Package ‘jmv’

June 20, 2024

Type Package

Title The ‘jamovi’ Analyses

Version 2.5.6

Date 2024-06-19

Maintainer Jonathon Love <jon@thon.cc>

Description A suite of common statistical methods such as descriptives, t-tests, ANOVAs, regression, correlation matrices, proportion tests, contingency tables, and factor analysis. This package is also useable from the ‘jamovi’ statistical spreadsheet (see <https://www.jamovi.org> for more information).

BugReports https://github.com/jamovi/jmv/issues

License GPL (>= 2)

Depends R (>= 3.2)

Imports jmvcore (>= 2.4.2), R6, car (>= 3.0.0), multcomp, ggplot2 (>= 2.2.1), PMCMR, emmeans (>= 1.4.2), vcd, vcdExtra, GGally, BayesFactor, psych (>= 1.7.5), GPArotation, afex (>= 0.28-0), mvnormtest, lavaan, ggridges, ROCR, nnet, MASS, ggrepel, dplyr, magrittr

Suggests exact2x2, testthat (>= 3.1.5), semPlot, carData, knitr, markdown

Encoding UTF-8

RoxygenNote 6.1.1

NeedsCompilation no

Author Ravi Selker [aut, cph], Jonathon Love [aut, cre, cph], Damian Dropmann [aut, cph], Victor Moreno [ctb, cph], Maurizio Agostí [ctb, cph]

Repository CRAN

Date/Publication 2024-06-20 10:20:14 UTC
Contents

ancova .. 2
ANOVA .. 5
anovaNP ... 7
anovaOneW ... 8
anovaRM .. 10
anovaRMNP .. 13
Big5 .. 14
bugs ... 15
cfa ... 15
contTables .. 18
contTablesPaired ... 21
corrMatrix ... 22
corrPart .. 24
descriptives .. 26
efa ... 29
iris ... 30
linReg .. 31
logLinear .. 33
logRegBin .. 36
logRegMulti ... 39
logRegOrd .. 42
mancova .. 44
pca ... 45
propTest2 .. 47
propTestN .. 48
reliability ... 50
ToothGrowth ... 51
ttestIS .. 52
ttestOneS .. 54
ttestPS .. 56

Index 58

ancova ANCOVA

Description

The Analysis of Covariance (ANCOVA) is used to explore the relationship between a continuous dependent variable, one or more categorical explanatory variables, and one or more continuous explanatory variables (or covariates). It is essentially the same analysis as ANOVA, but with the addition of covariates.
ancova

Usage

ancova(data, dep, factors = NULL, covs = NULL, effectSize = NULL, modelTest = FALSE, modelTerms = NULL, ss = "3", homo = FALSE, norm = FALSE, qq = FALSE, contrasts = NULL, postHoc = NULL, postHocCorr = list("tukey"), postHocES = list(), postHocESCi = FALSE, postHocESCiWidth = 95, emMeans = list(list())), emmPlots = TRUE, emmPlotData = FALSE, emmPlotError = "ci", emmTables = FALSE, emmWeights = TRUE, ciWidthEmm = 95, formula)

Arguments

data the data as a data frame

dep the dependent variable from data, variable must be numeric (not necessary when providing a formula, see examples)

factors the explanatory factors in data (not necessary when providing a formula, see examples)

covs the explanatory covariates (not necessary when providing a formula, see examples)

effectSize one or more of 'eta', 'partEta', or 'omega'; use eta², partial eta², and omega² effect sizes, respectively

modelTest TRUE or FALSE (default); perform an overall model test

modelTerms a formula describing the terms to go into the model (not necessary when providing a formula, see examples)

ss '1', '2' or '3' (default), the sum of squares to use

homo TRUE or FALSE (default), perform homogeneity tests

norm TRUE or FALSE (default), perform Shapiro-Wilk tests of normality

qq TRUE or FALSE (default), provide a Q-Q plot of residuals

contrasts a list of lists specifying the factor and type of contrast to use, one of 'deviation', 'simple', 'difference', 'helmert', 'repeated' or 'polynomial'

postHoc a formula containing the terms to perform post-hoc tests on (see the examples)

postHocCorr one or more of 'none', 'tukey', 'scheffe', 'bonf', or 'holm'; provide no, Tukey, Scheffe, Bonferroni, and Holm Post Hoc corrections respectively

postHocES a possible value of 'd'; provide cohen’s d measure of effect size for the post-hoc tests

postHocESCi TRUE or FALSE (default), provide confidence intervals for the post-hoc effect sizes

postHocESCiWidth a number between 50 and 99.9 (default: 95), the width of confidence intervals for the post-hoc effect sizes

emMeans a formula containing the terms to estimate marginal means for (see the examples)

emmPlots TRUE (default) or FALSE, provide estimated marginal means plots

emmPlotData TRUE or FALSE (default), plot the data on top of the marginal means
emmPlotError 'none', 'ci' (default), or 'se'. Use no error bars, use confidence intervals, or use standard errors on the marginal mean plots, respectively
emmTables TRUE or FALSE (default), provide estimated marginal means tables
emmWeights TRUE (default) or FALSE, weigh each cell equally or weigh them according to the cell frequency
ciWidthEmm a number between 50 and 99.9 (default: 95) specifying the confidence interval width for the estimated marginal means
formula (optional) the formula to use, see the examples

Value
A results object containing:

 results$main a table of ANCOVA results
 results$model The underlying aov object
 results$assump$homo a table of homogeneity tests
 results$assump$norm a table of normality tests
 results$assump$qq a q-q plot
 results$contrasts an array of contrasts tables
 results$postHoc an array of post-hoc tables
 results$emm an array of the estimated marginal means plots + tables
 results$residsOV an output

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$main$asDF
as.data.frame(results$main)

Examples

data('ToothGrowth')
ancova(formula = len ~ supp + dose, data = ToothGrowth)

ANCOVA
ANCOVA
Sum of Squares df Mean Square F p

supp 205 1 205.4 11.4 0.001
dose 2224 1 2224.3 124.0 < .001
Residuals 1023 57 17.9

ancova(
ANOVA

formula = len ~ supp + dose,
data = ToothGrowth,
postHoc = ~ supp,
emMeans = ~ supp)

Description

The Analysis of Variance (ANOVA) is used to explore the relationship between a continuous dependent variable, and one or more categorical explanatory variables.

Usage

\[
\text{ANOVA} \left(\text{data}, \text{dep}, \text{factors} = \text{NULL}, \text{effectSize} = \text{NULL}, \right. \\
\left. \text{modelTest} = \text{FALSE}, \text{modelTerms} = \text{NULL}, \text{ss} = "3", \text{homo} = \text{FALSE}, \right. \\
\left. \text{norm} = \text{FALSE}, \text{qq} = \text{FALSE}, \text{contrasts} = \text{NULL}, \text{postHoc} = \text{NULL}, \right. \\
\left. \text{postHocES} = \text{list()}, \text{postHocScs} = \text{FALSE}, \text{postHocScsWidth} = 95, \text{emMeans} = \text{list(list())}, \right. \\
\left. \text{emmPlots} = \text{TRUE}, \text{emmPlotData} = \text{FALSE}, \text{emmPlotError} = "ci", \right. \\
\left. \text{emmTables} = \text{FALSE}, \text{emmWeights} = \text{TRUE}, \text{ciWidthEmm} = 95, \text{formula} \right)
\]

Arguments

- **data**: the data as a data frame
- **dep**: the dependent variable from `data`, variable must be numeric (not necessary when providing a formula, see examples)
- **factors**: the explanatory factors in `data` (not necessary when providing a formula, see examples)
- **effectSize**: one or more of `\text{eta}`, `\text{partEta}`, or `\text{omega}`; use eta², partial eta², and omega² effect sizes, respectively
- **modelTest**: TRUE or FALSE (default); perform an overall model test
- **modelTerms**: a formula describing the terms to go into the model (not necessary when providing a formula, see examples)
- **ss**: '1', '2', or '3' (default), the sum of squares to use
- **homo**: TRUE or FALSE (default), perform homogeneity tests
- **norm**: TRUE or FALSE (default), perform Shapiro-Wilk tests of normality
- **qq**: TRUE or FALSE (default), provide a Q-Q plot of residuals
- **contrasts**: a list of lists specifying the factor and type of contrast to use, one of 'deviation', 'simple', 'difference', 'helmert', 'repeated' or 'polynomial'
- **postHoc**: a formula containing the terms to perform post-hoc tests on (see the examples)
ANOVA

- **postHocCorr**: one or more of 'none', 'tukey', 'scheffe', 'bonf', or 'holm'; provide no, Tukey, Scheffe, Bonferroni, and Holm Post Hoc corrections respectively
- **postHocES**: a possible value of 'd'; provide Cohen's d measure of effect size for the post-hoc tests
- **postHocEsCi**: TRUE or FALSE (default), provide confidence intervals for the post-hoc effect sizes
- **postHocEsCiWidth**: a number between 50 and 99.9 (default: 95), the width of confidence intervals for the post-hoc effect sizes
- **emMeans**: a formula containing the terms to estimate marginal means for (see the examples)
- **emmPlots**: TRUE (default) or FALSE, provide estimated marginal means plots
- **emmmPlotData**: TRUE or FALSE (default), plot the data on top of the marginal means
- **emmmPlotError**: 'none', 'ci' (default), or 'se'. Use no error bars, use confidence intervals, or use standard errors on the marginal mean plots, respectively
- **emmmTables**: TRUE or FALSE (default), provide estimated marginal means tables
- **emmmWeights**: TRUE (default) or FALSE, weigh each cell equally or weigh them according to the cell frequency
- **ciWidthEmm**: a number between 50 and 99.9 (default: 95) specifying the confidence interval width for the estimated marginal means
- **formula** (optional) the formula to use, see the examples

Details

ANOVA assumes that the residuals are normally distributed, and that the variances of all groups are equal. If one is unwilling to assume that the variances are equal, then a Welch's test can be used instead (However, the Welch's test does not support more than one explanatory factor). Alternatively, if one is unwilling to assume that the data is normally distributed, a non-parametric approach (such as Kruskal-Wallis) can be used.

Value

A results object containing:

- **results$main**: a table of ANOVA results
- **results$model**: The underlying `aov` object
- **results$assump$homo**: a table of homogeneity tests
- **results$assump$norm**: a table of normality tests
- **results$assump$qq**: a q-q plot
- **results$contrasts**: an array of contrasts tables
- **results$postHoc**: an array of post-hoc tables
- **results$emm**: an array of the estimated marginal means plots + tables
- **results$residsOV**: an output

Tables can be converted to data frames with `asDF` or `as.data.frame`. For example:
Examples

```r
data('ToothGrowth')

ANOVA(formula = len ~ dose * supp, data = ToothGrowth)
#
# ANOVA
#
# ANOVA
# -----------------------------------------------------------------------
# Sum of Squares df Mean Square F p
# -----------------------------------------------------------------------
# dose 2426 2 1213.2 92.00 < .001
# supp 205 1 205.4 15.57 < .001
# dose:supp 108 2 54.2 4.11 0.022
# Residuals 712 54 13.2
# -----------------------------------------------------------------------
#
ANOVA(
  formula = len ~ dose * supp,
  data = ToothGrowth,
  emMeans = ~ supp + dose:supp, # est. marginal means for supp and dose:supp
  emmPlots = TRUE, # produce plots of those marginal means
  emmTables = TRUE) # produce tables of those marginal means
```

Description

The Kruskal-Wallis test is used to explore the relationship between a continuous dependent variable, and a categorical explanatory variable. It is analogous to ANOVA, but with the advantage of being non-parametric and having fewer assumptions. However, it has the limitation that it can only test a single explanatory variable at a time.

