Package ‘jointMeanCov’

May 4, 2019

Type Package
Title Joint Mean and Covariance Estimation for Matrix-Variate Data
Version 0.1.0
Maintainer Michael Hornstein <mdhornstein@gmail.com>
License GPL-2
Encoding UTF-8
LazyData true
Imports glasso, graphics, stats
Suggests knitr, rmarkdown, testthat
RoxygenNote 6.1.1
NeedsCompilation no
Author Michael Hornstein [aut, cre], Roger Fan [aut], Kerby Shedden [aut], Shuheng Zhou [aut]
Repository CRAN
Date/Publication 2019-05-04 07:40:02 UTC

R topics documented:

centerDataGLSModelSelection .. 2
centerDataTwoGroupsByIndices ... 3
centerDataTwoGroupsByModelSelection 4
GeminiB ... 5
GeminiBPath .. 6
GLSMeans .. 7

1
centerDataGLSModelSelection

Center Each Column By Subtracting Group or Global GLS Mean

Description

This function takes a data matrix, an inverse row covariance matrix, group indices (i.e. row indices for membership in groups one and two), and a subset of column indices indicating which columns should be group centered. It returns a centered data matrix. For each group centered column, the two group means are estimated using GLS; then the group one mean is subtracted from entries in group one, and the group two mean is subtracted from entries in group two. For each globally centered column, a single global mean is estimated using GLS and subtracted from each entry in the column. In addition to returning the centered data matrix, this function also returns the means estimated using GLS.

Usage

```r
centerDataGLSModelSelection(X, B.inv, group.one.indices, group.two.indices, group.cen.indices)
```

Arguments

- `X` a data matrix.
- `B.inv` an inverse row covariance matrix used in GLS
- `group.one.indices` indices of observations in group one.
- `group.two.indices` indices of observations in group two.
- `group.cen.indices` indices of columns to be group centered
centerDataTwoGroupsByIndices

Center Each Column by Subtracting Group Means

Description

This function takes a data matrix and returns a centered data matrix. For each column, centering is performed by subtracting the corresponding group mean from each entry (i.e. for entries in group one, the group one mean is subtracted, and for entries in group two, the group two mean is subtracted).

Usage

```r
centerDataTwoGroupsByIndices(X, group.one.indices, group.two.indices)
```

Arguments

- `X` a data matrix.
- `group.one.indices` indices of observations in group one.
- `group.two.indices` indices of observations in group two.

Details

Example

```r
n <- 4
m <- 3
X <- matrix(1:12, nrow=n, ncol=m)
# Group center the first two columns, globally center
# the last column.
out <- centerDataGLSModelSelection(
  X, B.inv=diag(n), group.one.indices=1:2,
  group.two.indices=3:4,
  group.cen.indices=1:2)
# Display the centered data matrix
print(out$x.cen)
```

Value

Returns a centered data matrix of the same dimensions as the original data matrix.

- `X.cen` Centered data matrix.
- `group.means.gls` Group means estimated using GLS; if all columns are globally centered, then `NULL`.
- `global.means.gls` Global means estimated using GLS; if all columns are group centered, then `NULL`.
centerDataTwoGroupsByModelSelection

Details

Example

```r
X <- matrix(1:12, nrow=4, ncol=3)
X.cen <- centerDataTwoGroupsByIndices(
    X, group.one.indices=1:2, group.two.indices=3:4)
```

Value

Returns a centered data matrix of the same dimensions as the original data matrix.

dataTwoGroupsByModelSelection

Center Each Column Based on Model Selection

Description

This function takes a data matrix and returns a centered data matrix. For columns with indices
in `within.group.indices`, centering is performed by subtracting the corresponding group mean
from each entry (i.e. for entries in group one, the group one mean is subtracted, and for entries in
group two, the group two mean is subtracted). For other columns, global centering is performed
(i.e. subtracting the column mean from each entry).

Usage

```r
centerDataTwoGroupsByModelSelection(X, group.one.indices,
    group.two.indices, within.group.indices)
```

Arguments

- **X**: a data matrix.
- **group.one.indices**: indices of observations in group one.
- **group.two.indices**: indices of observations in group two.
- **within.group.indices**: indices of columns on which to perform group centering.

Details

Example

```r
X <- matrix(1:12, nrow=4, ncol=3)
# Group center the first two columns, globally center
# the third column.
X.cen <- centerDataTwoGroupsByModelSelection(
    X, group.one.indices=1:2, group.two.indices=3:4,
    within.group.indices=1:2)
```
Value

Returns a centered data matrix of the same dimensions as the original data matrix.

