Package ‘jubilee’

January 24, 2020

Type Package

Title Forecasting Long-Term Growth of the U.S. Stock Market and Business Cycles

Version 0.3.3

Date 2020-01-24

Author Stephen H-T. Lihn [aut, cre]

Maintainer Stephen H-T. Lihn <stevelihn@gmail.com>

Description A long-term forecast model called "Jubilee-Tectonic model" is implemented to forecast future returns of the U.S. stock market, Treasury yield, and gold price. The five-factor model forecasts the 10-year and 20-year future equity returns with high R-squared above 80 percent. It is based on linear growth and mean reversion characteristics in the U.S. stock market. This model also enhances the CAPE model by introducing the hypothesis that there are fault lines in the historical CAPE, which can be calibrated and corrected through statistical learning. In addition, it contains a module for business cycles, optimal interest rate, and recession forecasts.

URL

- https://ssrn.com/abstract=3156574
- https://ssrn.com/abstract=3422278

Depends R (>= 3.5.0)

Imports stats, yaml, utils, xts, zoo, splines, parallel, graphics, methods, readxl (>= 1.3.1), data.table, dplyr

Suggests knitr, tinytex, R.rsp, testthat, roxygen2, scales, shape

VignetteBuilder R.rsp

License Artistic-2.0

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Collate 'daily2fraction-method.R' 'fraction2daily-method.R'

- 'jubilee-adj-fault-line-method.R'
- 'jubilee-calc-cape-method.R'
- 'jubilee-package.R'
- 'jubilee-class.R'
- 'jubilee-constructor.R'
R topics documented:

`jubilee-macro-cost-method.R` `jubilee-macro-fit-method.R`
`jubilee-macro-predict-method.R` `jubilee-mcsapply-method.R`
`jubilee-repo-class.R` `jubilee-repo-config.R`
`jubilee-yield-inversion-method.R` `tri-wave-class.R`
`tri-wave-constructor.R` `tri-wave-model.R`

NeedsCompilation: no

Repository: CRAN

Date/Publication: 2020-01-24 16:40:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>jubilee-package</td>
<td>3</td>
</tr>
<tr>
<td>daily2fraction</td>
<td>3</td>
</tr>
<tr>
<td>fraction2daily</td>
<td>4</td>
</tr>
<tr>
<td>jubilee</td>
<td>4</td>
</tr>
<tr>
<td>jubilee-class</td>
<td>5</td>
</tr>
<tr>
<td>jubilee.adj_fault_line</td>
<td>6</td>
</tr>
<tr>
<td>jubilee.calc_cape</td>
<td>7</td>
</tr>
<tr>
<td>jubilee.eqty_ols</td>
<td>7</td>
</tr>
<tr>
<td>jubilee.forward_rtn</td>
<td>8</td>
</tr>
<tr>
<td>jubilee.fred_data</td>
<td>9</td>
</tr>
<tr>
<td>jubilee.locate_file</td>
<td>10</td>
</tr>
<tr>
<td>jubilee.macro_cost</td>
<td>11</td>
</tr>
<tr>
<td>jubilee.macro_fit</td>
<td>11</td>
</tr>
<tr>
<td>jubilee.macro_predict</td>
<td>12</td>
</tr>
<tr>
<td>jubilee.mcsapply</td>
<td>13</td>
</tr>
<tr>
<td>jubilee.ols</td>
<td>14</td>
</tr>
<tr>
<td>jubilee.optimal_tb3ms</td>
<td>15</td>
</tr>
<tr>
<td>jubilee.predict</td>
<td>16</td>
</tr>
<tr>
<td>jubilee.read_fred_file</td>
<td>16</td>
</tr>
<tr>
<td>jubilee.repo</td>
<td>17</td>
</tr>
<tr>
<td>jubilee.repo-class</td>
<td>18</td>
</tr>
<tr>
<td>jubilee.repo.config</td>
<td>19</td>
</tr>
<tr>
<td>jubilee.std_fault_line</td>
<td>19</td>
</tr>
<tr>
<td>jubilee.yield_inversion</td>
<td>20</td>
</tr>
<tr>
<td>tri.wave</td>
<td>21</td>
</tr>
<tr>
<td>tri.wave_class</td>
<td>21</td>
</tr>
<tr>
<td>triangle</td>
<td>22</td>
</tr>
</tbody>
</table>

Index: 24
Description

The jubilee package provides the core class and functions to forecast long-term growth of the U.S. stock market. It also contains a module for business cycles, optimal interest rate, and recession forecasts. A tutorial is provided to demonstrate how to use this package and explain the relation between the mathematical notations and the functions and data columns in this package.

Author(s)

Stephen H-T. Lihn

References

daily2fraction

Converter from daily Date to fraction

Description

Utility to convert from daily Date (R’s Date object) to fraction.

Usage

daily2fraction(d)

Arguments

d array of Date object, or string in ISO yyyy-mm-dd format

Value

numeric, year in fraction convention

Author(s)

Stephen H. Lihn
Examples

daily2fraction(as.Date("2017-01-15")) # 2017.038
daily2fraction(as.Date("2017-02-14")) # 2017.122
daily2fraction(as.Date("2017-07-15")) # 2017.538

fraction2daily Converter from fraction to daily Date

Description

Utility to convert from fraction to daily Date (R’s Date object).