Usage

```r
anovaNP(data, deps, group, es = FALSE, pairs = FALSE, formula)
```

Arguments

data the data as a data frame
deps a string naming the dependent variable in data
anovaOneW

group
a string naming the grouping or independent variable in data

group

es
TRUE or FALSE (default), provide effect-sizes

es

pairs
TRUE or FALSE (default), perform pairwise comparisons

pairs

formula
(optional) the formula to use, see the examples

formula

Value

A results object containing:

<table>
<thead>
<tr>
<th>results$table</th>
<th>a table of the test results</th>
</tr>
</thead>
<tbody>
<tr>
<td>results$comparisons</td>
<td>an array of pairwise comparison tables</td>
</tr>
</tbody>
</table>

Tables can be converted to data frames with asDF or as.data.frame. For example:

```r
results$table$asDF
as.data.frame(results$table)
```

Examples

```r
data('ToothGrowth')

anovaNP(formula = len ~ dose, data=ToothGrowth)
```

```
# ONE-WAY ANOVA (NON-PARAMETRIC)
#
# Kruskal-Wallis
# ----------------------------------
# X^2   df   p
# ----------------------------------
# len   40.7  2 < .001
# ----------------------------------
#
```

Description

The Analysis of Variance (ANOVA) is used to explore the relationship between a continuous dependent variable, and one or more categorical explanatory variables. This 'One-Way ANOVA' is a simplified version of the 'normal' ANOVA, allowing only a single explanatory factor, however also providing a Welch's ANOVA. The Welch's ANOVA has the advantage that it need not assume that the variances of all groups are equal.
anovaOneW

Usage

anovaOneW(data, deps, group, welchs = TRUE, fishers = FALSE,
miss = "perAnalysis", desc = FALSE, descPlot = FALSE,
norm = FALSE, qq = FALSE, eqv = FALSE, phMethod = "none",
phMeanDif = TRUE, phSig = TRUE, phTest = FALSE, phFlag = FALSE,
formula)

Arguments

data the data as a data frame
deps a string naming the dependent variables in data
group a string naming the grouping or independent variable in data
welchs TRUE (default) or FALSE, perform Welch’s one-way ANOVA which does not assume equal variances
fishers TRUE or FALSE (default), perform Fisher’s one-way ANOVA which assumes equal variances
miss 'perAnalysis' or 'listwise', how to handle missing values; 'perAnalysis' excludes missing values for individual dependent variables, 'listwise' excludes a row from all analyses if one of its entries is missing.
desc TRUE or FALSE (default), provide descriptive statistics
descPlot TRUE or FALSE (default), provide descriptive plots
norm TRUE or FALSE (default), perform Shapiro-Wilk test of normality
qq TRUE or FALSE (default), provide a Q-Q plot of residuals
eqv TRUE or FALSE (default), perform Levene’s test for homogeneity of variances
phMethod 'none', 'gamesHowell' or 'tukey', which post-hoc tests to provide; 'none' shows no post-hoc tests, 'gamesHowell' shows Games-Howell post-hoc tests where no equivalence of variances is assumed, and 'tukey' shows Tukey post-hoc tests where equivalence of variances is assumed
phMeanDif TRUE (default) or FALSE, provide mean differences for post-hoc tests
phSig TRUE (default) or FALSE, provide significance levels for post-hoc tests
phTest TRUE or FALSE (default), provide test results (t-value and degrees of freedom) for post-hoc tests
phFlag TRUE or FALSE (default), flag significant post-hoc comparisons
formula (optional) the formula to use, see the examples

Details

For convenience, this method allows specifying multiple dependent variables, resulting in multiple independent tests.

Note that the Welch’s ANOVA is the same procedure as the Welch’s independent samples t-test.
Value

A results object containing:

```r
esults$anova  a table of the test results
results$desc   a table containing the group descriptives
results$assump$norm a table containing the normality tests
results$assump$eqv a table of homogeneity of variances tests
results$plots  an array of groups of plots
results$postHoc an array of post-hoc tables
```

Tables can be converted to data frames with `asDF` or `as.data.frame`. For example:
```r
results$anova$asDF
as.data.frame(results$anova)
```

Examples

```r
data('ToothGrowth')
dat <- ToothGrowth
dat$dose <- factor(dat$dose)

anovaOneW(formula = len ~ dose, data = dat)
```

ONE-WAY ANOVA
One-Way ANOVA (Welch's)
--
F df1 df2 p
--
len 68.4 2 37.7 < .001
--

```

**anovaRM**  
RePEated Measures ANOVA

Description

The Repeated Measures ANOVA is used to explore the relationship between a continuous dependent variable and one or more categorical explanatory variables, where one or more of the explanatory variables are 'within subjects' (where multiple measurements are from the same subject). Additionally, this analysis allows the inclusion of covariates, allowing for repeated measures ANCOVAs as well.
Usage

anovaRM(data, rm = list(list(label = "RM Factor 1", levels = list("Level 1", "Level 2"))), rmCells = NULL, bs = NULL, cov = NULL, effectSize = NULL, depLabel = "Dependent", rmTerms = NULL, bsTerms = NULL, ss = "3", spherTests = FALSE, spherCorr = list("none"), leveneTest = FALSE, qq = FALSE, contrasts = NULL, postHoc = NULL, postHocCorr = list("tukey"), emMeans = list(list()), emmPlots = TRUE, emmTables = FALSE, emmWeights = TRUE, ciWidthEmm = 95, emmPlotData = FALSE, emmPlotError = "ci", groupSumm = FALSE)

Arguments

data the data as a data frame

rm a list of lists, where each list describes the label (as a string) and the levels (as vector of strings) of a particular repeated measures factor

rmCells a list of lists, where each list describes a repeated measure (as a string) from data defined as measure and the particular combination of levels from rm that it belongs to (as a vector of strings) defined as cell

bs a vector of strings naming the between subjects factors from data

cov a vector of strings naming the covariates from data. Variables must be numeric

effectSize one or more of 'eta', 'partEta', or 'omega'; use eta², partial eta², and omega² effect sizes, respectively

depLabel a string (default: 'Dependent') describing the label used for the dependent variable throughout the analysis

rmTerms a list of character vectors describing the repeated measures terms to go into the model

bsTerms a list of character vectors describing the between subjects terms to go into the model

ss '2' or '3' (default), the sum of squares to use

spherTests TRUE or FALSE (default), perform sphericity tests

spherCorr one or more of 'none' (default), 'GG', or HF; use no p-value correction, the Greenhouse-Geisser p-value correction, and the Huynh-Feldt p-value correction for sphericity, respectively

leveneTest TRUE or FALSE (default), test for homogeneity of variances (i.e., Levene’s test)

qq TRUE or FALSE (default), provide a Q-Q plot of residuals

contrasts in development

postHoc a list of character vectors describing the post-hoc tests that need to be computed

postHocCorr one or more of 'none', 'tukey' (default), 'scheffe', 'bonf', or 'holm'; use no, Tukey, Scheffe, Bonferroni and Holm posthoc corrections, respectively

emMeans a list of lists specifying the variables for which the estimated marginal means need to be calculate. Supports up to three variables per term.

emmPlots TRUE (default) or FALSE, provide estimated marginal means plots
**Details**

This analysis requires that the data be in 'wide format', where each row represents a subject (as opposed to long format, where each measurement of the dependent variable is represented as a row).

A non-parametric equivalent of the repeated measures ANOVA also exists; the Friedman test. However, it has the limitation of only being able to test a single factor.

**Value**

A results object containing:

- `results$rmTable` a table
- `results$bsTable` a table
- `results$assump$spherTable` a table
- `results$assump$leveneTable` a table
- `results$assump$qq` a q-q plot
- `results$contrasts` an array of tables
- `results$postHoc` an array of tables
- `results$emm` an array of the estimated marginal means plots + tables
- `results$groupSummary` a summary of the groups

Tables can be converted to data frames with `asDF` or `as.data.frame`. For example:

```r
results$rmTable$asDF
as.data.frame(results$rmTable)
```

**Examples**

```r
data('bugs', package = 'jmv')

anovaRM(
 data = bugs,
 rm = list(
 list(
 label = 'Frightening',
```
levels = c('Low', 'High'))),
rmCells = list(
  list(
    measure = 'LDLF',
    cell = 'Low'),
  list(
    measure = 'LDHF',
    cell = 'High')),
rmTerms = list(
  'Frightening'))

# REPEATED MEASURES ANOVA
#
# Within Subjects Effects
# --------------------------------------------------------
# Sum of Squares  df  Mean Square  F  p
# --------------------------------------------------------
# Frightening     126  1   126.11    44.2 < .001
# Residual        257 90    2.85
# --------------------------------------------------------
#
# Note. Type 3 Sums of Squares
#
#
# Between Subjects Effects
# --------------------------------------------------------
# Sum of Squares  df  Mean Square  F  p
# --------------------------------------------------------
# Residual       954 90     10.6
# --------------------------------------------------------
#
# Note. Type 3 Sums of Squares
#

anovaRMNP

Repeated Measures ANOVA (Non-parametric)

Description

The Friedman test is used to explore the relationship between a continuous dependent variable and a categorical explanatory variable, where the explanatory variable is 'within subjects' (where multiple measurements are from the same subject). It is analogous to Repeated Measures ANOVA, but with the advantage of being non-parametric, and not requiring the assumptions of normality or homogeneity of variances. However, it has the limitation that it can only test a single explanatory variable at a time.

Usage

anovaRMNP(data, measures, pairs = FALSE, desc = FALSE, plots = FALSE, plotType = "means")
Arguments

- **data** the data as a data frame
- **measures** a vector of strings naming the repeated measures variables
- **pairs** TRUE or FALSE (default), perform pairwise comparisons
- **desc** TRUE or FALSE (default), provide descriptive statistics
- **plots** TRUE or FALSE (default), provide a descriptive plot
- **plotType** 'means' (default) or 'medians', the error bars to use in the plot

Value

A results object containing:

- **results$table** a table of the Friedman test results
- **results$comp** a table of the pairwise comparisons
- **results$desc** a table containing the descriptives
- **results$plot** a descriptives plot

Tables can be converted to data frames with `asDF` or `as.data.frame`. For example:

```
results$table$asDF
as.data.frame(results$table)
```

Examples

```r
data('bugs', package = 'jmv')

anovaRMNP(bugs, measures = vars(LDLF, LDHF, HDLF, HDHF))
```

```
REPEATED MEASURESANOVA (NON-PARAMETRIC)
#
Friedman

X² df p

55.8 3 < .001

#```

Description

Big 5
Description

Confirmatory Factor Analysis

Usage

cfa(data, factors = list(list(label = "Factor 1", vars = list())), resCov, miss = "fiml", constrain = "facVar", estTest = TRUE, ci = FALSE, ciWidth = 95, stdEst = FALSE, factCovEst = TRUE, factInterceptEst = FALSE, resCovEst = FALSE, resInterceptEst = FALSE, fitMeasures = list("cfi", "tli", "rmsea"), modelTest = TRUE, pathDiagram = FALSE, corRes = FALSE, hlCorRes = 0.1, mi = FALSE, hlMI = 3)

