Package ‘jagshelper’

November 8, 2022

Type Package
Title Extracting and Visualizing Output from 'jagsUI'
Version 0.1.11
Date 2022-11-08
Author Matt Tyers [aut, cre]
Maintainer Matt Tyers <matttyersstat@gmail.com>
Description Tools are provided to streamline Bayesian analyses in 'JAGS' using the 'jagsUI' package. Included are functions for extracting output in simpler format, functions for streamlining assessment of convergence, and functions for producing summary plots of output. Also included is a function that provides a simple template for running 'JAGS' from 'R'. Referenced materials can be found at <DOI:10.1214/ss/1177011136>.
License GPL-2
Encoding UTF-8
LazyData true
LazyDataCompression xz
RoxygenNote 7.2.1
Depends R (>= 3.5.0)
Imports jagsUI, MASS
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2022-11-08 15:40:02 UTC
Description

Functions are provided to help run Bayesian analyses in JAGS using the 'jagsUI' package. Included are functions for extracting output in simpler format, functions for streamlining assessment of convergence, and functions for producing summary plots of output. Also included is a function that provides a simple template for running JAGS from R.
The jagshelper package is intended to extend and streamline Bayesian analysis using the ‘jagsUI’ package.

The skeleton function prints a template JAGS model with associated R code to the console, which can easily be copied & pasted to an R script and modified as needed.

Functions are also provided for visually assessing model convergence. In particular, tracedens_jags gives a relatively simple syntax for trace plots of a collection or subset of parameter nodes, and overlays by-chain kernel densities for visual assessment of marginal posterior shapes as well as overlap between MCMC chains. Another function that could be particularly useful to users is plotRhats, which gives a visual representation of the values of the Gelman-Rubin convergence diagnostic Rhat (or alternately effective sample size n.eff) for all saved parameters. This may be particularly useful in the case where a model has many saved parameters. Additionally, function traceworstRhat is a wrapper for tracedens_jags, but only produces trace plots for the parameter nodes with the worst (largest) values of Rhat or n.eff.

Functions are also provided for visualizing posterior densities; in particular, the case of a vector of parameter nodes (one-dimensional in the JAGS model, giving a two-dimensional matrix of MCMC iterations). Notably, the envelope function is intended for a sequence of nodes (as in a time series), and the caterpillar function is intended for cases in which order may not matter (as in a collection of random effects).

Wrapper functions are also given for overlay of multiple such plots, as overlayenvelope and comparecat, and comparedens giving plots as vertically-oriented left- and right-facing kernel densities.

Author(s)

Matt Tyers
Maintainer: Matt Tyers <matttyersstat@gmail.com>

Example data: asdf jags out

A simple model, equivalent to that produced by the output produced by \link{skeleton}.

Usage

asdf_jags_out
caterpillar

Format

An object of class `jagsUI` of length 24.

Description

Caterpillar plot of the posterior densities of a vector of parameter nodes, in which the sequential order of nodes might not be important, such as vector of random effects.

This produces a set of overlayed interval bars (default values are 50 percent and 95 percent), with overlayed median markings, for each of a vector of parameter nodes.

Usage

```r
caterpillar(
  df,
  p = NULL,
  x = NA,
  row = NULL,
  column = NULL,
  median = TRUE,
  mean = FALSE,
  ci = c(0.5, 0.95),
  lwd = 1,
  col = 4,
  add = FALSE,
  xlab = "",
  ylab = "",
  main = NULL,
  xax = NA,
  medlwd = lwd,
  medwd = 1,
  ...
)
```

Arguments

- `df` : Output object returned from `jagsUI::jags()`, or alternately, two-dimensional `data.frame` or matrix in which parameter node element is given by column and MCMC iteration is given by row.
- `p` : Parameter name, if input to `df` is a `jagsUI` output object.
- `x` : Vector of X-coordinates for plotting.
- `row` : Row to subset, in the case of a 2-d matrix of parameter nodes in-model.
- `column` : Column to subset, in the case of a 2-d matrix of parameter nodes in-model.
median Whether to include medians
mean Whether to include means
ci Vector of intervals to overlay. Defaults to 50 percent and 95 percent.
lwd Base line width for plotting. Defaults to 1.
col Color for plotting
add Whether to add to existing plot
xlab X-axis label
ylab Y-axis label
main Plot title. If the default (NULL) is accepted and argument \(p \) is used, \(p \) will be used for the title.
xax Vector of possible x-axis tick labels. Defaults to the `data.frame` column names.
medlwd Line width of median line
medwd Relative width of median line. Defaults to 1, perhaps smaller numbers will look better?
... additional plotting arguments

Value

NULL

Author(s)

Matt Tyers

See Also
evelope

Examples

```r
## usage with input data.frame
data(asdf_jags_out)
out_df <- jags_df(asdf_jags_out)

b1 <- pull_post(out_df,"b1")
a <- pull_post(out_df,"a")
caterpillar(a)
caterpillar(a, ci=seq(.1,.9,by=.1))
caterpillar(a, lwd=2)
caterpillar(a, xax=c("effect 1", "effect 2", "effect 3"))

## usage with input as jagsUI object
caterpillar(asdf_jags_out, p="a")
caterpillar(SS_out, p="rate")
```
usage with a 2-d parameter matrix

caterpillar(SS_out, p="cycle_s", column=1)
caterpillar(SS_out, p="cycle_s", column=2)

chaindens_df
By-chain kernel density of each column of a data.frame.