Description

GeminiB estimates the row-row covariance, inverse covariance, correlation, and inverse correlation matrices using Gemini. For identifiability, the covariance factors A and B are scaled so that A has trace m, where m is the number of columns of X, A is the column-column covariance matrix, and B is the row-row covariance matrix.

Usage

GeminiB(X, rowpen, penalize.diagonal = FALSE)

Arguments

X Data matrix, of dimensions n by m.
rowpen Glasso penalty parameter.
penalize.diagonal Logical value indicating whether to penalize the off-diagonal entries of the correlation matrix. Default is FALSE.

Value

corr.B.hat estimated correlation matrix.
corr.B.hat.inv estimated inverse correlation matrix.
B.hat estimated covariance matrix.
B.hat.inv estimated inverse covariance matrix.

Examples

n1 <- 5
n2 <- 5
n <- n1 + n2
m <- 20
X <- matrix(rnorm(n * m), nrow=n, ncol=m)
rowpen <- sqrt(log(m) / n)
out <- GeminiB(X, rowpen, penalize.diagonal=FALSE)
Display the estimated correlation matrix rounded to two
defimal places.
print(round(out$corr.B.hat, 2))
GeminiBPath:

Estimate Row-Row Covariance Using Gemini for a Sequence of Penalties

Description

GeminiBPath estimates the row-row covariance, inverse covariance, correlation, and inverse correlation matrices using Gemini with a sequence of penalty parameters. For identifiability, the covariance factors A and B are scaled so that A has trace m, where m is the number of columns of X, A is the column-column covariance matrix, and B is the row-row covariance matrix.

Usage

```r
GeminiBPath(X, rowpen.list, penalize.diagonal = FALSE)
```

Arguments

- `X`: Data matrix, of dimensions n by m.
- `rowpen.list`: Vector of penalty parameters, should be increasing (analogous to the `glassopath` function of the `glasso` package).
- `penalize.diagonal`: Logical indicating whether to penalize the off-diagonal entries of the correlation matrix. Default is FALSE.

Value

- `corr.B.hat`: array of estimated correlation matrices, of dimension (nrow(X), nrow(X), length(rowpen.list)).
- `corr.B.hat.inv`: array of estimated inverse correlation matrices, of dimension (nrow(X), nrow(X), length(rowpen.list)).
- `B.hat`: array of estimated covariance matrices, of dimension (nrow(X), nrow(X), length(rowpen.list)).
- `B.hat.inv`: array of estimated inverse covariance matrices, of dimension (nrow(X), nrow(X), length(rowpen.list)).

Examples

```r
# Generate a data matrix.
n1 <- 5
n2 <- 5
n <- n1 + n2
m <- 20
X <- matrix(rnorm(n * m), nrow=n, ncol=m)

# Apply GeminiBPath for a sequence of penalty parameters.
rowpen.list <- sqrt(log(m) / n) * c(1, 0.5, 0.1)
out <- GeminiBPath(X, rowpen.list, penalize.diagonal=FALSE)

# Display the estimated correlation matrix corresponding
GLSMeans

Generalized Least Squares

Description

This function applies generalized least squares to estimate the unknown parameters of a linear model $X = D \beta + E$, where $X$ has dimension $n \times m$, $D$ has dimension $n \times k$, and $\beta$ has dimension $k \times m$.

Usage

GLSMeans(X, D, B.inv)

Arguments

- **X**: data matrix.
- **D**: design matrix.
- **B.inv**: inverse covariance matrix.

Details

Example