Arguments

data the data as a data frame
factors a list containing named lists that define the label of the factor and the vars that belong to that factor
resCov a list of lists specifying the residual covariances that need to be estimated
miss 'listwise' or 'fiml', how to handle missing values; 'listwise' excludes a row from all analyses if one of its entries is missing, 'fiml' uses a full information maximum likelihood method to estimate the model.
constrain 'facVar' or 'facInd', how to contrain the model; 'facVar' fixes the factor variances to one, 'facInd' fixes each factor to the scale of its first indicator.
estTest: TRUE (default) or FALSE, provide 'Z' and 'p' values for the model estimates

ci: TRUE or FALSE (default), provide a confidence interval for the model estimates

ciWidth: a number between 50 and 99.9 (default: 95) specifying the confidence interval width that is used as 'ci'

stdEst: TRUE or FALSE (default), provide a standardized estimate for the model estimates

factCovEst: TRUE (default) or FALSE, provide estimates for the factor (co)variances

factInterceptEst: TRUE or FALSE (default), provide estimates for the factor intercepts

resCovEst: TRUE (default) or FALSE, provide estimates for the residual (co)variances

resInterceptEst: TRUE or FALSE (default), provide estimates for the residual intercepts

fitMeasures: one or more of 'cfi', 'tli', 'srmr', 'rmsea', 'aic', or 'bic': use CFI, TLI, SRMR, RMSEA + 90% confidence interval, adjusted AIC, and BIC model fit measures, respectively

modelTest: TRUE (default) or FALSE, provide a chi-square test for exact fit that compares the model with the perfect fitting model

pathDiagram: TRUE or FALSE (default), provide a path diagram of the model

corRes: TRUE or FALSE (default), provide the residuals for the observed correlation matrix (i.e., the difference between the expected correlation matrix and the observed correlation matrix)

hlCorRes: a number (default: 0.1), highlight values in the 'corRes' table above this value

mi: TRUE or FALSE (default), provide modification indices for the parameters not included in the model

hlMI: a number (default: 3), highlight values in the 'modIndices' tables above this value

Value

A results object containing:

- `results$factorLoadings`: a table containing the factor loadings
- `results$factorEst$factorCov`: a table containing factor covariances estimates
- `results$factorEst$factorIntercept`: a table containing factor intercept estimates
- `results$resEst$resCov`: a table containing residual covariances estimates
- `results$resEst$resIntercept`: a table containing residual intercept estimates
- `results$modelFit$test`: a table containing the chi-square test for exact fit
- `results$modelFit$fitMeasures`: a table containing fit measures
- `results$modelPerformance$corRes`: a table containing residuals for the observed correlation matrix
- `results$modelPerformance$modIndices`: a group
- `results$pathDiagram`: an image containing the model path diagram
- `results$modelSyntax`: the lavaan syntax used to fit the model

Tables can be converted to data frames with `asDF` or `as.data.frame`. For example:

- `results$factorLoadings$asDF`
- `as.data.frame(results$factorLoadings)`
data <- lavaan::HolzingerSwineford1939

jmv::cfa(
 data = data,
 factors = list(
 list(label="Visual", vars=c("x1", "x2", "x3")),
 list(label="Textual", vars=c("x4", "x5", "x6")),
 list(label="Speed", vars=c("x7", "x8", "x9")),
 resCov = NULL
)
)

CONFIRMATORY FACTOR ANALYSIS
Factor Loadings
#---
| Factor | Indicator | Estimate | SE | Z | p |
|--------|-----------|----------|-----|-------|-------|
| Visual | x1 | 0.900 | 0.0832 | 10.81 | < .001 |
| | x2 | 0.498 | 0.0808 | 6.16 | < .001 |
| | x3 | 0.656 | 0.0776 | 8.46 | < .001 |
| Textual| x4 | 0.990 | 0.0567 | 17.46 | < .001 |
| | x5 | 1.102 | 0.0626 | 17.60 | < .001 |
| | x6 | 0.917 | 0.0538 | 17.05 | < .001 |
| Speed | x7 | 0.619 | 0.0743 | 8.34 | < .001 |
| | x8 | 0.731 | 0.0755 | 9.68 | < .001 |
| | x9 | 0.670 | 0.0775 | 8.64 | < .001 |
#---
FACTOR ESTIMATES
Factor Covariances
#---
| | Estimate | SE | Z | p |
|--------|----------|-----|-------|-------|
| Visual | Visual | 1.000 | a | |
| | Textual | 0.459 | 0.0635 | 7.22 | < .001 |
| | Speed | 0.471 | 0.0862 | 5.46 | < .001 |
| Textual| Textual | 1.000 | a | |
| | Speed | 0.283 | 0.0715 | 3.96 | < .001 |
| Speed | Speed | 1.000 | a | |
a fixed parameter
MODEL FIT
Test for Exact Fit
#---------------------
| X^2 | df | p |
|-------|----|---|
85.3 24 < .001

Fit Measures

CFI TLI RMSEA Lower Upper

0.931 0.896 0.0921 0.0714 0.114

#

contTables

Contingency Tables

Description

The X² test of association (not to be confused with the X² goodness of fit) is used to test whether two categorical variables are independent or associated. If the p-value is low, it suggests the variables are not independent, and that there is a relationship between the two variables.

Usage

```r
contTables(data, rows, cols, counts = NULL, layers = NULL,  
chiSq = TRUE, chiSqCorr = FALSE, zProp = FALSE, likeRat = FALSE,  
fisher = FALSE, contCoef = FALSE, phiCra = FALSE,  
diffProp = FALSE, logOdds = FALSE, odds = FALSE, relRisk = FALSE,  
ci = TRUE, ciWidth = 95, compare = "rows",  
hypothesis = "different", gamma = FALSE, taub = FALSE,  
fh = FALSE, obs = TRUE, exp = FALSE, pcRow = FALSE,  
pcCol = FALSE, pcTot = FALSE, barplot = FALSE, yaxis = "ycounts",  
yaxisPc = "total_pc", xaxis = "xrows", bartype = "dodge", formula)
```

Arguments

- **data**
 the data as a data frame

- **rows**
 the variable to use as the rows in the contingency table (not necessary when providing a formula, see the examples)

- **cols**
 the variable to use as the columns in the contingency table (not necessary when providing a formula, see the examples)

- **counts**
 the variable to use as the counts in the contingency table (not necessary when providing a formula, see the examples)

- **layers**
 the variables to use to split the contingency table (not necessary when providing a formula, see the examples)

- **chiSq**
 TRUE (default) or FALSE, provide X²
chiSqCorr TRUE or FALSE (default), provide X² with continuity correction
zProp TRUE or FALSE (default), provide a z test for differences between two proportions
likeRat TRUE or FALSE (default), provide the likelihood ratio
fisher TRUE or FALSE (default), provide Fisher’s exact test
contCoef TRUE or FALSE (default), provide the contingency coefficient
phiCra TRUE or FALSE (default), provide Phi and Cramer’s V
diffProp TRUE or FALSE (default), provide the differences in proportions (only available for 2x2 tables)
logOdds TRUE or FALSE (default), provide the log odds ratio (only available for 2x2 tables)
odds TRUE or FALSE (default), provide the odds ratio (only available for 2x2 tables)
relRisk TRUE or FALSE (default), provide the relative risk (only available for 2x2 tables)
ci TRUE or FALSE (default), provide confidence intervals for the comparative measures
ciWidth a number between 50 and 99.9 (default: 95), width of the confidence intervals to provide
compare columns or rows (default), compare columns/rows in difference of proportions or relative risks (2x2 tables)
hypothesis 'different' (default), 'oneGreater' or 'twoGreater', the alternative hypothesis; group 1 different to group 2, group 1 greater than group 2, and group 2 greater than group 1 respectively
gamma TRUE or FALSE (default), provide gamma
taub TRUE or FALSE (default), provide Kendall’s tau-b
mh TRUE or FALSE (default), provide Mantel-Haenszel test for trend
obs TRUE or FALSE (default), provide the observed counts
exp TRUE or FALSE (default), provide the expected counts
pcRow TRUE or FALSE (default), provide row percentages
pcCol TRUE or FALSE (default), provide column percentages
pcTot TRUE or FALSE (default), provide total percentages
barplot TRUE or FALSE (default), show barplots
yaxis ycounts (default) or ypc. Use respectively counts or percentages for the bar plot y-axis
yaxisPc total_pc (default), column_pc, or row_pc. Use respectively percentages of total, within columns, or within rows for the bar plot y-axis.
xaxis rows (default), or columns in bar plot X axis
bartype stack or side by side (default), barplot type
formula (optional) the formula to use, see the examples
Value

A results object containing:

- `results$freqs`: a table of proportions
- `results$chiSq`: a table of \(\chi^2 \) test results
- `results$odds`: a table of comparative measures
- `results$nom`: a table of the 'nominal' test results
- `results$gamma`: a table of the gamma test results
- `results$taub`: a table of the Kendall's tau-b test results
- `results$mh`: a table of the Mantel-Haenszel test for trend
- `results$barplot`: an image

Tables can be converted to data frames with `asDF` or `as.data.frame`. For example:

```r
results$freqs$asDF
as.data.frame(results$freqs)
```

Examples

```r
data('HairEyeColor')
dat <- as.data.frame(HairEyeColor)
contTables(formula = Freq ~ Hair:Eye, dat)
```

```
# CONTINGENCY TABLES
# Contingency Tables
# ------------------------------------------
# Hair Brown Blue Hazel Green Total
# ------------------------------------------
# Black 68 20 15 5 108
# Brown 119 84 54 29 286
# Red 26 17 14 14 71
# Blond 7 94 10 16 127
# Total 220 215 93 64 592
# ------------------------------------------
#
# \( \chi^2 \) Tests
# ------------------------------------------
# Value df p
# ------------------------------------------
# \( \chi^2 \) 138 9 < .001
# N 592
# ------------------------------------------
#
# Alternatively, omit the left of the formula (`Freq`) if each row represents a single observation:
```
contTablesPaired

contTables(formula = ~ Hair:Eye, dat)

Paired Samples Contingency Tables

Description

McNemar test

Usage

```r
contTablesPaired(data, rows, cols, counts = NULL, chiSq = TRUE, 
chiSqCorr = FALSE, exact = FALSE, pcRow = FALSE, pcCol = FALSE, 
formula)
```

Arguments

- `data` the data as a data frame
- `rows` the variable to use as the rows in the contingency table (not necessary when providing a formula, see the examples)
- `cols` the variable to use as the columns in the contingency table (not necessary when providing a formula, see the examples)
- `counts` the variable to use as the counts in the contingency table (not necessary when providing a formula, see the examples)
- `chiSq` TRUE (default) or FALSE, provide X²
- `chiSqCorr` TRUE or FALSE (default), provide X² with continuity correction
- `exact` TRUE or FALSE (default), provide an exact log odds ratio (requires exact2x2 to be installed)
- `pcRow` TRUE or FALSE (default), provide row percentages
- `pcCol` TRUE or FALSE (default), provide column percentages
- `formula` (optional) the formula to use, see the examples

Value

A results object containing:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>freqs</code></td>
<td>a proportions table</td>
</tr>
<tr>
<td><code>test</code></td>
<td>a table of test results</td>
</tr>
</tbody>
</table>

Tables can be converted to data frames with asDF or `as.data.frame`. For example:

```r
results$freqs$asDF
as.data.frame(results$freqs)
```
Examples

dat <- data.frame(
 `1st survey` = c('Approve', 'Approve', 'Disapprove', 'Disapprove'),
 `2nd survey` = c('Approve', 'Disapprove', 'Approve', 'Disapprove'),
 `Counts` = c(794, 150, 86, 570),
 check.names=FALSE)

contTablesPaired(formula = Counts ~ `1st survey`:`2nd survey`, data = dat)

PAIRED SAMPLES CONTINGENCY TABLES
Contingency Tables
#--
1st survey Approve Disapprove Total
#--
Approve 794 150 944
Disapprove 86 570 656
Total 880 720 1600
#--
McNemar Test
#--
Value df p
#--
X² 17.4 1 < .001
X² continuity correction 16.8 1 < .001
#--
#
Alternatively, omit the left of the formula (`Counts`) from the
formula if each row represents a single observation:
contTablesPaired(formula = ~ `1st survey`:`2nd survey`, data = dat)

corrMatrix

Description

Correlation matrices are a way to examine linear relationships between two or more continuous variables.