Description

By-chain kernel density plot of each column of a posterior data.frame.

Usage

```r
chaindens_df(df, nline, parmfrow = NULL, ...)
```

Arguments

- `df`
 Posterior data.frame

- `nline`
 Number of chains

- `parmfrow`
 Optional call to `par(mfrow)` for the number of rows & columns of plot window. Returns the graphics device to previous state afterward.

- `...`
 additional plotting arguments or arguments

Value

NULL

Author(s)

Matt Tyers

See Also

tracedens_jags, trace_jags, trace_line

Examples

```r
out_df <- jags_df(asdf_jags_out)

b1 <- pull_post(out_df,"b1")
a <- pull_post(out_df,"a")

trace_df(a, nline=3, parmfrow=c(3,1))
chaindens_df(a, nline=3, parmfrow=c(3,1))
```
chaindens_jags

By-chain kernel densities of jagsUI object

Description

By-chain kernel densities of a whole jagsUI object, or optional subset of parameter nodes.

Usage

chaindens_jags(x, p = NULL, parmfrow = NULL, lwd = 1, ...)

Arguments

x Posterior jagsUI object
p Parameter name for subsetting: if this is specified, only parameters with names beginning with this string will be plotted.
parmfrow Optional call to par(mfrow) for the number of rows & columns of plot window. Returns the graphics device to previous state afterward.
lwd Line width for plotting. Defaults to 1.
... additional plotting arguments

Value

NULL

Author(s)

Matt Tyers

See Also

tracedens_jags, trace_jags, chaindens_line, chaindens_df

Examples

chaindens_jags(asdf_jags_out, parmfrow=c(4,2))
chaindens_jags(x=asdf_jags_out, p="a", parmfrow=c(3,1))
chaindens_line

Simple by-chain kernel density plot

Description

By-chain kernel density plot of a single parameter node.

Usage

```r
cchaindens_line(x, nline, lwd = 1, main = "", ...)```

**Arguments**

- `x`: Posterior vector
- `nline`: Number of chains
- `lwd`: Line width
- `main`: Plot title
- `...`: additional plotting arguments

**Value**

`NULL`

**Author(s)**

Matt Tyers

**See Also**

`tracedens_jags`, `chaindens_jags`, `chaindens_df`

**Examples**

```r
out_df <- jags_df(asdf_jags_out)
b1 <- pull_post(out_df,"b1")
a <- pull_post(out_df,"a")
chaindens_line(b1, nline=3, main="b1")```
check_neff

Quick summary of n.eff values by parameter name

Description
Returns the mean number of n.eff values (by each parameter) that are greater than a specified threshold criterion.

n.eff is calculated within 'JAGS', and may be interpreted as a crude measure of effective sample size for a given parameter node.

Usage
check_neff(x, thresh = 500)

Arguments
- x: Output object from jagsUI::jags()
- thresh: Threshold value (defaults to 500)

Value
Numeric (named) giving the proportion of n.eff values above the given threshold.

Author(s)
Matt Tyers

See Also
check_Rhat

Examples
check_neff(SS_out)

check_Rhat

Quick summary of Rhat values by parameter name

Description
Returns the mean number of Rhat values for each parameter (by each parameter) that are less than a specified threshold criterion.

Rhat (Gelman-Rubin Convergence Diagnostic, or Potential Scale Reduction Factor) is calculated within 'JAGS', and is commonly used as a measure of convergence for a given parameter node. Values close to 1 are seen as evidence of adequate convergence.
Usage

`check_Rhat(x, thresh = 1.1)`

Arguments

- `x` Output object from `jagsUI::jags()`
- `thresh` Threshold value (defaults to 1.1)

Value

Numeric (named) giving the proportion of Rhat values below the given threshold.

Author(s)

Matt Tyers

References

See Also

`check_neff`, `traceworstRhat`, `plotRhats`

Examples

`check_Rhat(SS_out)`

comparecat

Compare Caterpillar Plots

Description

Interleaved caterpillar plots for all parameters (or a specified subset) from a list of `jagsUI` output objects or `data.frame`s. The intent of this function is easy comparison of inferences from multiple comparable models.

Here a caterpillar plot is defined as a set of overlayed interval bars (default values are 50 percent and 95 percent), with overlayed median markings, for each of a vector of parameter nodes.