```r
X <- matrix(1:12, nrow=4, ncol=3)
D <- twoGroupDesignMatrix(1:2, 3:4)
B.inv <- diag(4)
beta.hat <- GLSMeans(X, D, B.inv)
```

Value

Returns the estimated parameters of the linear model, a matrix of dimensions $k \times m$, where $k$ is the number of columns of $D$, and $m$ is the number of columns of $X$. 

# to penalty 0.1, rounded to two decimal places.
print(round(out$corr.B.hat[, , 3], 2))
jointMeanCovGroupCen  

Estimate Mean and Row-Row Correlation Matrix Using Group Centering

Description

This function implements Algorithm 1 from Hornstein, Fan, Shedden, and Zhou (2018), doi: 10.1080/01621459.2018.1429275. Given an n by m data matrix, with a vector of indices denoting group membership, this function estimates the row-row inverse covariance matrix after a preliminary group centering step, then uses the estimated inverse covariance estimate to perform GLS mean estimation. The function also returns test statistics comparing the group means for each column, with standard errors accounting for row-row correlation.

Usage

jointMeanCovGroupCen(X, group.one.indices, rowpen, B.inv = NULL)

Arguments

X  Data matrix.
group.one.indices  Vector of indices denoting rows in group one.
rowpen  Glasso penalty for estimating B, the row correlation matrix.
B.inv  Optional row-row covariance matrix to be used in GLS. If this argument is passed, then it is used instead of estimating the inverse row-row covariance.

Value

B.hat.inv  Estimated row-row inverse covariance matrix. For identifiability, A and B are scaled so that A has trace m, where m is the number of columns of X.
corr.B.hat.inv  Estimated row-row inverse correlation matrix.
gls.group.means  Matrix with two rows and m columns, where m is the number of columns of X. Entry (i, j) contains the estimated mean of the jth column for an individual in group i, with i = 1,2, and j = 1, ..., m.
gamma.hat  Estimated group mean differences.
test.stats  Vector of test statistics of length m.
p.vals  Vector of two-sided p-values, calculated using the standard normal distribution.
p.vals.adjusted  Vector of p-values, adjusted using the Benjamini-Hochberg fdr adjustment.
Examples

# Define sample sizes
n1 <- 5
n2 <- 5
n <- n1 + n2
m <- 200

# Generate data with row and column covariance
# matrices each autoregressive of order one with
# parameter 0.2. The mean is defined so the first
# three columns have true differences in group means
# equal to four.
Z <- matrix(rnorm(m * n), nrow=n, ncol=m)
A <- outer(1:m, 1:m, function(i, j) 0.2^abs(i - j))
B <- outer(1:n, 1:n, function(i, j) 0.2^abs(i - j))
M <- matrix(0, nrow=nrow(Z), ncol=ncol(Z))
group.one.indices <- 1:5
group.two.indices <- 6:10
M[group.one.indices, 1:3] <- 2
M[group.two.indices, 1:3] <- -2
X <- t(chol(B)) %*% Z %*% chol(A) + M

# Apply Algorithm 1 (jointmeancovgroupcen) and
# plot the test statistics.
rowpen <- sqrt(log(m) / n)
out <- jointmeancovgroupcen(X, group.one.indices, rowpen)
plot(out)
summary(out)
**Arguments**

- **X**: Data matrix.
- **group.one.indices**: Vector of indices denoting rows in group one.
- **rowpen**: Glasso penalty for estimating $B$, the row-row correlation matrix.
- **B.inv**: Optional row-row covariance matrix to be used in GLS in Algorithm 1 prior to model selection centering. If this argument is passed, then it is used instead of estimating the inverse row-row covariance.
- **rowpen.ModSel**: Optional Glasso penalty for estimating $B$ in the second step.
- **thresh**: Threshold for model selection centering. If group means for a column differ by less than the threshold, the column is globally centered rather than group centered. If `thresh` is NULL, then the theoretically guided threshold is used.

**Value**

- **B.hat.inv**: Estimated row-row inverse covariance matrix. For identifiability, $A$ and $B$ are scaled so that $A$ has trace $m$, where $m$ is the number of columns of $X$.
- **corr.B.hat.inv**: Estimated row-row inverse correlation matrix.
- **gls.group.means**: Matrix with two rows and $m$ columns, where $m$ is the number of columns of $X$. Entry $(i, j)$ contains the estimated mean of the $j$th column for an individual in group $i$, with $i = 1, 2$, and $j = 1, \ldots, m$.
- **gamma.hat**: Estimated group mean differences.
- **test.stats**: Vector of test statistics of length $m$.
- **p.vals**: Vector of two-sided p-values, calculated using the standard normal distribution.
- **p.vals.adjusted**: Vector of p-values, adjusted using the Benjamini-Hochberg fdr adjustment.

**Examples**