Usage

corrMatrix(data, vars, pearson = TRUE, spearman = FALSE, kendall = FALSE, sig = TRUE, flag = FALSE, n = FALSE,
corrMatrix

 ci = FALSE, ciWidth = 95, plots = FALSE, plotDens = FALSE,
 plotStats = FALSE, hypothesis = "corr")

Arguments

data the data as a data frame
vars a vector of strings naming the variables to correlate in data
pearson TRUE (default) or FALSE, provide Pearson’s R
spearman TRUE or FALSE (default), provide Spearman’s rho
kendall TRUE or FALSE (default), provide Kendall’s tau-b
sig TRUE (default) or FALSE, provide significance levels
flag TRUE or FALSE (default), flag significant correlations
n TRUE or FALSE (default), provide the number of cases
ci TRUE or FALSE (default), provide confidence intervals
 ciWidth a number between 50 and 99.9 (default: 95), the width of confidence intervals
to provide
plots TRUE or FALSE (default), provide a correlation matrix plot
plotDens TRUE or FALSE (default), provide densities in the correlation matrix plot
plotStats TRUE or FALSE (default), provide statistics in the correlation matrix plot
hypothesis one of ’corr’ (default), ’pos’, ’neg’ specifying the alternative hypothesis; correlated, correlated positively, correlated negatively respectively.

Details

For each pair of variables, a Pearson’s r value indicates the strength and direction of the relationship between those two variables. A positive value indicates a positive relationship (higher values of one variable predict higher values of the other variable). A negative Pearson’s r indicates a negative relationship (higher values of one variable predict lower values of the other variable, and vice-versa). A value of zero indicates no relationship (whether a variable is high or low, does not tell us anything about the value of the other variable).

More formally, it is possible to test the null hypothesis that the correlation is zero and calculate a p-value. If the p-value is low, it suggests the correlation co-efficient is not zero, and there is a linear (or more complex) relationship between the two variables.

Value

A results object containing:

results$matrix a correlation matrix table
results(plot a correlation matrix plot

Tables can be converted to data frames with asDF or as.data.frame. For example:
results$matrix$asDF
as.data.frame(results$matrix)
Examples

data('mtcars')

corrMatrix(mtcars, vars = vars(mpg, cyl, disp, hp))

CORRELATION MATRIX
Correlation Matrix

mpg cyl disp hp

mpg Pearson's r -0.852 -0.848 -0.776
p-value < .001 < .001 < .001
cyl Pearson's r 0.902 0.832
p-value < .001 < .001
disp Pearson's r 0.791
p-value < .001
hp Pearson's r
p-value

corrPart Partial Correlation

Description

Partial correlation matrices are a way to examine linear relationships between two or more continuous variables while controlling for other variables.

Usage

corrPart(data, vars, controls, pearson = TRUE, spearman = FALSE,
kendall = FALSE, type = "part", sig = TRUE, flag = FALSE,
n = FALSE, hypothesis = "corr")

Arguments

data the data as a data frame
vars a vector of strings naming the variables to correlate in data
controls a vector of strings naming the control variables in data
pearson TRUE (default) or FALSE, provide Pearson’s R
spearman TRUE or FALSE (default), provide Spearman’s rho
kendall TRUE or FALSE (default), provide Kendall’s tau-b type one of 'part' (default) or 'semi' specifying the type of partial correlation to calculate; partial or semipartial correlation. sig TRUE (default) or FALSE, provide significance levels flag TRUE or FALSE (default), flag significant correlations n TRUE or FALSE (default), provide the number of cases hypothesis one of 'corr' (default), 'pos', 'neg' specifying the alternative hypothesis; correlated, correlated positively, correlated negatively respectively.

Details

For each pair of variables, a Pearson’s r value indicates the strength and direction of the relationship between those two variables. A positive value indicates a positive relationship (higher values of one variable predict higher values of the other variable). A negative Pearson’s r indicates a negative relationship (higher values of one variable predict lower values of the other variable, and vice-versa). A value of zero indicates no relationship (whether a variable is high or low, does not tell us anything about the value of the other variable).

More formally, it is possible to test the null hypothesis that the correlation is zero and calculate a p-value. If the p-value is low, it suggests the correlation co-efficient is not zero, and there is a linear (or more complex) relationship between the two variables.

Value

A results object containing:

```r
results$matrix
```
a (semi)partial correlation matrix table

Tables can be converted to data frames with `asDF` or `as.data.frame`. For example:

```r
results$matrix$asDF
as.data.frame(results$matrix)
```

Examples

```r
data('mtcars')
corrPart(mtcars, vars = vars(mpg, cyl, disp), controls = vars(hp))
```

PARTIAL CORRELATION # # Partial Correlation # # -- # # mpg cyl disp # # -- # # mpg Pearson's r - # # p-value - #
Descriptives are an assortment of summarising statistics, and visualizations which allow exploring the shape and distribution of data. It is good practice to explore your data with descriptives before proceeding to more formal tests.

Usage

descriptives(data, vars, splitBy = NULL, freq = FALSE, desc = "columns", hist = FALSE, dens = FALSE, bar = FALSE, barCounts = FALSE, box = FALSE, violin = FALSE, dot = FALSE, dotType = "jitter", boxMean = FALSE, boxLabelOutliers = TRUE, qq = FALSE, n = TRUE, missing = TRUE, mean = TRUE, median = TRUE, mode = FALSE, sum = FALSE, sd = TRUE, variance = FALSE, range = FALSE, min = TRUE, max = TRUE, se = FALSE, ci = FALSE, ciWidth = 95, iqr = FALSE, skew = FALSE, kurt = FALSE, sw = FALSE, pcEqGr = FALSE, pcNEqGr = 4, pc = FALSE, pcValues = "25,50,75", extreme = FALSE, extremeN = 5, formula)

Arguments

data the data as a data frame
vars a vector of strings naming the variables of interest in data
splitBy a vector of strings naming the variables used to split vars
freq TRUE or FALSE (default), provide frequency tables (nominal, ordinal variables only)
desc 'rows' or 'columns' (default), display the variables across the rows or across the columns (default)
hist TRUE or FALSE (default), provide histograms (continuous variables only)
dens TRUE or FALSE (default), provide density plots (continuous variables only)
bar TRUE or FALSE (default), provide bar plots (nominal, ordinal variables only)
<table>
<thead>
<tr>
<th>Descriptives</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>barCounts</td>
<td>TRUE or FALSE (default), add counts to the bar plots</td>
</tr>
<tr>
<td>box</td>
<td>TRUE or FALSE (default), provide box plots (continuous variables only)</td>
</tr>
<tr>
<td>violin</td>
<td>TRUE or FALSE (default), provide violin plots (continuous variables only)</td>
</tr>
<tr>
<td>dot</td>
<td>TRUE or FALSE (default), provide dot plots (continuous variables only)</td>
</tr>
<tr>
<td>dotType</td>
<td>.</td>
</tr>
<tr>
<td>boxMean</td>
<td>TRUE or FALSE (default), add mean to box plot</td>
</tr>
<tr>
<td>boxLabelOutliers</td>
<td>TRUE (default) or FALSE, add labels with the row number to the outliers in the box plot</td>
</tr>
<tr>
<td>qq</td>
<td>TRUE or FALSE (default), provide Q-Q plots (continuous variables only)</td>
</tr>
<tr>
<td>n</td>
<td>TRUE (default) or FALSE, provide the sample size</td>
</tr>
<tr>
<td>missing</td>
<td>TRUE (default) or FALSE, provide the number of missing values</td>
</tr>
<tr>
<td>mean</td>
<td>TRUE (default) or FALSE, provide the mean</td>
</tr>
<tr>
<td>median</td>
<td>TRUE (default) or FALSE, provide the median</td>
</tr>
<tr>
<td>mode</td>
<td>TRUE or FALSE (default), provide the mode</td>
</tr>
<tr>
<td>sum</td>
<td>TRUE or FALSE (default), provide the sum</td>
</tr>
<tr>
<td>sd</td>
<td>TRUE (default) or FALSE, provide the standard deviation</td>
</tr>
<tr>
<td>variance</td>
<td>TRUE or FALSE (default), provide the variance</td>
</tr>
<tr>
<td>range</td>
<td>TRUE or FALSE (default), provide the range</td>
</tr>
<tr>
<td>min</td>
<td>TRUE or FALSE (default), provide the minimum</td>
</tr>
<tr>
<td>max</td>
<td>TRUE or FALSE (default), provide the maximum</td>
</tr>
<tr>
<td>se</td>
<td>TRUE or FALSE (default), provide the standard error</td>
</tr>
<tr>
<td>ci</td>
<td>TRUE or FALSE (default), provide confidence intervals for the mean</td>
</tr>
<tr>
<td>ciWidth</td>
<td>a number between 50 and 99.9 (default: 95), the width of confidence intervals</td>
</tr>
<tr>
<td>iqr</td>
<td>TRUE or FALSE (default), provide the interquartile range</td>
</tr>
<tr>
<td>skew</td>
<td>TRUE or FALSE (default), provide the skewness</td>
</tr>
<tr>
<td>kurt</td>
<td>TRUE or FALSE (default), provide the kurtosis</td>
</tr>
<tr>
<td>sw</td>
<td>TRUE or FALSE (default), provide Shapiro-Wilk p-value</td>
</tr>
<tr>
<td>pcEqGr</td>
<td>TRUE or FALSE (default), provide quantiles</td>
</tr>
<tr>
<td>pcNEqGr</td>
<td>an integer (default: 4) specifying the number of equal groups</td>
</tr>
<tr>
<td>pc</td>
<td>TRUE or FALSE (default), provide percentiles</td>
</tr>
<tr>
<td>pcValues</td>
<td>a comma-separated list (default: 25,50,75) specifying the percentiles</td>
</tr>
<tr>
<td>extreme</td>
<td>TRUE or FALSE (default), provide N most extreme (highest and lowest) values</td>
</tr>
<tr>
<td>extremeN</td>
<td>an integer (default: 5) specifying the number of extreme values</td>
</tr>
<tr>
<td>formula</td>
<td>(optional) the formula to use, see the examples</td>
</tr>
</tbody>
</table>
Value

A results object containing:

- `results$descriptives` a table of the descriptive statistics
- `results$descriptivesT` a table of the descriptive statistics
- `results$frequencies` an array of frequency tables
- `results$extremeValues` an array of extreme values tables
- `results$plots` an array of descriptive plots

Tables can be converted to data frames with `asDF` or `as.data.frame`. For example:

```r
results$descriptives$asDF
as.data.frame(results$descriptives)
```