Usage

`comparecat(x, p = NULL, ci = c(0.5, 0.95), ylim = NULL, ...)`
comparedens

Arguments
x List of output objects returned from jagsUI or data.frames
p Optional vector of parameters to subset. All parameters with names matching the beginning of the string supplied will be returned. If the default (NULL) is accepted, all parameters will be plotted.
ci Credible intervals widths to plot. Defaults to 50% and 95%.
ylim Y-axis limits for plotting
... additional plotting arguments

Value
NULL

Author(s)
Matt Tyers

See Also
caterpillar, comparedens

Examples
This is the same output object three times, but shows functionality.
comparecat(x=list(asdf_jags_out, asdf_jags_out, asdf_jags_out),
p=c("a","b","sig"))

comparedens Compare Density

Description
Side-by-side kernel density plots for all parameters (or a specified subset) from two jagsUI output objects or data.frames. The intent of this function is easy comparison of inferences from two comparable models.

Kernel densities are plotted vertically, either left- or right-facing. Parameters with the same name are plotted facing one another.

Usage
comparedens(
 x1,
 x2,
 p = NULL,
 minCI = 0.99,
 legendnames = NULL,
)
cor_jags

```r
legendpos = "topleft",
...
)
```

Arguments

- **x1**: Output object returned from jagsUI; or alternately a data.frame
- **x2**: Second output object returned from jagsUI; or alternately a data.frame
- **p**: Optional vector of parameters to subset. All parameters with names matching the beginning of the string supplied will be returned. If the default (NULL) is accepted, all parameters will be plotted.
- **minCI**: Minimum CI width for plotting. This is intended as a method for excluding far-outlying MCMC samples when determining the appropriate y-axis limits for plotting. Defaults to 99%.
- **legendnames**: Names for optional legend. If the default NULL is accepted, no legend will be drawn.
- **legendpos**: Position for optional legend. Defaults to "topleft".
- ... additional plotting arguments

Value

NULL

Author(s)

Matt Tyers

See Also

comparecat

Examples

```r
## This is the same output object twice, but shows functionality.
comparedens(x1=asdf_jags_out, x2=asdf_jags_out, p=c("a","b","sig"),
            legendnames=c("Model 1", "Model 2"))
```

cor_jags
Correlation matrix from a JAGS object

Description

Computes a correlation matrix of all MCMC samples from an object returned by 'jagsUI', or an optional subset of parameter nodes.
Usage

cor_jags(x, p = NULL, exact = FALSE)

Arguments

x Output object returned from jagsUI
p Optional string to begin posterior names. If NULL is used, all parameters will be used
exact Whether name must be an exact match (TRUE) or with initial sub-string matching only supplied characters (FALSE). Defaults to FALSE.

Value

A 2-dimensional correlation matrix (n X n, where n is the number of parameter nodes)

Author(s)

Matt Tyers

See Also

plotcor_jags

Examples

cor_jags(asdf_jags_out)

Description

Envelope plot of the posterior densities of a vector of parameter nodes, in which the sequential order of nodes is important, such as a time series.

This produces a plot of overlayed shaded strips, each corresponding to a given interval width (defaults to 50 percent and 95 percent), with an overlayed median line.

Usage

evelope(
 df,
 p = NULL,
 x = NA,
 row = NULL,
 column = NULL,
 median = TRUE,
 ci = c(0.5, 0.95),
)
Arguments

- **df**: Output object returned from `jagsUI::jags()`; or alternately, two-dimensional `data.frame` or matrix in which parameter node element is given by column and MCMC iteration is given by row.
- **p**: Parameter name, if input to `df` is a `jagsUI` output object.
- **x**: Vector of X-coordinates for plotting.
- **row**: Row to subset, in the case of a 2-d matrix of parameter nodes in-model.
- **column**: Column to subset, in the case of a 2-d matrix of parameter nodes in-model.
- **median**: Whether to include median line
- **ci**: Vector of intervals to overlay. Defaults to 50 percent and 95 percent.
- **col**: Color for plotting
- **add**: Whether to add to existing plot
- **dark**: Opacity (0-1) for envelopes. Note that multiple overlapping intervals will darken the envelope.
- **outline**: Whether to just envelope outlines
- **xlab**: X-axis label
- **ylab**: Y-axis label
- **main**: Plot title. If the default (NULL) is accepted and argument `p` is used, `p` will be used for the title.
- **ylim**: Y-axis limits for plotting. If the default (NULL) is accepted, these will be determined automatically.
- **...**: additional plotting arguments or arguments to `lines()`

Value

`NULL`

Author(s)

Matt Tyers

See Also

`overlayenvelope`, `caterpillar`
Examples

usage with input data.frame
```r
SS_df <- jags_df(SS_out)
trend <- pull_post(SS_df, "trend")
envelope(trend, x=SS_data$x)
```

usage with jagsUI object
```r
envelope(SS_out, p="trend")
```

usage with 2-d jagsUI object
```r
envelope(SS_out, p="cycle_s", column=1, main="cycle")
envelope(SS_out, p="cycle_s", column=2, col=2, add=TRUE)  # overlay
```

expit
Expit, or inverse logit

Description

Inverse logit, where logit is defined as \(\log(x/(1-x)) \).

Expit (inverse logit) is defined as \(\exp(x)/(1+\exp(x)) \).