```R
Define sample sizes
n1 <- 5
n2 <- 5
n <- n1 + n2
m <- 200

Generate data with row and column covariance
matrices each autorgressive of order 1 with
parameter 0.2. The mean is defined so the first
three columns have true differences in group means
equal to four.
Z <- matrix(rnorm(m * n), nrow=n, ncol=m)
A <- outer(1:m, 1:m, function(i, j) 0.2*abs(i - j))
B <- outer(1:n, 1:n, function(i, j) 0.2*abs(i - j))
M <- matrix(0, nrow=nrow(Z), ncol=ncol(Z))
group.one.indices <- 1:5
group.two.indices <- 6:10
```
M[group.one.indices, 1:3] <- 2
M[group.two.indices, 1:3] <- -2
X <- t(chol(B)) %*% Z %*% chol(A) + M

# Apply Algorithm 2 (jointMeanCovModSelCen) and
# plot the test statistics.
rowpen <- sqrt(log(m) / n)
out <- jointMeanCovModSelCen(X, group.one.indices, rowpen)
plot(out)
summary(out)

jointMeanCovStability  Estimate Mean and Correlation Structure Using Stability Selection

Description


Usage

jointMeanCovStability(X, group.one.indices, rowpen,
                      n.genes.to.group.center = NULL)

Arguments

X          Data matrix of size n by m.
group.one.indices
           Vector of indices denoting rows in group one.
rowpen     Glasso penalty for estimating B, the row-row correlation matrix.
n.genes.to.group.center
           Vector specifying the number of genes to group center on each iteration of the
           stability selection algorithm. The length of this vector is equal to the number of
           iterations of stability selection. If this argument is not provided, the default is a
           decreasing sequence starting with m, followed

Details

Let m[i] denote the number of group-centered genes on the ith iteration of stability selection (where m[i] is a decreasing sequence). Estimated group means are initialized using unweighted sample means. Then, for each iteration of stability selection: 1. The top m[i] genes are selected for group centering by ranking the estimated group differences from the previous iteration. 2. Group means and global means are estimated using GLS, using the inverse row covariance matrix from the previous iteration. The centered data matrix is then used as input to Gemini to estimate the inverse row covariance matrix B.hat.inv. 3. Group means are estimated using GLS with B.hat.inv.
Value

n.genes.to.group.center
Number of group centered genes on each iteration of stability selection.

betaHat.init
Matrix of size 2 by m, containing sample means for each group. Row 1 contains sample means for group one, and row 2 contains sample means for group two.

gammaHat.init
Vector of length m containing differences in sample means.

B.inv.list
List of estimated row-row inverse covariance matrices, where B.inv.list[[i]] corresponds to the estimate from the ith iteration of the algorithm, in which the number of group-centered genes is n.genes.to.group.center[i]. For identifiability, A and B are scaled so that A has trace m.

corr.B.inv.list
List of inverse correlation matrices corresponding to the inverse covariance matrices B.inv.list.

betaHat
List of matrices of size 2 by m, where m is the number of columns of X. For each matrix, entry (i, j) contains the estimated mean of the jth column for an individual in group i, with i = 1, 2, and j = 1, ..., m. The matrix betaHat[[i]] contains the estimates for the ith iteration of stability selection.

gamma.hat
List of vectors of estimated group mean differences. The vector gammaHat[[i]] contains estimates for the ith iteration of stability selection.

design.effecs
Vector containing the estimated design effect for each iteration of stability selection.

gls.test.stats
List of vectors of test statistics for each iteration of stability selection.

p.vals
List of vectors of two-sided p-values, calculated using the standard normal distribution.

p.vals.adjusted
List of vectors of p-values, adjusted using the Benjamini-Hochberg fdr adjustment.

Examples

# Generate matrix-variate data.
n1 <- 5
n2 <- 5
n <- n1 + n2
group.one.indices <- 1:5
group.two.indices <- 6:10
m <- 20
M <- matrix(0, nrow=n, ncol=m)
# In this example, the first three variables have nonzero
# mean differences.
M[1:n1, 1:3] <- 3
M[(n1 + 1):n2, 1:3] <- -3
X <- matrix(rnorm(n * m), nrow=n, ncol=m) + M

# Apply the stability algorithm.
rowpen <- sqrt(log(m) / n)
n.genes.to.group.center <- c(10, 5, 2)
## Description

This function displays a quantile plot of test statistics, based on the output of the functions `jointMeanCovGroupCen` or `jointMeanCovModSelCen`.

## Usage

```r
S3 method for class 'jointMeanCov'
plot(x, ...)
```

## Arguments

- `x` output of `jointMeanCovGroupCen` or `jointMeanCovModSelCen`.
- `...` other plotting arguments passed to `qqnorm`.

## Examples