Examples

```r
data('mtcars')
dat <- mtcars

# frequency tables can be provided for factors
dat$gear <- as.factor(dat$gear)

descriptives(dat, vars = vars(mpg, cyl, disp, gear), freq = TRUE)
```

```
# DESCRIPITVES
# Descriptives
# -------------------------
# | mpg | cyl | disp | gear |
# -------------------------
# | N 32 32 32 32 |
# | Missing 0 0 0 0 |
# | Mean 20.1 6.19 231 3.69 |
# | Median 19.2 6.00 196 4.00 |
# | Minimum 10.4 4.00 71.1 3 |
# | Maximum 33.9 8.00 472 5 |
# -------------------------
# FREQUENCIES
# Frequencies of gear
# -------------------
# | Levels | Counts |
# -------------------
# | 3 15 |
# | 4 12 |
# | 5 5 |
# -------------------
```
splitting by a variable
descriptives(formula = disp + mpg ~ cyl, dat,
 median=F, min=F, max=F, n=F, missing=F)

providing histograms
descriptives(formula = mpg ~ cyl, dat, hist=T,
 median=F, min=F, max=F, n=F, missing=F)

splitting by multiple variables
descriptives(formula = mpg ~ cyl:gear, dat,
 median=F, min=F, max=F, missing=F)

Exploratory Factor Analysis

Description
Exploratory Factor Analysis

Usage
efa(data, vars, nFactorMethod = "parallel", nFactors = 1,
 minEigen = 0, extraction = "minres", rotation = "oblimin",
 hideLoadings = 0.3, sortLoadings = FALSE, screePlot = FALSE,
 eigen = FALSE, factorCor = FALSE, factorSummary = FALSE,
 modelFit = FALSE, kmo = FALSE, bartlett = FALSE,
 factorScoreMethod = "Thurstone")

Arguments
data the data as a data frame
vars a vector of strings naming the variables of interest in data
nFactorMethod 'parallel' (default), 'eigen' or 'fixed', the way to determine the number
 of factors
nFactors an integer (default: 1), the number of factors in the model
minEigen a number (default: 0), the minimal eigenvalue for a factor to be included in the
 model
extraction 'minres' (default), 'ml', or 'pa' use respectively 'minimum residual', 'maximum
 likelihood', or 'principal axis' as the factor extraction method
rotation 'none', 'varimax', 'quartimax', 'promax', 'oblimin' (default), or 'simplimax',
 the rotation to use in estimation
hideLoadings a number (default: 0.3), hide factor loadings below this value
sortLoadings TRUE or FALSE (default), sort the factor loadings by size
screePlot TRUE or FALSE (default), show scree plot
eigen TRUE or FALSE (default), show eigenvalue table
factorCor TRUE or FALSE (default), show inter-factor correlations
factorSummary TRUE or FALSE (default), show factor summary
modelFit TRUE or FALSE (default), show model fit measures and test
kmo TRUE or FALSE (default), show Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy (MSA) results
bartlett TRUE or FALSE (default), show Bartlett’s test of sphericity results
factorScoreMethod 'Thurstone' (default), 'Bartlett', 'ten Berge', 'Anderson', or 'Harman' use respectively 'Thurstone', 'Bartlett', 'ten Berge', 'Anderson & Rubin', or 'Harman' method for estimating factor scores

Value
A results object containing:

results$text a preformatted

Examples

data('iris')

efa(iris, vars = vars(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width))

EXPLORATORY FACTOR ANALYSIS
#
Factor Loadings

1 2 Uniqueness

Sepal.Length 0.993 0.10181
Sepal.Width 0.725 0.42199
Petal.Length 0.933 0.00483
Petal.Width 0.897 0.07088

Note. 'oblimin' rotation was used
#

Description

iris
Linear Regression

Description

Linear regression is used to explore the relationship between a continuous dependent variable, and one or more continuous and/or categorical explanatory variables. Other statistical methods, such as ANOVA and ANCOVA, are in reality just forms of linear regression.

Usage

linReg(data, dep, covs = NULL, factors = NULL, weights = NULL, blocks = list(list()), refLevels = NULL, intercept = "refLevel", r = TRUE, r2 = TRUE, r2Adj = FALSE, aic = FALSE, bic = FALSE, rmse = FALSE, modelTest = FALSE, anova = FALSE, ci = FALSE, ciWidth = 95, stdEst = FALSE, ciStdEst = FALSE, ciWidthStdEst = 95, norm = FALSE, qqPlot = FALSE, resPlots = FALSE, durbin = FALSE, collin = FALSE, cooks = FALSE, emMeans = list(list()), ciEmm = TRUE, ciWidthEmm = 95, emmPlots = TRUE, emmTables = FALSE, emmWeights = TRUE)

Arguments

data the data as a data frame

dep the dependent variable from data, variable must be numeric
covs the covariates from data
factors the fixed factors from data
weights the (optional) weights from data to be used in the fitting process
blocks a list containing vectors of strings that name the predictors that are added to the model. The elements are added to the model according to their order in the list
refLevels a list of lists specifying reference levels of the dependent variable and all the factors
intercept 'refLevel' (default) or 'grandMean', coding of the intercept. Either creates contrast so that the intercept represents the reference level or the grand mean
r TRUE (default) or FALSE, provide the statistical measure R for the models
r2 TRUE (default) or FALSE, provide the statistical measure R-squared for the models
r2Adj TRUE or FALSE (default), provide the statistical measure adjusted R-squared for the models
aic TRUE or FALSE (default), provide Akaike’s Information Criterion (AIC) for the models
bic TRUE or FALSE (default), provide Bayesian Information Criterion (BIC) for the models
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rmse</td>
<td>TRUE or FALSE (default), provide RMSE for the models</td>
</tr>
<tr>
<td>modelTest</td>
<td>TRUE (default) or FALSE, provide the model comparison between the models and the NULL model</td>
</tr>
<tr>
<td>anova</td>
<td>TRUE or FALSE (default), provide the omnibus ANOVA test for the predictors</td>
</tr>
<tr>
<td>ci</td>
<td>TRUE or FALSE (default), provide a confidence interval for the model coefficients</td>
</tr>
<tr>
<td>ciWidth</td>
<td>a number between 50 and 99.9 (default: 95) specifying the confidence interval width</td>
</tr>
<tr>
<td>stdEst</td>
<td>TRUE or FALSE (default), provide a standardized estimate for the model coefficients</td>
</tr>
<tr>
<td>ciStdEst</td>
<td>TRUE or FALSE (default), provide a confidence interval for the model coefficient standardized estimates</td>
</tr>
<tr>
<td>ciWidthStdEst</td>
<td>a number between 50 and 99.9 (default: 95) specifying the confidence interval width</td>
</tr>
<tr>
<td>norm</td>
<td>TRUE or FALSE (default), perform a Shapiro-Wilk test on the residuals</td>
</tr>
<tr>
<td>qqPlot</td>
<td>TRUE or FALSE (default), provide a Q-Q plot of residuals</td>
</tr>
<tr>
<td>resPlots</td>
<td>TRUE or FALSE (default), provide residual plots where the dependent variable and each covariate is plotted against the standardized residuals.</td>
</tr>
<tr>
<td>durbin</td>
<td>TRUE or FALSE (default), provide results of the Durbin- Watson test for autocorrelation</td>
</tr>
<tr>
<td>collin</td>
<td>TRUE or FALSE (default), provide VIF and tolerance collinearity statistics</td>
</tr>
<tr>
<td>cooks</td>
<td>TRUE or FALSE (default), provide summary statistics for the Cook’s distance</td>
</tr>
<tr>
<td>emMeans</td>
<td>a formula containing the terms to estimate marginal means for, supports up to three variables per term</td>
</tr>
<tr>
<td>ciEmm</td>
<td>TRUE (default) or FALSE, provide a confidence interval for the estimated marginal means</td>
</tr>
<tr>
<td>ciWidthEmm</td>
<td>a number between 50 and 99.9 (default: 95) specifying the confidence interval width for the estimated marginal means</td>
</tr>
<tr>
<td>emmPlots</td>
<td>TRUE (default) or FALSE, provide estimated marginal means plots</td>
</tr>
<tr>
<td>emmTables</td>
<td>TRUE or FALSE (default), provide estimated marginal means tables</td>
</tr>
<tr>
<td>emmWeights</td>
<td>TRUE (default) or FALSE, weigh each cell equally or weigh them according to the cell frequency</td>
</tr>
</tbody>
</table>

Value

A results object containing:

- `results$modelFit` a table
- `results$modelComp` a table
- `results$models` an array of model specific results
- `results$predictOV` an output
- `results$residsOV` an output
- `results$cooksOV` an output
Tables can be converted to data frames with `asDF` or `as.data.frame`. For example:

```
results$modelFit$asDF
as.data.frame(results$modelFit)
```

Examples

```r
data('Prestige', package='carData')
linReg(data = Prestige, dep = income,
covs = vars(education, prestige, women),
blocks = list(list('education', 'prestige', 'women')))
```

LINEAR REGRESSION
Model Fit Measures

Model R R²

1 0.802 0.643

MODEL SPECIFIC RESULTS
MODEL 1
Model Coefficients
--
Predictor Estimate SE t p
--
Intercept -253.8 1086.16 -0.234 0.816
women -50.9 8.56 -5.948 < .001
prestige 141.4 29.91 4.729 < .001
education 177.2 187.63 0.944 0.347
--

logLinear

Log-Linear Regression

Description

Log-Linear Regression
Usage

```r
logLinear(data, factors = NULL, counts = NULL, blocks = list(list()),
  refLevels = NULL, modelTest = FALSE, dev = TRUE, aic = TRUE,
  bic = FALSE, pseudoR2 = list("r2mf"), omni = FALSE, ci = FALSE,
  ciWidth = 95, RR = FALSE, ciRR = FALSE, ciWidthRR = 95,
  emMeans = list(list()), ciEmm = TRUE, ciWidthEmm = 95,
  emmPlots = TRUE, emmTables = FALSE, emmWeights = TRUE)
```

Arguments

- **data**: the data as a data frame
- **factors**: a vector of strings naming the factors from `data`
- **counts**: a string naming a variable in `data` containing counts, or `NULL` if each row represents a single observation
- **blocks**: a list containing vectors of strings that name the predictors that are added to the model. The elements are added to the model according to their order in the list
- **refLevels**: a list of lists specifying reference levels of the dependent variable and all the factors
- **modelTest**: `TRUE` or `FALSE` (default), provide the model comparison between the models and the NULL model
- **dev**: `TRUE` (default) or `FALSE`, provide the deviance (or -2LogLikelihood) for the models
- **aic**: `TRUE` (default) or `FALSE`, provide Aikaike’s Information Criterion (AIC) for the models
- **bic**: `TRUE` or `FALSE` (default), provide Bayesian Information Criterion (BIC) for the models
- **pseudoR2**: one or more of `"r2mf"`, `"r2cs"`, or `"r2n"`; use McFadden’s, Cox & Snell, and Nagelkerke pseudo-R^2, respectively
- **omni**: `TRUE` or `FALSE` (default), provide the omnibus likelihood ratio tests for the predictors
- **ci**: `TRUE` or `FALSE` (default), provide a confidence interval for the model coefficient estimates
- **ciWidth**: a number between 50 and 99.9 (default: 95) specifying the confidence interval width
- **RR**: `TRUE` or `FALSE` (default), provide the exponential of the log-rate ratio estimate, or the rate ratio estimate
- **ciRR**: `TRUE` or `FALSE` (default), provide a confidence interval for the model coefficient rate ratio estimates
- **ciWidthRR**: a number between 50 and 99.9 (default: 95) specifying the confidence interval width
- **emMeans**: a list of lists specifying the variables for which the estimated marginal means need to be calculate. Supports up to three variables per term.
ciEmm TRUE (default) or FALSE, provide a confidence interval for the estimated marginal means