Usage

```r
expit(x)
```

Arguments

- `x`
 Numeric vector

Value

Numeric vector

Author(s)

Matt Tyers

See Also

- `logit`

Examples

```r
expit(0)
```
jags_df

Extract data.frame

Description

Extracts the posterior samples from jagsUI output in the form of a data.frame. This simpler construction has a few benefits: operations may be more straightforward, and posterior objects will be smaller files and can be written to an external table or .csv, etc.

Usage

jags_df(x, p = NULL, exact = FALSE)

Arguments

x Output object from jagsUI::jags()

p Optional string to begin posterior names. If NULL is used, all parameters will be returned.

exact Whether name must be an exact match (TRUE) or with initial sub-string matching only supplied characters (FALSE). Defaults to FALSE.

Value

A data.frame with a column associated with each parameter and a row associated with each MCMC iteration.

Author(s)

Matt Tyers

See Also

pull_post

Examples

out_df <- jags_df(asdf_jags_out)
jags_plist

jags_plist

Plist

Description

Extracts a list of matrices, one for each saved parameter node. Each list element will be all posterior samples from that parameter node, arranged in a matrix with a column associated with each MCMC chain and a row for each MCMC iteration.

Usage

```r
jags_plist(x, p = NULL)
```

Arguments

- `x`
 jagsUI output object

- `p`
 String to subset parameter names, if a subset is desired

Value

A list with an element associated with each parameter. Each element will be a matrix with a column associated with each MCMC chain and a row for each MCMC iteration.

Note

It is unlikely that a user will need this function; it is included primarily as a helper function used by other functions in this package.

Author(s)

Matt Tyers

Examples

```r
out_plist <- jags_plist(asdf_jags_out)  
str(out_plist)

a_plist <- jags_plist(asdf_jags_out, p=c("a","sig_a"))  
str(a_plist)
```
logit

Description

Logit \(\log(x/(1-x)) \)

Usage

\`logit(x)`

Arguments

- \(x \) Numeric vector

Value

Numeric vector

Author(s)

Matt Tyers

See Also

expit

Examples

\`logit(0.5)`

nbymname

Description

Returns a list of the numbers of parameter nodes saved in jagsUI output, by parameter name. As a default, what is returned for each list element is a vector of the array dimensions within the JAGS model (that is, excluding the dimension associated with the number of MCMC samples for each parameter node), or alternately, just the total number of parameter nodes.

Usage

\`nbymname(x, justtotal = FALSE)`
Arguments

x Output object from jagsUI::jags()
justtotal Whether to just report the total number of parameters, as opposed to dimensions.

Value

A list with an element associated with each parameter. Each element can be interpreted as the vector length or array dimension associated with the given parameter.

Author(s)

Matt Tyers

See Also

nparam

Examples

head(jags_df(asdf_jags_out))
nbyname(asdf_jags_out)
nparam(SS_out)
nbyname(SS_out)

nparam Number of parameters

Description

Total number of individual parameter nodes saved in jagsUI output.

Usage

nparam(x)

Arguments

x Output object from jagsUI::jags()

Value

A single numeric value giving the number of parameter nodes.

Author(s)

Matt Tyers
See Also
 nbyname

Examples

 head(jags_df(asdf_jags_out))

 nparam(asdf_jags_out)

overlayenvelope Overlay envelope plots

Description

Overlays multiple envelope plots of posterior data.frames, or outputs returned from jagsUI. This would be best suited to a set of posterior data.frames or 2-d matrices representing sequential vectors of parameter nodes.

Here a single envelope plot is defined as a set of overlayed shaded strips, each corresponding to a given interval width (defaults to 50 percent and 95 percent), with an overlayed median line.

Usage

overlayenvelope(
 df,
 p = NULL,
 x = NA,
 row = NULL,
 column = NULL,
 median = TRUE,
 ci = c(0.5, 0.95),
 col = NULL,
 add = FALSE,
 dark = 0.3,
 outline = FALSE,
 xlab = "",
 ylab = "",
 main = NULL,
 ylim = NULL,
 legend = TRUE,
 legendnames = NULL,
 legendpos = "topleft",

 ...
)
Arguments

- **df**: Primary input can be specified in a number of ways: either a `list()` of posterior `data.frame`s or matrices, a list of output objects returned from `jagsUI::jags()`, a 3-dimensional array in which the input matrices to plot are separated according to the 3rd array dimension, or a single output object returned from `jagsUI::jags()` with multiple arguments passed to `p`, following.

- **p**: Parameter name, if input to `df` is a list of `jagsUI` output objects; or a vector of parameter names, if input to `df` is a single `jagsUI` output object.

- **x**: Optional vector of X-coordinates for plotting.

- **row**: Row to subset, in the case of a 2-d matrix of parameter nodes in-model.

- **column**: Column to subset, in the case of a 2-d matrix of parameter nodes in-model.

- **median**: Whether to include median line

- **ci**: Vector of intervals to overlay. Defaults to 50 percent and 95 percent.

