, a complex number whose modulus is strictly less than one, but not zero

Details
The Jacobi theta function with characteristics generalizes the four Jacobi theta functions. It is denoted by \(\theta[a, b](z|\tau)\). One gets the four Jacobi theta functions when \(a\) and \(b\) take the values \(0\) or \(0.5\):

- If \(a=b=0.5\) then one gets \(\vartheta_1(z|\tau)\)
- If \(a=0.5\) and \(b=0\) then one gets \(\vartheta_2(z|\tau)\)
- If \(a=b=0\) then one gets \(\vartheta_3(z|\tau)\)
- If \(a=0\) and \(b=0.5\) then one gets \(\vartheta_4(z|\tau)\)

Both \(\theta[a, b](z + \pi|\tau)\) and \(\theta[a, b](z + \pi\tau|\tau)\) are equal to \(\theta[a, b](z|\tau)\) up to a factor - see the examples for the details.

Value
A complex number, vector or matrix, like \(z\).

Note
Different conventions are used in the book cited as reference.

References
Examples

\[a \leftarrow 2 + 0.3i \]
\[b \leftarrow 1 - 0.6i \]
\[z \leftarrow 0.1 + 0.4i \]
\[\tau \leftarrow 0.2 + 0.3i \]
\[j_{ab} \leftarrow j_{\text{theta}}(a, b, z, \tau) \]

first property
\[j_{\text{theta}}(a, b, z + \pi, \tau) \] is equal to:
\[j_{ab} \times \exp(2i\pi a) \]

second property
\[j_{\text{theta}}(a, b, z + \pi \tau, \tau) \] is equal to:
\[j_{ab} \times \exp(-i(\pi \tau + 2z + 2\pi b)) \]

kleinj

Klein j-function and its inverse

Description

Evaluation of the Klein j-invariant function and its inverse.

Usage

kleinj(tau, transfo = FALSE)

kleinjinv(j)

Arguments

- **tau**
 a complex number with strictly positive imaginary part, or a vector or matrix of such complex numbers; missing values allowed

- **transfo**
 Boolean, whether to use a transformation of the values of \(\tau \) close to the real line; using this option can fix some failures of the computation (at the cost of speed), e.g. when the algorithm reaches the maximal number of iterations

- **j**
 a complex number

Value

A complex number, vector or matrix.

Note

The Klein-j function is the one with the factor 1728.

Examples

(j <- kleinj(2i))

66^3

kleinjinv(j)
lambda

Lambda modular function

Description

Evaluation of the lambda modular function.

Usage

`lambda(tau, transfo = FALSE)`

Arguments

- `tau`: a complex number with strictly positive imaginary part, or a vector or matrix of such complex numbers; missing values allowed
- `transfo`: Boolean, whether to use a transformation of the values of `tau` close to the real line; using this option can fix some failures of the computation (at the cost of speed), e.g. when the algorithm reaches the maximal number of iterations

Value

A complex number, vector or matrix.

Note

The lambda function is the square of the elliptic modulus.

Examples

```r
x <- 2
lambda(1i*sqrt(x)) + lambda(1i*sqrt(1/x)) # should be one
```

lemniscate

Lemniscate functions

Description

Lemniscate sine, cosine, arcsine, arccosine, hyperbolic sine, and hyperbolic cosine functions.
Usage

sl(z)
cl(z)
asl(z)
acl(z)
slh(z)
clh(z)

Arguments

z a real number or a complex number

Value

A complex number.

Examples

sl(1+1i) * cl(1+1i) # should be 1
| the lemniscate
lemniscate parameterization
p <- Vectorize(function(s) {
 a <- Re(cl(s))
 b <- Re(sl(s))
 c(a, a * b) / sqrt(1 + b*b)
})
lemniscate constant
ombar <- 2.622 # gamma(1/4)^2 / (2 * sqrt(2*pi))
plot
s_ <- seq(0, ombar, length.out = 100)
lemniscate <- t(p(s_))
plot(lemniscate, type = "l", col = "blue", lwd = 3)
lines(cbind(lemniscate[, 1L], -lemniscate[, 2L]), col="red", lwd = 3)

nome

Nome

Description

The nome in function of the parameter \(m \).