.ciWidthEmm a number between 50 and 99.9 (default: 95) specifying the confidence interval width for the estimated marginal means

eemmPlots TRUE (default) or FALSE, provide estimated marginal means plots

eemmTables TRUE or FALSE (default), provide estimated marginal means tables

eemmWeights TRUE (default) or FALSE, weigh each cell equally or weigh them according to the cell frequency

Value

A results object containing:

- `results$modelFit` a table
- `results$modelComp` a table
- `results$models` an array of model specific results

Tables can be converted to data frames with `asDF` or `as.data.frame`. For example:

```r
results$modelFit$asDF
as.data.frame(results$modelFit)
```

Examples

data('mtcars')

```r
tab <- table('gear'=mtcars$gear, 'cyl'=mtcars$cyl)
dat <- as.data.frame(tab)

logLinear(data = dat, factors = vars(gear, cyl), counts = Freq, blocks = list(list("gear", "cyl", c("gear", "cyl"))), refLevels = list(
  list(var="gear", ref="3"),
  list(var="cyl", ref="4")))
```

LOG-LINEAR REGRESSION
Model Fit Measures

Model Deviance AIC R²-McF

1 4.12e-10 41.4 1.000

MODEL SPECIFIC RESULTS
MODEL 1
Model Coefficients
#--
Predictor | Estimate | SE | Z | p
#--
Intercept | -4.71e-16 | 1.00| -4.71e-16 | 1.000
gear:
4 – 3 | 2.079 | 1.06| 1.961 | 0.050
5 – 3 | 0.693 | 1.22| 0.566 | 0.571
cyl:
6 – 4 | 0.693 | 1.22| 0.566 | 0.571
8 – 4 | 2.485 | 1.04| 2.387 | 0.017
gear:cyl:
(4 – 3):(6 – 4) | -1.386 | 1.37| -1.012 | 0.311
(5 – 3):(6 – 4) | -1.386 | 1.73| -0.800 | 0.423
(4 – 3):(8 – 4) | -26.867 | 42247.17| -6.36e-4 | 0.999
(5 – 3):(8 – 4) | -2.485 | 1.44| -1.722 | 0.085
#--

logRegBin

Binomial Logistic Regression

Description

Binomial Logistic Regression

Usage

logRegBin(data, dep, covs = NULL, factors = NULL, blocks = list(list()), refLevels = NULL, modelTest = FALSE, dev = TRUE, aic = TRUE, bic = FALSE, pseudoR2 = list("r2mf"), omni = FALSE, ci = FALSE, ciWidth = 95, OR = FALSE, ciOR = FALSE, ciWidthOR = 95, emMeans = list(list())), ciEmm = TRUE, ciWidthEmm = 95, emmPlots = TRUE, emmTables = FALSE, emmWeights = TRUE, class = FALSE, acc = FALSE, spec = FALSE, sens = FALSE, auc = FALSE, rocPlot = FALSE, cutOff = 0.5, cutOffPlot = FALSE, collin = FALSE, boxTidwell = FALSE, cooks = FALSE)

Arguments

data the data as a data frame

dep a string naming the dependent variable from data, variable must be a factor

covs a vector of strings naming the covariates from data

factors a vector of strings naming the fixed factors from data
blocks: a list containing vectors of strings that name the predictors that are added to the model. The elements are added to the model according to their order in the list.

refLevels: a list of lists specifying reference levels of the dependent variable and all the factors.

modelTest: TRUE or FALSE (default), provide the model comparison between the models and the NULL model.

devel: TRUE (default) or FALSE, provide the deviance (or -2LogLikelihood) for the models.

aic: TRUE (default) or FALSE, provide Aikaike’s Information Criterion (AIC) for the models.

bic: TRUE or FALSE (default), provide Bayesian Information Criterion (BIC) for the models.

e pseudoR2: one or more of 'r2mf', 'r2cs', or 'r2n'; use McFadden’s, Cox & Snell, and Nagelkerke pseudo-R², respectively.

omni: TRUE or FALSE (default), provide the omnibus likelihood ratio tests for the predictors.

ci: TRUE or FALSE (default), provide a confidence interval for the model coefficient estimates.

ciWidth: a number between 50 and 99.9 (default: 95) specifying the confidence interval width.

OR: TRUE or FALSE (default), provide the exponential of the log-odds ratio estimate, or the odds ratio estimate.

ciOR: TRUE or FALSE (default), provide a confidence interval for the model coefficient odds ratio estimates.

ciWidthOR: a number between 50 and 99.9 (default: 95) specifying the confidence interval width.

emMeans: a list of lists specifying the variables for which the estimated marginal means need to be calculate. Supports up to three variables per term.

ciEmm: TRUE (default) or FALSE, provide a confidence interval for the estimated marginal means.

ciWidthEmm: a number between 50 and 99.9 (default: 95) specifying the confidence interval width for the estimated marginal means.

emmPlots: TRUE (default) or FALSE, provide estimated marginal means plots.

emmTables: TRUE or FALSE (default), provide estimated marginal means tables.

emmWeights: TRUE (default) or FALSE, weigh each cell equally or weigh them according to the cell frequency.

class: TRUE or FALSE (default), provide a predicted classification table (or confusion matrix).

acc: TRUE or FALSE (default), provide the predicted accuracy of outcomes grouped by the cut-off value.

spec: TRUE or FALSE (default), provide the predicted specificity of outcomes grouped by the cut-off value.
sens TRUE or FALSE (default), provide the predicted sensitivity of outcomes grouped by the cut-off value

auc TRUE or FALSE (default), provide the rea under the ROC curve (AUC)

rocPlot TRUE or FALSE (default), provide a ROC curve plot

cutOff TRUE or FALSE (default), set a cut-off used for the predictions

cutOffPlot TRUE or FALSE (default), provide a cut-off plot

collin TRUE or FALSE (default), provide VIF and tolerance collinearity statistics

boxTidwell TRUE or FALSE (default), provide Box-Tidwell test for linearity of the logit

cooks TRUE or FALSE (default), provide summary statistics for the Cook’s distance

Value

A results object containing:

```r
results$modelFit  a table
results$modelComp  a table
results$models  an array of model specific results
results$predictOV  an output
results$residsOV  an output
results$cooksOV  an output
```

Tables can be converted to data frames with `asDF` or `as.data.frame`. For example:

```r
results$modelFit$asDF
as.data.frame(results$modelFit)
```

Examples

```r
data('birthwt', package='MASS')
dat <- data.frame(
  low = factor(birthwt$low),
  age = birthwt$age,
  bwt = birthwt$bwt)

logRegBin(data = dat, dep = low,
  covs = vars(age, bwt),
  blocks = list(list("age", "bwt")),
  refLevels = list(list(var="low", ref="0")))
```

BINOMIAL LOGISTIC REGRESSION
Model Fit Measures

Model Deviance AIC R²-McF

1 4.97e-7 6.00 1.000

MODEL SPECIFIC RESULTS
MODEL 1
Model Coefficients
--
Predictor Estimate SE Z p
--
Intercept 2974.73225 218237.2 0.0136 0.989
age -0.00653 482.7 -1.35e-5 1.000
bwt -1.18532 87.0 -0.0136 0.989
Note. Estimates represent the log odds of "low = 1"
vs. "low = 0"
#

Description

Multinomial Logistic Regression

Usage

```r
logRegMulti(data, dep, covs = NULL, factors = NULL, blocks = list(list())), refLevels = NULL, modelTest = FALSE, dev = TRUE, aic = TRUE, bic = FALSE, pseudoR2 = list("r2mf"), omni = FALSE, ci = FALSE, ciWidth = 95, OR = FALSE, ciOR = FALSE, ciWidthOR = 95, emMeans = list(list())), ciEmm = TRUE, ciWidthEmm = 95, emmPlots = TRUE, emmTables = FALSE, emmWeights = TRUE)
```

Arguments

- **data**: the data as a data frame
- **dep**: a string naming the dependent variable from data, variable must be a factor
- **covs**: a vector of strings naming the covariates from data
- **factors**: a vector of strings naming the fixed factors from data
- **blocks**: a list containing vectors of strings that name the predictors that are added to the model. The elements are added to the model according to their order in the list
refLevels
modelTest
dev
aic
bic
pseudoR2
omni
ci
ciWidth
OR
OR
emMeans
ciEmm
ciWidthEmm
eemmPlots
eemmTables
eemmWeights

Value

A results object containing:

results$modelFit
results$modelComp
results$models

a table
a table
an array of model specific results
Tables can be converted to data frames with `asDF` or `as.data.frame`. For example:

```r
results$modelFit$asDF
as.data.frame(results$modelFit)
```

Examples

```r
data('birthwt', package='MASS')

dat <- data.frame(
  race = factor(birthwt$race),
  age = birthwt$age,
  low = factor(birthwt$low))

logRegMulti(data = dat, dep = race,
  covs = age, factors = low,
  blocks = list(list("age", "low")),
  reflevels = list(
    list(var="race", ref="1"),
    list(var="low", ref="0")))
```

```
# # MULTINOMIAL LOGISTIC REGRESSION
#
# Model Fit Measures
# --------------------------------------
# Model Deviance AIC R²-McF
# --------------------------------------
# 1 360 372 0.0333
# --------------------------------------
#
# # MODEL SPECIFIC RESULTS
#
# MODEL 1
#
# Model Coefficients
# --------------------------------------
# race Predictor Estimate SE Z p
# --------------------------------------
# 2 - 1 Intercept 0.8155 1.1186 0.729 0.466
# age -0.1038 0.0487 -2.131 0.033
# low:
# 1 - 0 0.7527 0.4700 1.601 0.109
# 3 - 1 Intercept 1.0123 0.7798 1.298 0.194
# age -0.0663 0.0324 -2.047 0.041
# low:
# 1 - 0 0.5677 0.3522 1.612 0.107
# --------------------------------------
# ```
**logRegOrd**

**Ordinal Logistic Regression**

**Description**

Ordinal Logistic Regression

**Usage**