- **col**: Vector of colors for plotting

- **add**: Whether to add to existing plot

- **dark**: Opacity (0-1) for envelopes. Note that multiple overlapping intervals will darken the envelope. Defaults to 0.3.

- **outline**: Whether to just envelope outlines

- **xlab**: X-axis label

- **ylab**: Y-axis label

- **main**: Plot title. If the default (NULL) is accepted and argument `p` is used, `p` will be used for the title.

- **ylim**: Y-axis limits for plotting. If the default (NULL) is accepted, these will be determined automatically.

- **legend**: Whether to automatically try to add a legend. Defaults to TRUE.

- **legendnames**: Optional vector of names for a legend.

- **legendpos**: Position for optional legend. Defaults to "topleft".

- **...**: additional plotting arguments or arguments to `lines()`

Value

- **NULL**

Author(s)

- Matt Tyers

See Also

- `envelope`
Examples

```r
## usage with list of input data.frames
overlayenvelope(df=list(SS_out$sims.list$cycle_s[,1],
                     SS_out$sims.list$cycle_s[,2]))

## usage with a 3-d input array
overlayenvelope(df=SS_out$sims.list$cycle_s)

## usage with a jagsUI output object and parameter name (2-d parameter)
overlayenvelope(df=SS_out, p="cycle_s")

## usage with a single jagsUI output object and multiple parameters
overlayenvelope(df=SS_out, p=c("trend","rate"))
```

pairstrace_jags

Pairs trace plot

Description

Two-dimensional trace plots (or alternately, scatter plots or contour plots) of each possible pair of parameters from a possible subset. May be useful in assessing correlation between parameter nodes, or problematic posterior surfaces.

Usage

```r
pairstrace_jags(
  x,
  p = NULL,
  points = FALSE,
  contour = FALSE,
  lwd = 1,
  alpha = 0.2,
  parmfrow = NULL,
  ...
)
```

Arguments

- **x**: Output object returned from jagsUI
- **p**: Optional vector of parameters to subset
- **points**: Whether to plot as scatter plots instead. Defaults to FALSE.
- **contour**: Whether to plot as contour plots instead. Defaults to FALSE.
- **lwd**: Line width for trace plots. Defaults to 1.
- **alpha**: Opacity of lines (or points, when points=TRUE). Defaults to 0.2.
- **parmfrow**: Optional call to par(mfrow) for the number of rows & columns of plot window. Returns the graphics device to previous state afterward.
- **...**: additional plotting arguments or arguments to tracedens_jags()
Value

NULL

Author(s)

Matt Tyers

See Also

tradedens_jags

Examples

```r
pairstrace_jags(SS_out, p="sig", parmfrow=c(2,3), lwd=2)
pairstrace_jags(SS_out, p="sig", parmfrow=c(2,3), points=TRUE)
pairstrace_jags(SS_out, p="sig", parmfrow=c(2,3), contour=TRUE)
```

```r
pairstrace_jags(asdf_jags_out, parmfrow=c(3,3))
pairstrace_jags(asdf_jags_out, parmfrow=c(3,3), points=TRUE)
pairstrace_jags(asdf_jags_out, parmfrow=c(3,3), contour=TRUE)
```

plotcor_jags
Plot a correlation matrix from a JAGS object

Description

Plots a correlation matrix of all MCMC samples from an object returned by `jagsUI`, or an optional subset of parameter nodes. Correlation is plotted as shades of red (positive) or blue (negative).

In the case of vectors or arrays of nodes for each parameter name, a single axis tick will be used for all nodes with a single name. This has the effect of giving greater visual weight to single parameters, and reducing plot clutter.

Values of correlation are overlayed for all parameters with few nodes, with character size scaled according to the absolute correlation.

Usage

```r
plotcor_jags(
  x,
  p = NULL,
  exact = FALSE,
  mincor = 0,
  maxn = 4,
  maxcex = 1,
  legend = TRUE,
  ...
)
```
Arguments

- **x**: Output object returned from jagsUI
- **p**: Optional string to begin posterior names. If NULL is used, all parameters will be used.
- **exact**: Whether name must be an exact match (TRUE) or with initial sub-string matching only supplied characters (FALSE). Defaults to FALSE.
- **mincor**: Minimum (absolute) correlation to use for text labels. Defaults to 0 (all will be plotted).
- **maxn**: Maximum number of nodes per parameter name for text labels, to prevent plot clutter. Defaults to 4.
- **maxcex**: Maximum character expansion factor for text labels. Defaults to 1.
- **legend**: Whether to produce a plot legend. Defaults to TRUE.
- **...**: Optional plotting arguments

Value

- NULL

Author(s)

Matt Tyers

See Also

plotcor_jags

Examples

```r
plotcor_jags(asdf_jags_out, maxcex=0.7)
plotcor_jags(SS_out, p=c("trend","rate","sig"))
```

Description

Plot kernel densities of single parameter nodes

Produces a kernel density plot of a single or multiple parameter nodes (overlayed).