Usage

nome(m)
Arguments

m the parameter, square of elliptic modulus, real or complex number

Value

A complex number.

Examples

$\text{nome}(-2)$

RR

Rogers-Ramanujan continued fraction

Description

Evaluates the Rogers-Ramanujan continued fraction.

Usage

$\text{RR}(q)$

Arguments

q the nome, a complex number whose modulus is strictly less than one, and which is not zero

Value

A complex number

Note

This function is sometimes denoted by R.
RRa

Alternating Rogers-Ramanujan continued fraction

Description

Evaluates the alternating Rogers-Ramanujan continued fraction.

Usage

\[\text{RRa}(q) \]

Arguments

\[q \]

the nome, a complex number whose modulus is strictly less than one, and which is not zero

Value

A complex number

Note

This function is sometimes denoted by \(S \).

square2disk

Square to disk

Description

Conformal map from the unit square to the unit disk. The function is vectorized.

Usage

\[\text{square2disk}(z) \]

Arguments

\[z \]

a complex number in the unit square \([0, 1] \times [0, 1]\)

Value

A complex number in the unit disk.
Examples

```r
x <- y <- seq(0, 1, length.out = 25L)
Grid <- transform(
    expand.grid(X = x, Y = y),
    Z = complex(real = X, imaginary = Y)
)
u <- square2disk(Grid$Z)
plot(u, pch = 19, asp = 1)
```

square2H

Square to upper half-plane

Description

Conformal map from the unit square to the upper half-plane. The function is vectorized.

Usage

`square2H(z)`

Arguments

- `z`: a complex number in the unit square $[0,1] \times [0,1]$

Value

A complex number in the upper half-plane.

Examples

```r
n <- 1024L
x <- y <- seq(0.0001, 0.9999, length.out = n)
Grid <- transform(
    expand.grid(X = x, Y = y),
    Z = complex(real = X, imaginary = Y)
)
K <- kleinj(square2H(Grid$Z))
dim(K) <- c(n, n)
# plot if(require("RcppColors")) {
    img <- colorMap5(K)
} else {
    img <- as.raster((Arg(K) + pi)/(2*pi))
}
par <- par(mar = c(0, 0, 0, 0))
plot(NULL, xlim = c(0, 1), ylim = c(0, 1), asp = 1,
     axes = FALSE, xaxs = "i", yaxs = "i", xlab = NA, ylab = NA)
rasterImage(img, 0, 0, 1, 1)
par(opar)
```
theta.s \hspace{1cm} \emph{Neville theta functions}

\textbf{Description}

Evaluation of the Neville theta functions.

\textbf{Usage}

\begin{verbatim}
theta.s(z, tau = NULL, m = NULL)
theta.c(z, tau = NULL, m = NULL)
theta.n(z, tau = NULL, m = NULL)
theta.d(z, tau = NULL, m = NULL)
\end{verbatim}

\textbf{Arguments}

- \texttt{z} \hspace{1cm} a complex number, vector, or matrix
- \texttt{tau} \hspace{1cm} complex number with strictly positive imaginary part; it is related to \texttt{m} and only one of them must be supplied
- \texttt{m} \hspace{1cm} the "parameter", square of the elliptic modulus; it is related to \texttt{tau} and only one of them must be supplied

\textbf{Value}

A complex number, vector or matrix.

\textbf{wp} \hspace{1cm} \emph{Weierstrass elliptic function}

\textbf{Description}

Evaluation of the Weierstrass elliptic function and its derivatives.

\textbf{Usage}

\begin{verbatim}
wp(z, g = NULL, omega = NULL, tau = NULL, derivative = 0L)
\end{verbatim}
Arguments

z complex number, vector or matrix

g the elliptic invariants, a vector of two complex numbers; only one of g, omega and tau must be given

omega the half-periods, a vector of two complex numbers; only one of g, omega and tau must be given

tau the half-periods ratio; supplying tau is equivalent to supply omega = c(1/2, tau/2)

derivative differentiation order, an integer between 0 and 3

Value

A complex number, vector or matrix.