```r
logRegOrd(data, dep, covs = NULL, factors = NULL,
blocks = list(list())), refLevels = NULL, modelTest = FALSE,
dev = TRUE, aic = TRUE, bic = FALSE, pseudoR2 = list("r2mf"),
omni = FALSE, thres = FALSE, ci = FALSE, ciWidth = 95,
OR = FALSE, ciOR = FALSE, ciWidthOR = 95)
```

**Arguments**

data: the data as a data frame
dep: a string naming the dependent variable from data, variable must be a factor
covs: a vector of strings naming the covariates from data
factors: a vector of strings naming the fixed factors from data
blocks: a list containing vectors of strings that name the predictors that are added to the model. The elements are added to the model according to their order in the list
refLevels: a list of lists specifying reference levels of the dependent variable and all the factors
modelTest: TRUE or FALSE (default), provide the model comparison between the models and the NULL model
dev: TRUE (default) or FALSE, provide the deviance (or -2LogLikelihood) for the models
aic: TRUE (default) or FALSE, provide Aikaike’s Information Criterion (AIC) for the models
bic: TRUE or FALSE (default), provide Bayesian Information Criterion (BIC) for the models
pseudoR2: one or more of 'r2mf', 'r2cs', or 'r2n'; use McFadden’s, Cox & Snell, and Nagelkerke pseudo-R², respectively
omni: TRUE or FALSE (default), provide the omnibus likelihood ratio tests for the predictors
thres: TRUE or FALSE (default), provide the thresholds that are used as cut-off scores for the levels of the dependent variable
Ci: TRUE or FALSE (default), provide a confidence interval for the model coefficient estimates
CiWidth: a number between 50 and 99.9 (default: 95) specifying the confidence interval width
OR  TRUE or FALSE (default), provide the exponential of the log-odds ratio estimate, or the odds ratio estimate

ciOR  TRUE or FALSE (default), provide a confidence interval for the model coefficient odds ratio estimates

ciWidthOR  a number between 50 and 99.9 (default: 95) specifying the confidence interval width

Value

A results object containing:

results$modelFit  a table
results$modelComp  a table
results$models  an array of model specific results

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$modelFit$asDF
as.data.frame(results$modelFit)

Examples

set.seed(1337)

y <- factor(sample(1:3, 100, replace = TRUE))
x1 <- rnorm(100)
x2 <- rnorm(100)

df <- data.frame(y=y, x1=x1, x2=x2)

logRegOrd(data = df, dep = y, 
covs = vars(x1, x2), 
blocks = list(list("x1", "x2")))

# # ORDINAL LOGISTIC REGRESSION
# # Model Fit Measures
# ----------------─
# # Model        Deviance AIC    R²-McF
# ----------------─
# 1          218    226  5.68e-4
# ----------------─
# # # MODEL SPECIFIC RESULTS
# # MODEL 1
# # Model Coefficients
Multivariate Analysis of (Co)Variance (MANCOVA) is used to explore the relationship between multiple dependent variables, and one or more categorical and/or continuous explanatory variables.

Usage

mancova(data, deps, factors = NULL, covs = NULL, multivar = list("pillai", "wilks", "hotel", "roy"), boxM = FALSE, shapiro = FALSE, qqPlot = FALSE)

Arguments

data: the data as a data frame
deps: a string naming the dependent variable from data, variable must be numeric
factors: a vector of strings naming the factors from data
covs: a vector of strings naming the covariates from data
multivar: one or more of 'pillai', 'wilks', 'hotel', or 'roy'; use Pillai's Trace, Wilks' Lambda, Hotelling's Trace, and Roy's Largest Root multivariate statistics, respectively
boxM: TRUE or FALSE (default), provide Box's M test
shapiro: TRUE or FALSE (default), provide Shapiro-Wilk test
qqPlot: TRUE or FALSE (default), provide a Q-Q plot of multivariate normality

Value

A results object containing:

- results$multivar: a table
- results$univar: a table
- results$assump$boxM: a table
- results$assump$shapiro: a table
- results$assump$qqPlot: an image
Tables can be converted to data frames with asDF or \texttt{as.data.frame}. For example:
\begin{verbatim}
results$multivar$asDF
as.data.frame(results$multivar)
\end{verbatim}

\textbf{Examples}

\begin{verbatim}
data('iris')
mancova(data = iris,
    deps = vars(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width),
    factors = Species)
\end{verbatim}

\begin{verbatim}
# # MANCOVA
# # Multivariate Tests
# ------------------------------
# value  F  df1  df2  p
# ------------------------------
# Species Pillai's Trace  1.19 53.5  8 290 < .001
# Wilks' Lambda 0.0234 199  8 288 < .001
# Hotelling's Trace 32.5 581  8 286 < .001
# Roy's Largest Root 32.2 1167  4 145 < .001
# ------------------------------
# # Univariate Tests
# -----------------------------------------------
# Dependent Variable Sum of Squares  df  Mean Square  F  p
# -----------------------------------------------
# Species Sepal.Length  63.21  2 31.6061 119.3 < .001
# Sepal.Width 11.34  2  5.6725  49.2 < .001
# Petal.Length 437.10  2 218.5514 1180.2 < .001
# Petal.Width  80.41  2 40.2067  960.0 < .001
# Residuals Sepal.Length  38.96 147  0.2650
# Sepal.Width 16.96 147  0.1154
# Petal.Length 27.22 147  0.1852
# Petal.Width  6.16 147  0.0419
# -----------------------------------------------
\end{verbatim}

\textit{Principal Component Analysis}

\textbf{Description}

Principal Component Analysis
Usage

pca(data, vars, nFactorMethod = "parallel", nFactors = 1,
    minEigen = 1, rotation = "varimax", hideLoadings = 0.3,
    sortLoadings = FALSE, screePlot = FALSE, eigen = FALSE,
    factorCor = FALSE, factorSummary = FALSE, kmo = FALSE,
    bartlett = FALSE)

Arguments

data: the data as a data frame
vars: a vector of strings naming the variables of interest in data
nFactorMethod: 'parallel' (default), 'eigen' or 'fixed', the way to determine the number of factors
nFactors: an integer (default: 1), the number of components in the model
minEigen: a number (default: 1), the minimal eigenvalue for a component to be included in the model
rotation: 'none', 'varimax' (default), 'quartimax', 'promax', 'oblimin', or 'simplimax', the rotation to use in estimation
hideLoadings: a number (default: 0.3), hide loadings below this value
sortLoadings: TRUE or FALSE (default), sort the factor loadings by size
screePlot: TRUE or FALSE (default), show scree plot
eigen: TRUE or FALSE (default), show eigenvalue table
factorCor: TRUE or FALSE (default), show inter-factor correlations
factorSummary: TRUE or FALSE (default), show factor summary
kmo: TRUE or FALSE (default), show Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy (MSA) results
bartlett: TRUE or FALSE (default), show Bartlett’s test of sphericity results

Value

A results object containing:

results$loadings: a table
results$factorStats$factorSummary: a table
results$factorStats$factorCor: a table
results$modelFit$fit: a table
results$assump$bartlett: a table
results$assump$kmo: a table
results$eigen$initEigen: a table
results$eigen$screePlot: an image
results$factorScoresOV: an output

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$loadings$asDF
as.data.frame(results$loadings)
Examples

data('iris')

pca(iris, vars = vars(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width))

# # PRINCIPAL COMPONENT ANALYSIS
# # Component Loadings
# # ----------------------------------------
# # 1 Uniqueness
# # ----------------------------------------
# Sepal.Length 0.890 0.2076
# Sepal.Width -0.460 0.7883
# Petal.Length 0.992 0.0168
# Petal.Width 0.965 0.0688
# ----------------------------------------
# Note. 'varimax' rotation was used
#

propTest2

Description

The Binomial test is used to test the Null hypothesis that the proportion of observations match some expected value. If the p-value is low, this suggests that the Null hypothesis is false, and that the true proportion must be some other value.

Usage

propTest2(data, vars, areCounts = FALSE, testValue = 0.5, hypothesis = "notequal", ci = FALSE, ciWidth = 95, bf = FALSE, priorA = 1, priorB = 1, ciBayes = FALSE, ciBayesWidth = 95, postPlots = FALSE)

Arguments

data the data as a data frame
vars a vector of strings naming the variables of interest in data
areCounts TRUE or FALSE (default), the variables are counts
testValue a number (default: 0.5), the value for the null hypothesis
hypothesis "notequal" (default), 'greater' or 'less', the alternative hypothesis
ci TRUE or FALSE (default), provide confidence intervals
ciWidth a number between 50 and 99.9 (default: 95), the confidence interval width
propTestN

bf TRUE or FALSE (default), provide Bayes factors
priorA a number (default: 1), the beta prior 'a' parameter
priorB a number (default: 1), the beta prior 'b' parameter
ciBayes TRUE or FALSE (default), provide Bayesian credible intervals
ciBayesWidth a number between 50 and 99.9 (default: 95), the credible interval width
postPlots TRUE or FALSE (default), provide posterior plots

Value

A results object containing:

results$table a table of the proportions and test results
results$postPlots an array of the posterior plots

Tables can be converted to data frames with asDF or as.data.frame. For example:
results$table$asDF
as.data.frame(results$table)

Examples

dat <- data.frame(x=c(8, 15))

propTest2(dat, vars = x, areCounts = TRUE)

# # PROPORTION TEST (2 OUTCOMES)
#
# # Binomial Test
# # -----------------------------------------------
# # Level Count Total Proportion p
# # -----------------------------------------------
# # x 1 8 23 0.348 0.210
# # 2 15 23 0.652 0.210
# # -----------------------------------------------
# # Note. Ha is proportion != 0.5
#

propTestN Proportion Test (N Outcomes)

Description

The $X^2$ Goodness of fit test (not to be confused with the $X^2$ test of independence), tests the Null hypothesis that the proportions of observations match some expected proportions. If the $p$-value is low, this suggests that the Null hypothesis is false, and that the true proportions are different to those tested.
propTestN

Usage

propTestN(data, var, counts = NULL, expected = FALSE, ratio = NULL, formula)

Arguments

data: the data as a data frame
var: the variable of interest in data (not necessary when using a formula, see the examples)
counts: the counts in data
expected: TRUE or FALSE (default), whether expected counts should be displayed
ratio: a vector of numbers: the expected proportions
formula: (optional) the formula to use, see the examples

Value

A results object containing:

results$props: a table of the proportions
results$tests: a table of the test results

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$props$asDF
as.data.frame(results$props)

Examples

data('HairEyeColor')
dat <- as.data.frame(HairEyeColor)

propTestN(formula = Freq ~ Eye, data = dat, ratio = c(1,1,1,1))

# PROPORTION TEST (N OUTCOMES)
#
# Proportions
# --------------------------------
# Level Count Proportion
# --------------------------------
# Brown 220 0.372
# Blue 215 0.363
# Hazel 93 0.157
# Green 64 0.108
# --------------------------------
#
# X² Goodness of Fit
reliability

Reliability Analysis

Description

Reliability Analysis

Usage

reliability(data, vars, alphaScale = TRUE, omegaScale = FALSE,
meanScale = FALSE, sdScale = FALSE, corPlot = FALSE,
alphaItems = FALSE, omegaItems = FALSE, meanItems = FALSE,
sdItems = FALSE, itemRestCor = FALSE, revItems = NULL)

Arguments

data the data as a data frame
vars a vector of strings naming the variables of interest in data
alphaScale TRUE (default) or FALSE, provide Cronbach’s alpha
omegaScale TRUE or FALSE (default), provide McDonald’s omega
meanScale TRUE or FALSE (default), provide the mean
sdScale TRUE or FALSE (default), provide the standard deviation
corPlot TRUE or FALSE (default), provide a correlation plot
alphaItems TRUE or FALSE (default), provide what the Cronbach’s alpha would be if the item was dropped
omegaItems TRUE or FALSE (default), provide what the McDonald’s omega would be if the item was dropped
meanItems TRUE or FALSE (default), provide item means
dsItems TRUE or FALSE (default), provide item standard deviations
itemRestCor TRUE or FALSE (default), provide item-rest correlations
revItems a vector containing strings naming the variables that are reverse scaled
ToothGrowth

Value

A results object containing:

- `results$scale`: a table
- `results$items`: a table
- `results$corPlot`: an image
- `results$meanScoreOV`: an output
- `results$sumScoreOV`: an output

Tables can be converted to data frames with `asDF` or `as.data.frame`. For example:

```
results$scale$asDF
as.data.frame(results$scale)
```

Examples

```r
data('iris')

reliability(iris, vars = c('Sepal.Length', 'Sepal.Width', 'Petal.Length', 'Petal.Width'), omegaScale = TRUE)
```

# RELIABILITY ANALYSIS
# Scale Reliability Statistics
# -----------------------------------------
# Cronbach's alpha  McDonald's omega
# -----------------------------------------
# scale  0.708  0.848
# -----------------------------------------
```

ToothGrowth

Tooth Growth

Description

Tooth Growth
ttestIS

Independent Samples T-Test

Description

The Student’s Independent samples t-test (sometimes called a two-samples t-test) is used to test the null hypothesis that two groups have the same mean. A low p-value suggests that the null hypothesis is not true, and therefore the group means are different.