Input can be of multiple possible formats: either a single or list of output objects from jagsUI with an associated vector of parameter names, or a vector or data.frame of posterior samples.
plotdens

Usage

plotdens(
 df, # Input object for plotting. See examples below.
 p = NULL, # Vector of parameter names, if df is given as a single or list of output objects
 exact = FALSE, # whether the p= argument should match the parameter name exactly. See jags_df
 add = FALSE, # Whether to add to an existing plot (TRUE) or produce a new plot. Defaults to FALSE.
 col = NULL, # Vector of colors for plotting. If the default (NULL) is accepted, colors will be
 shade = TRUE, # automatically selected.
 lwd = 2, # Line width for kernel density curves. Defaults to 2. Note: setting this to 0 (or
 minCI = 0.99, # FALSE) will suppress lines.
 legend = TRUE, # Whether to plot a legend. Defaults to TRUE.
 legendpos = "topleft", # Position for automatic legend. Defaults to "topleft".
 legendnames = NULL, # Names for legend
 main = NULL, # Plot title. Defaults to "".
 xlab = "", # X-axis label. Defaults to "".
 ylab = "Density", # Y-axis label. Defaults to "Density".
 ... # Optional plotting arguments
)

Arguments

df # Input object for plotting. See examples below.
p # Vector of parameter names, if df is given as a single or list of output objects
 from jagsUI
exact # Whether the p= argument should match the parameter name exactly. See jags_df
 for details.
add # Whether to add to an existing plot (TRUE) or produce a new plot. Defaults to FALSE.
col # Vector of colors for plotting. If the default (NULL) is accepted, colors will be
 automatically selected.
shade # Whether to shade the regions below the kernel density curve(s). Defaults to TRUE.
lwd # Line width for kernel density curves. Defaults to 2. Note: setting this to 0 (or
 FALSE) will suppress lines.
minCI # Minimum CI width to include for all density curves. Defaults to 99%.
legend # Whether to plot a legend. Defaults to TRUE.
legendpos # Position for automatic legend. Defaults to "topleft".
legendnames # Names for legend
main # Plot title. Defaults to "".
xlab # X-axis label. Defaults to "".
ylab # Y-axis label. Defaults to "Density".
... # Optional plotting arguments
Value

NULL

Author(s)

Matt Tyers

See Also

comparedens, comparecat

Examples

```r
## jagsUI object with a single parameter
plotRhats(asdf_jags_out, p="b1")

## jagsUI object with multiple nodes of a parameter
plotRhats(asdf_jags_out, p="a")

## jagsUI object with multiple parameter nodes
plotRhats(asdf_jags_out, p=c("a[1]","a[2]","a[3]"))

## data.frame with multiple columns
plotRhats(jags_df(asdf_jags_out, p="a"))

## list of jagsUI objects with a single parameter name
plotRhats(list(asdf_jags_out,asdf_jags_out,asdf_jags_out,asdf_jags_out), p="b1")

## list of jagsUI objects with a vector of parameter names
plotRhats(list(asdf_jags_out,asdf_jags_out,asdf_jags_out,asdf_jags_out), p=c("a[1]","a[2]","a[3]"))
```

Description

Plotting all Rhat values

Plotting all values of Rhat (or alternately n.eff) from an output object returned by jagsUI, or perhaps a subset of parameters. This function is intended as a quick graphical check of which parameters have adequately converged.

Rhat (Gelman-Rubin Convergence Diagnostic, or Potential Scale Reduction Factor) is calculated within 'JAGS', and is commonly used as a measure of convergence for a given parameter node. Values close to 1 are seen as evidence of adequate convergence. n.eff is also calculated within 'JAGS', and may be interpreted as a crude measure of effective sample size for a given parameter node.
plotRhats

Usage

plotRhats(
 x,
 p = NULL,
 n.eff = FALSE,
 fence = NULL,
 plotsequence = FALSE,
 splitarr = FALSE,
 margin = NULL,
 ...)

Arguments

x Output object returned from jagsUI
p Optional vector of parameters to subset
n.eff Optionally, whether to plot n.eff instead of Rhat. Defaults to FALSE.
fence Value of horizontal lines to overlay as reference. Accepting the default value (NULL) will give fence values of 1.1 (a commonly used value) and 1.01 for Rhat, or 100 and 500 for n.eff.
plotsequence Whether to plot parameter vectors (or matrices) in a sequence, running left to right, which may be useful for time series models, etc. If the default (FALSE) is used, a vertical cluster will be plotted for each parameter, resulting in a simpler plot if there are many parameters. Note that the Rhat values will still be plotted in sequence if the default (FALSE) is used.
splitarr Whether to split 2+ dimensional parameter arrays by a given dimension, rather than plotting the full array in one vertical cluster or continuous sequence. This may be recommended in the case of large arrays. Defaults to FALSE.
margin If splitarr is set to TRUE, which array margin to split by. In the case of a 2-dimensional array, setting margin=2 will separate the array by column. If the default (NULL) is accepted, the function will split by the smallest dimension, therefore splitting into the fewest groups.