Examples

omega1 <- 1.4 - 1i
omega2 <- 1.6 + 0.5i
omega <- c(omega1, omega2)
e1 <- wp(omega1, omega = omega)
e2 <- wp(omega2, omega = omega)
e3 <- wp(-omega1-omega2, omega = omega)
e1 + e2 + e3 # should be 0

Description

Evaluation of the inverse of the Weierstrass elliptic function.

Usage

wpinv(w, g = NULL, omega = NULL, tau = NULL)

Arguments

w complex number

g the elliptic invariants, a vector of two complex numbers; only one of g, omega and tau must be given

omega the half-periods, a vector of two complex numbers; only one of g, omega and tau must be given

tau the half-periods ratio; supplying tau is equivalent to supply omega = c(1/2, tau/2)
Value

A complex number.

Examples

```r
library(jacobi)
omega <- c(1.4 - 1i, 1.6 + 0.5i)
w <- 1 + 1i
z <- wpinv(w, omega = omega)
wp(z, omega = omega) # should be w
```

wsigma

Weierstrass sigma function

Description

Evaluation of the Weierstrass sigma function.

Usage

```r
wsigma(z, g = NULL, omega = NULL, tau = NULL)
```

Arguments

- `z`: a complex number, vector or matrix
- `g`: the elliptic invariants, a vector of two complex numbers; only one of `g`, `omega` and `tau` must be given
- `omega`: the half-periods, a vector of two complex numbers; only one of `g`, `omega` and `tau` must be given
- `tau`: the half-periods ratio; supplying `tau` is equivalent to supply `omega = c(1/2, tau/2)`

Value

A complex number, vector or matrix.

Examples

```r
wsigma(1, g = c(12, -8))
# should be equal to:
sin(1i*sqrt(3))/(1i*sqrt(3)) / sqrt(exp(1))
```
weierstrass zeta function

Description
Evaluation of the Weierstrass zeta function.

Usage
wzeta(z, g = NULL, omega = NULL, tau = NULL)

Arguments
- **z**: complex number, vector or matrix
- **g**: the elliptic invariants, a vector of two complex numbers; only one of `g`, `omega` and `tau` must be given
- **omega**: the half-periods, a vector of two complex numbers; only one of `g`, `omega` and `tau` must be given
- **tau**: the half-periods ratio; supplying `tau` is equivalent to supply `omega = c(1/2, tau/2)`

Value
A complex number, vector or matrix.

Examples
```r
# Mirror symmetry property:
z <- 1 + 1i
g <- c(1i, 1+2i)
wzeta(Conj(z), Conj(g))
Conj(wzeta(z, g))
```
Index

acl (lemniscate), 15
am, 3
asl (lemniscate), 15
cl (lemniscate), 15
clh (lemniscate), 15
cm (Dixon), 6
CostaMesh, 4
disk2H, 4
disk2square, 5
Dixon, 6

EisensteinE, 7
eLLipticAlpha, 7
ellipticInvariants, 8
eta, 8

halfPeriods, 9
jellip, 9
jtheta1, 10
jtheta2, 11
jtheta3, 11
jtheta4, 12
jtheta_ab, 13

kleinj, 14
kleinjinv (kleinj), 14

lambda, 15
lemniscate, 15
ljtheta1 (jtheta1), 10
ljtheta2 (jtheta2), 11
ljtheta3 (jtheta3), 11
ljtheta4 (jtheta4), 12

nome, 16

RR, 18

sl (lemniscate), 15
slh (lemniscate), 15
sm (Dixon), 6
square2disk, 18
square2H, 19

theta.c (theta.s), 20
theta.d (theta.s), 20
theta.n (theta.s), 20
theta.s, 20

wp, 20
wpinv, 21
wsigma, 22
wzeta, 23

RRa, 18