```r
Define sample sizes
n1 <- 5
n2 <- 5
n <- n1 + n2
m <- 200
define the sample size
```
summary.jointMeanCov

# Generate data with row and column covariance
# matrices each autorogressive of order 1 with
# parameter 0.2. The mean is defined so the first
# three columns have true differences in group means
# equal to four.
Z <- matrix(rnorm(m * n), nrow=n, ncol=m)
A <- outer(1:m, 1:m, function(i, j) 0.2 * abs(i - j))
B <- outer(1:n, 1:n, function(i, j) 0.2 * abs(i - j))
M <- matrix(0, nrow=nrow(Z), ncol=ncol(Z))
group.one.indices <- 1:5
group.two.indices <- 6:10
M[group.one.indices, 1:3] <- 2
M[group.two.indices, 1:3] <- -2
X <- t(chol(B)) %*% Z %*% chol(A) + M

# Apply Algorithm 2 (jointMeanCovModSelCen) and plot the
# test statistics.
rowpen <- sqrt(log(m) / n)
out <- jointMeanCovModSelCen(X, group.one.indices, rowpen)
plot(out)

summary.jointMeanCov  Summary of Test Statistics

Description

summary method for class jointMeanCov. This function displays the minimum, maximum, mean, median, 25th percentile, and 75th percentile of the test statistics.

Usage

## S3 method for class 'jointMeanCov'
summary(object, ...)

Arguments

object  output of jointMeanCovGroupCen or jointMeanCovModSelCen.

...  other arguments passed to summary.

Examples

# Define sample sizes
n1 <- 5
n2 <- 5
n <- n1 + n2
m <- 200

# Generate data with row and column covariance
# matrices each autorogressive of order 1 with
theoryRowpenUpperBound

Penalty Parameter for Covariance Estimation Based on Theory

Description
This function returns a theoretically-guided choice of the glasso penalty parameter, based on both the row and column covariance matrices.

Usage
theoryRowpenUpperBound(A, B, n1, n2)

Arguments
A     column covariance matrix.
B     row covariance matrix.
n1    sample size of group one.
n2    sample size of group two.

Value
Returns a theoretically guided choice of the glasso penalty parameter.

References
Examples

# Define sample sizes
n1 <- 10
n2 <- 10
n <- n1 + n2
m <- 2e3

# Column covariance matrix (autoregressive of order 1)
A <- outer(1:n, 1:n, function(x, y) 0.2*abs(x - y))

# Row covariance matrix (autoregressive of order 1)
B <- outer(1:n, 1:n, function(x, y) 0.8*abs(x - y))

# Calculate theoretically guided Gemini penalty.
rowpen <- theoryRowpenUpperBoundDiagA(A, B, n1, n2)
print(rowpen)

theoryRowpenUpperBoundDiagA

Penalty Parameter for Covariance Estimation Based on Theory

Description

This function returns a theoretically-guided choice of the glasso penalty parameter, treating the column correlation matrix as the identity.

Usage

theoryRowpenUpperBoundDiagA(B, n1, n2, m)

Arguments

B  row covariance matrix.
n1  sample size of group one.
n2  sample size of group two.
m  number of columns of the data matrix (where the data matrix is of size n by m, with n = n1 + n2).

Value

Returns a theoretically guided choice of the glasso penalty parameter.

References

Examples
# Define sample sizes
n1 <- 10
n2 <- 10
n <- n1 + n2
m <- 2e3
# Row covariance matrix (autoregressive of order 1)
B <- outer(1:n, 1:n, function(x, y) 0.8*abs(x - y))
# Calculate theoretically guided Gemini penalty.
rowpen <- theoryRowpenUpperBoundDiagA(B, n1, n2, m)
print(rowpen)

Description
This function returns the design matrix for two-group mean estimation. The first column contains
indicators for membership in the first group, and the second column contains indicators for mem-
bership in the second group.

Usage
twoGroupDesignMatrix(group.one.indices, group.two.indices)

Arguments
group.one.indices
   indices of observations in group one.
group.two.indices
   indices of observations in group two.

Details
Example
D <- twoGroupDesignMatrix(1:2, 3:5)
# print(D) displays the following:
[,] [,1] [,2]
[1,] 1 0
[2,] 1 0
[3,] 0 1
[4,] 0 1
[5,] 0 1

Value
Returns a design matrix of size n by 2, where n is the sample size.
Index

centerDataGLSModelSelection, 2
centerDataTwoGroupsByIndices, 3
centerDataTwoGroupsByModelSelection, 4

GeminiB, 5
GeminiBPath, 6
glassopath, 6
GLSMMeans, 7

jointMeanCovGroupCen, 8, 13, 14
jointMeanCovModSelCen, 9, 13, 14
jointMeanCovStability, 11

plot.jointMeanCov, 13

qqnorm, 13

summary, 14
summary.jointMeanCov, 14

theoryRowpenUpperBound, 15
theoryRowpenUpperBoundDiagA, 16
twoGroupDesignMatrix, 17