Value

NULL

Author(s)

Matt Tyers

References

pull_post

See Also
- `traceworstRhat`, `check_Rhat`

Examples

```r
## plotting everything
plotRhats(SS_out)
str(SS_out$Rhat)  # the associated values

plotRhats(SS_out, n.eff=TRUE)
str(SS_out$n.eff)  # the associated values

## behavior of splitarr and margin are shown
plotRhats(SS_out)
plotRhats(SS_out, splitarr=TRUE)
str(SS_out$Rhat)  # the associated values

## plotsequence may be useful in the case of a sequence of values
plotRhats(SS_out, p=c("trend", "cycle_s"), splitarr=TRUE, plotsequence=TRUE)
```

pull_post
Subset from posterior data.frame

Description

Extracts a subset vector or `data.frame` from a `data.frame` consisting of more columns, such that column names match a name given in the `p=` argument. This may be useful in creating smaller objects consisting of MCMC samples.

Usage

```r
pull_post(x, p = NULL, exact = FALSE)
```

Arguments

- **x**
 Posterior `data.frame`

- **p**
 String to begin posterior names. If `NULL` is used, all parameters will be returned.

- **exact**
 Whether name must be an exact match (`TRUE`) or with initial sub-string matching only supplied characters (`FALSE`). Defaults to `FALSE`.

Value

A `data.frame` with a column associated with each (subsetted) parameter and a row associated with each MCMC iteration.

Author(s)

Matt Tyers
See Also

jags_df

Examples

```r
out_df <- jags_df(asdf_jags_out)

b <- pull_post(out_df, p="b")
str(b)
a <- pull_post(out_df, p=c("a","sig.a"))
str(a)
sigs <- pull_post(out_df, p="sig")
str(sigs)
justsig <- pull_post(out_df, p="sig", exact=TRUE)
str(justsig)
```

rcolors

Random Colors

Description

Creates a vector of randomly-generated colors.

Usage

```r
rcolors(n)
```

Arguments

- `n` Vector length

Value

A vector of colors

Author(s)

Matt Tyers

Examples

```r
n <- 1000
cols <- rcolors(n)
x <- runif(n)
y <- runif(n)
plot(x,y, col=cols, pch=16)
```
skeleton

Description
Prints an example ‘JAGS’ model and associated ‘jagsUI’ code to the console, along with code to simulate a corresponding dataset. This is intended to serve as a template that can be altered as needed by the user.

Usage
skeleton(NAME = "NAME")

Arguments
NAME
Name to append to JAGS model object, etc.

Value
NULL

Note
The printed code will use the cat() function to write the model code to an external text file. It may be desirable to use a call to \link{tempfile}() instead, to eliminate creation of unneeded files.

Author(s)
Matt Tyers

Examples
skeleton("asdf")

SS_data

Example data: Time series associated with SS JAGS out

Description
The time series and time measurements associated with the time series model \link{SS_out}.

Usage
SS_data

Format
An object of class data.frame with 41 rows and 2 columns.
SS_out

Example data: SS JAGS out

Description

A time series model with multiple observations of a single time series, and with two stochastic cycle components.

Usage

SS_out

Format

An object of class jagsUI of length 24.

Details

This model is included partly to show a model with vectors or 2-dimensional matrices of parameter nodes, and also to give an example of poor model convergence.

tracedens_jags

Combination of trace plots and by-chain kernel densities of jagsUI object

Description

Combination of trace plots and by-chain kernel densities of a whole jagsUI object, or optional subset of parameter nodes.

Usage

tracedens_jags(x, p = NULL, parmfrow = NULL, lwd = 1, shade = TRUE, ...)

Arguments

- **x**: Posterior jagsUI object
- **p**: Parameter name for subsetting: if this is specified, only parameters with names beginning with this string will be plotted.
- **parmfrow**: Optional call to par(mfrow) for the number of rows & columns of plot window. Returns the graphics device to previous state afterward.
- **lwd**: Line width for plotting. Defaults to 1.
- **shade**: Whether to add semi-transparent shading to by-chain kernel densities. Defaults to TRUE.
- **...**: additional plotting arguments
traceworstRhat

Value

NULL

Author(s)

Matt Tyers

See Also

trace_jags, chaindens_jags, pairtrace_jags

Examples

tracedens_jags(asdf_jags_out, parmfrow=c(4,2))
tracedens_jags(asdf_jags_out, p="a", parmfrow=c(3,1))

Description

Trace plots with kernel densities will be created for parameters with the largest (worst) associated values of Rhat. This function is primarily intended for parameters with a vector (or array) of values.

Rhat (Gelman-Rubin Convergence Diagnostic, or Potential Scale Reduction Factor) is calculated within 'JAGS', and is commonly used as a measure of convergence for a given parameter node. Values close to 1 are seen as evidence of adequate convergence. n.eff is also calculated within 'JAGS', and may be interpreted as a crude measure of effective sample size for a given parameter node.

Usage

traceworstRhat(x, p = NULL, n.eff = FALSE, margin = NULL, parmfrow = NULL, ...)