Usage

```
ttestIS(data, vars, group, students = TRUE, bf = FALSE, 
    bfPrior = 0.707, welchs = FALSE, mann = FALSE, 
    hypothesis = "different", norm = FALSE, qq = FALSE, eqv = FALSE, 
    meanDiff = FALSE, ci = FALSE, ciWidth = 95, effectSize = FALSE, 
    ciES = FALSE, ciWidthES = 95, desc = FALSE, plots = FALSE, 
    miss = "perAnalysis", formula)
```

Arguments

- `data` the data as a data frame
- `vars` the dependent variables (not necessary when using a formula, see the examples)
- `group` the grouping variable with two levels (not necessary when using a formula, see the examples)
- `students` TRUE (default) or FALSE, perform Student’s t-tests
- `bf` TRUE or FALSE (default), provide Bayes factors
- `bfPrior` a number between 0.01 and 2 (default 0.707), the prior width to use in calculating Bayes factors
- `welchs` TRUE or FALSE (default), perform Welch’s t-tests
- `mann` TRUE or FALSE (default), perform Mann-Whitney U tests
- `hypothesis` 'different' (default), 'oneGreater' or 'twoGreater', the alternative hypothesis; group 1 different to group 2, group 1 greater than group 2, and group 2 greater than group 1 respectively
- `norm` TRUE or FALSE (default), perform Shapiro-Wilk tests of normality
- `qq` TRUE or FALSE (default), provide Q-Q plots of residuals
- `eqv` TRUE or FALSE (default), perform Levene’s tests for homogeneity of variances
- `meanDiff` TRUE or FALSE (default), provide means and standard errors
- `ci` TRUE or FALSE (default), provide confidence intervals
- `ciWidth` a number between 50 and 99.9 (default: 95), the width of confidence intervals
- `effectSize` TRUE or FALSE (default), provide effect sizes
- `ciES` TRUE or FALSE (default), provide confidence intervals for the effect-sizes
ciWidthES a number between 50 and 99.9 (default: 95), the width of confidence intervals for the effect sizes

desc TRUE or FALSE (default), provide descriptive statistics

plots TRUE or FALSE (default), provide descriptive plots

miss 'perAnalysis' or 'listwise', how to handle missing values; 'perAnalysis' excludes missing values for individual dependent variables, 'listwise' excludes a row from all analyses if one of its entries is missing.

formula (optional) the formula to use, see the examples

Details

The Student's independent t-test assumes that the data from each group are from a normal distribution, and that the variances of these groups are equal. If unwilling to assume the groups have equal variances, the Welch's t-test can be used in it's place. If one is additionally unwilling to assume the data from each group are from a normal distribution, the non-parametric Mann-Whitney U test can be used instead (However, note that the Mann-Whitney U test has a slightly different null hypothesis; that the distributions of each group is equal).

Value

A results object containing:

```
results$ttest            a table containing the t-test results
results$assum$norm      a table containing the normality tests
results$assum$eqv       a table containing the homogeneity of variances tests
results$desc            a table containing the group descriptives
results$plots           an array of groups of plots
```

Tables can be converted to data frames with asDF or as.data.frame. For example:

```
results$ttest$asDF
as.data.frame(results$ttest)
```

Examples

```
data('ToothGrowth')
ttestIS(formula = len ~ supp, data = ToothGrowth)
```

INDEPENDENT SAMPLES T-TEST

Independent Samples T-Test

statistic df p

len Student's t 1.92 58.0 0.060

ttestOneS

One Sample T-Test

Description

The Student’s One-sample t-test is used to test the null hypothesis that the true mean is equal to a particular value (typically zero). A low p-value suggests that the null hypothesis is not true, and therefore the true mean must be different from the test value.

Usage

ttestOneS(data, vars, students = TRUE, bf = FALSE, bfPrior = 0.707, wilcoxon = FALSE, testValue = 0, hypothesis = "dt", norm = FALSE, qq = FALSE, meanDiff = FALSE, ci = FALSE, ciWidth = 95, effectSize = FALSE, ciES = FALSE, ciWidthES = 95, desc = FALSE, plots = FALSE, miss = "perAnalysis", mann = FALSE)

Arguments

data

the data as a data frame

vars
a vector of strings naming the variables of interest in data

students
TRUE (default) or FALSE, perform Student’s t-tests

bf
TRUE or FALSE (default), provide Bayes factors

bfPrior
a number between 0.5 and 2.0 (default 0.707), the prior width to use in calculating Bayes factors

wilcoxon
TRUE or FALSE (default), perform Wilcoxon signed rank tests

testValue
a number specifying the value of the null hypothesis

hypothesis
‘dt’ (default), ‘gt’ or ‘lt’, the alternative hypothesis; different to testValue, greater than testValue, and less than testValue respectively

norm
TRUE or FALSE (default), perform Shapiro-wilk tests of normality

qq
TRUE or FALSE (default), provide a Q-Q plot of residuals

meanDiff
TRUE or FALSE (default), provide means and standard deviations

ci
TRUE or FALSE (default), provide confidence intervals for the mean difference

ciWidth
a number between 50 and 99.9 (default: 95), the width of confidence intervals

effectSize
TRUE or FALSE (default), provide Cohen’s d effect sizes

ciES
TRUE or FALSE (default), provide confidence intervals for the effect-sizes

ciWidthES
a number between 50 and 99.9 (default: 95), the width of confidence intervals for the effect sizes

desc
TRUE or FALSE (default), provide descriptive statistics
plots TRUE or FALSE (default), provide descriptive plots
miss 'perAnalysis' or 'listwise', how to handle missing values; 'perAnalysis'
excludes missing values for individual dependent variables, 'listwise' ex-
cludes a row from all analyses if one of its entries is missing.
mann deprecated

Details
The Student’s One-sample t-test assumes that the data are from a normal distribution – in the case
that one is unwilling to assume this, the non-parametric Wilcoxon signed-rank can be used in it’s
place (However, note that the Wilcoxon signed-rank has a slightly different null hypothesis; that the
median is equal to the test value).

Value
A results object containing:

```r
results$ttest a table containing the t-test results
results$normality a table containing the normality test results
results$descriptives a table containing the descriptives
results$plots an image of the descriptive plots
results$qq an array of Q-Q plots
```

Tables can be converted to data frames with `asDF` or `as.data.frame`. For example:
```r
results$ttest$asDF
as.data.frame(results$ttest)
```

Examples
```r
data('ToothGrowth')

ttestOneS(ToothGrowth, vars = vars(len, dose))
```
```r
# ONE SAMPLE T-TEST
# One Sample T-Test
# -----------------------------------------------
# statistic df p
# -----------------------------------------------
# len   Student's t 19.1 59.0 < .001
# dose  Student's t 14.4 59.0 < .001
```
The Student's paired samples t-test (sometimes called a dependent-samples t-test) is used to test the null hypothesis that the difference between pairs of measurements is equal to zero. A low p-value suggests that the null hypothesis is not true, and that the difference between the measurement pairs is not zero.

Usage

ttestPS(data, pairs, students = TRUE, bf = FALSE, bfPrior = 0.707, wilcoxon = FALSE, hypothesis = "different", norm = FALSE, qq = FALSE, meanDiff = FALSE, ci = FALSE, ciWidth = 95, effectSize = FALSE, ciES = FALSE, ciWidthES = 95, desc = FALSE, plots = FALSE, miss = "perAnalysis")

Arguments

data the data as a data frame
pairs a list of lists specifying the pairs of measurement in data
students TRUE (default) or FALSE, perform Student's t-tests
bf TRUE or FALSE (default), provide Bayes factors
bfPrior a number between 0.5 and 2 (default 0.707), the prior width to use in calculating Bayes factors
wilcoxon TRUE or FALSE (default), perform Wilcoxon signed rank tests
hypothesis 'different' (default), 'oneGreater' or 'twoGreater', the alternative hypothesis; measure 1 different to measure 2, measure 1 greater than measure 2, and measure 2 greater than measure 1 respectively
norm TRUE or FALSE (default), perform Shapiro-wilk normality tests
qq TRUE or FALSE (default), provide a Q-Q plot of residuals
meanDiff TRUE or FALSE (default), provide means and standard errors
ci TRUE or FALSE (default), provide confidence intervals
.ciWidth a number between 50 and 99.9 (default: 95), the width of confidence intervals
effectSize TRUE or FALSE (default), provide effect sizes
.ciES TRUE or FALSE (default), provide confidence intervals for the effect-sizes
ciWidthES a number between 50 and 99.9 (default: 95), the width of confidence intervals for the effect sizes
desc TRUE or FALSE (default), provide descriptive statistics
plots TRUE or FALSE (default), provide descriptive plots
miss 'perAnalysis' or 'listwise', how to handle missing values; 'perAnalysis' excludes missing values for individual dependent variables, 'listwise' excludes a row from all analyses if one of its entries is missing
Details

The Student’s paired samples t-test assumes that pair differences follow a normal distribution – in the case that one is unwilling to assume this, the non-parametric Wilcoxon signed-rank can be used in its place (However, note that the Wilcoxon signed-rank has a slightly different null hypothesis; that the two groups of measurements follow the same distribution).

Value

A results object containing:

- `results$ttest` a table containing the t-test results
- `results$norm` a table containing the normality test results
- `results$desc` a table containing the descriptives
- `results$plots` an array of the descriptive plots

Tables can be converted to data frames with `asDF` or `as.data.frame`. For example:

```r
results$ttest$asDF
as.data.frame(results$ttest)
```

Examples

```r
data('bugs', package = 'jmv')

ttestPS(bugs, pairs = list(
  list(i1 = 'LDLF', i2 = 'LDHF')))
```

PAIRED SAMPLES T-TEST
#
Paired Samples T-Test

statistic df p

LDLF LDHF Student's t -6.65 90.0 < .001

#
Index

* data
 Big5, 14
 iris, 30
 ToothGrowth, 51
ancova, 2
ANOVA, 5
anovaNP, 7
anovaOneW, 8
anovaRM, 10
anovaRMNP, 13
as.data.frame, 4, 6, 8, 10, 12, 14, 16, 20, 21, 23, 25, 28, 33, 35, 38, 41, 43, 45, 46, 48, 49, 51, 53, 55, 57
Big5, 14
bugs, 15
cfa, 15
contTables, 18
contTablesPaired, 21
corrMatrix, 22
corrPart, 24
descriptives, 26
efa, 29
iris, 30
linReg, 31
logLinear, 33
logRegBin, 36
logRegMulti, 39
logRegOrd, 42
mancova, 44
pca, 45
propTest2, 47
propTestN, 48
reliability, 50
ToothGrowth, 51
ttestIS, 52
ttestOneS, 54
ttestPS, 56