Arguments

x

Output object returned from jagsUI

p

Optional vector of parameters to subset

n.eff

Whether to plot parameters with the smallest associated values of n.eff instead. Defaults to FALSE.

margin

In the case of a 2+ dimensional array associated with a given parameter, this will have the effect of plotting the worst Rhat corresponding to each margin specified. For example, specifying margin=2 (column) will plot the parameter with the worst Rhat value from each column. In contrast, specifying margin=NULL (the default) will cause the function to plot the single array element with the largest Rhat value.
trace_df

Description

Trace plot of each column of a posterior 'data.frame'.

Usage

trace_df(df, nline, parmfrow = NULL, ...)

parmfrow

Optional call to par(mfrow) for the number of rows & columns of plot window. Returns the graphics device to previous state afterward.

... additional plotting arguments or arguments to tracedens_jags()

Value

NULL

Author(s)

Matt Tyers

References

See Also

plotRhat, check_Rhat

Examples

```r
## plotting everything
traceworstRhat(SS_out, parmfrow=c(3,2))
SS_out$Rhat # the associated values

traceworstRhat(SS_out, parmfrow=c(3,2), n.eff=TRUE)
SS_out$n.eff # the associated values

## in the case of a 2-D array, setting margin=2 gives the max Rhat
## associated with each column, rather than the global max
traceworstRhat(x=SS_out, p="cycle_s", margin=2, parmfrow=c(2,2))
SS_out$Rhat
traceworstRhat(x=SS_out, p="cycle_s", margin=2, parmfrow=c(2,2), n.eff=TRUE)
SS_out$n.eff
```

trace_df

Trace plot of each column of a data.frame.
Arguments

- **df**: Posterior data.frame
- **nline**: Number of chains
- **parmfrow**: Optional call to `par(mfrow)` for the number of rows & columns of plot window. Returns the graphics device to previous state afterward.
- **...**: additional plotting arguments or arguments to `trace_line()`

Value

NULL

Author(s)

Matt Tyers

See Also

- `tracedens_jags`, `trace_jags`, `trace_line`

Examples

```r
out_df <- jags_df(asdf_jags_out)
b1 <- pull_post(out_df, "b1")
a <- pull_post(out_df, "a")
trace_df(a, nline=3, parmfrow=c(3,1))
trace_df(a, nline=3, parmfrow=c(3,1))
```

Trace plot of `jagsUI` object

Description

Trace plot of a whole `jagsUI` object, or optional subset of parameter nodes.

Usage

```r
trace_jags(x, p = NULL, parmfrow = NULL, lwd = 1, ...)
```
trace_line

Arguments

x Posterior jagsUI object
p Parameter name for subsetting: if this is specified, only parameters with names beginning with this string will be plotted.
parmfrow Optional call to par(mfrow) for the number of rows & columns of plot window. Returns the graphics device to previous state afterward.
lwd Line width for plotting. Defaults to 1.
... additional plotting arguments

Value

NULL

Author(s)

Matt Tyers

See Also

tracedens_jags, pairtrace_jags, trace_df, trace_line

Examples

trace_jags(asdf_jags_out, parmfrow=c(4,2))
trace_jags(asdf_jags_out, p="a", parmfrow=c(3,1))

trace_line Simple trace plot

Description

Trace plot of a single parameter node.

Usage

trace_line(x, nline, lwd = 1, main = "", ...)
Value

NULL

Author(s)

Matt Tyers

See Also

tracedens_jags, trace_jags, trace_df, chaindens_line

Examples

out_df <- jags_df(asdf_jags_out)

b1 <- pull_post(out_df,"b1")
a <- pull_post(out_df,"a")

trace_line(b1, nline=3, main="b1")
Index

* datasets
 asdf_jags_out, 3
 SS_data, 30
 SS_out, 31

 asdf_jags_out, 3

 caterpillar, 3, 4, 10, 11, 14
 chaindens_df, 6, 7, 8
 chaindens_jags, 7, 8, 32
 chaindens_line, 7, 8, 36
 check_neff, 9, 10
 check_Rhat, 9, 9, 28, 33
 comparecat, 3, 10, 12, 26
 comparedens, 3, 11, 11, 26
 cor_jags, 12

 envelope, 3, 5, 13, 20, 21
 expit, 15, 18

 jags_df, 16, 25, 29
 jags_plist, 17
 jagshelper (jagshelper-package), 2
 jagshelper-package, 2

 logit, 15, 18

 nbname, 18, 20
 nparam, 19, 19

 overlayenvelope, 3, 14, 20

 pairtrace_jags, 22, 32, 35
 plotcor_jags, 13, 23, 24
 plotdens, 24
 plotRhats, 3, 10, 26, 33
 pull_post, 16, 28

 rcolors, 29

 skeleton, 3, 30

 SS_data, 30
 SS_out, 31

 trace_df, 33, 35, 36
 trace_jags, 6, 7, 32, 34, 34, 36
 trace_line, 6, 34, 35, 35
 tracedens_jags, 3, 6–8, 23, 31, 34–36
 traceworstRhat, 3, 10, 28, 32