Usage

fraction2daily(fraction)

Arguments

fraction numeric, representing year in fraction convention.

Value

array of Date object

Author(s)

Stephen H. Lihn

Examples

fraction2daily(2017.038) # 2017-01-15
fraction2daily(2017.125) # 2017-02-15

jubilee Constructor of the jubilee class

Description

Construct an jubilee object which holds raw and derived data, channel regression results, and other derived analytical quantities. This object is the main object to perform various forecasts and analyses.
Usage

jubilee(dtb, lookback.channel = 45, fwd.rtn.duration = 20,
force = TRUE)

Arguments

dtb data.table from the jubilee.repo object, typically it is the ie slot. The user is
allowed to provide custom data object to research different markets, as long as
the column names are compliant.

lookback.channel numeric, look-back channel in years to calculate mean-reversion. Default is 45.

fwd.rtn.duration numeric, forward return duration in years. Default is 20.

force logical, if FALSE, allowed to retrieve previous object stored in option. Default
is TRUE.

Value

an object of the jubilee class

Author(s)

Stephen H. Lihn

Examples

Not run:
repo <- jubilee.repo(online=FALSE)
ju <- jubilee(repo@ie, 45, 20)
End(Not run)

The jubilee class

Description

This S4 class stores raw and derived data, channel regression settings and results.

Slots

call the match.call slot.

lookback.channel numeric, the look-back channel in years.

fwd.rtn.duration numeric, the forward return duration in years.

reg.dtb data.table, contains the regression data.
dtb data.table, contains the consolidated market data.
rate.spread.mean numeric, the mean of the yield spread, used to calculate rate.spread.norm column.
create.time POSIXct, records the creation time of this object.

jubilee.adj_fault_line

Adjust the time series by fault lines

Description

This utility is used to adjust the time series by the provided fault lines.

Usage

```r
jubilee.adj_fault_line(fraction, ts, fl, months = 1)
```

Arguments

- **fraction**: numeric, representing year in fraction convention.
- **ts**: numeric, time series to be adjusted, typically it is log.cape10 or log.cape20.
- **fl**: the fault line matrix. See `jubilee.std_fault_line()` for more detail. If it is provided as character string, it will be looked up as the name of data set in the standard fault line library. If it is provided as numeric array, it will be converted to a matrix.
- **months**: interval in months to ramp up the fault line. Default is 1.

Value

numeric, ts adjusted by fault lines

Author(s)

Stephen H. Lihn

Examples

```r
## Not run:
repo <- jubilee.repo(online=FALSE)
dj <- jubilee(repo@ie, 45, 10)@reg.dtb
dj$log.cape10.adj <- jubilee.adj_fault_line(dj$fraction, dj$log.cape10, "r_nom_f10_5ftr_4fl")
## End(Not run)
```
jubilee.calc_cape
Internal utility to calculate n-year CAPE

Description
This CAPE calculator replicates the methodology of Shiller, so that one can calculate n-year CAPE, e.g. n=20. This utility has been calibrated by original 10-year CAPE data from Shiller.

Usage

\[
\text{jubilee.calc_cape(dtb, period, tol.frac = 1/6)}
\]

Arguments
- **dtb**: data.table
- **period**: numeric, the backward-looking regression period
- **tol.frac**: numeric, tolerance of missing data in the beginning of the time series, expressed as fraction. Default is 1/6, that is, two months.

Value
numeric, the same length as dtb$fraction.

Author(s)
Stephen H. Lihn

Examples
```
## Not run:
dtb <- jubilee.repo(online=FALSE)@ie
cape10 <- jubilee.calc_cape(dtb, 10)
cape20 <- jubilee.calc_cape(dtb, 20)
## End(Not run)
```

jubilee.eqty_ols
Internal utility to calculate OLS regression for log total return index

Description
Calculate the OLS regression for log total return index

Usage

\[
\text{jubilee.eqty_ols(dtb, end.frac, lookback.channel, tol.frac = 1/6)}
\]
Arguments

dtb data.table that contains fraction and log.tri columns.
end.frac numeric, the ending fraction of regression.
lookback.channel numeric, the backward-looking regression period
tol.frac numeric, tolerance of missing data in the beginning, expressed as fraction. Default is 1/6, that is, two months.

Value
two-element array c(a,R) if end.frac is length-one; data.table with end.frac as fraction column if end.frac is an array.

Author(s)
Stephen H. Lihn

Examples

Not run:
dtb <- jubilee.repo(online=FALSE)@ie
jubilee.eqty_ols(dtb, 1970, 50) # c(11.8671626, 0.1008371)
End(Not run)

Description
These two internal utilities are intended to be used to calculate the annualized forward and backward log-return on the given time series. It is really calculating the speed of change, aka log-return, expecting the input to be in logarithmic scale. The forward return is typically the response variable in a forecast. The backward return is often used as explanatory variable in a regression.

Usage

jubilee.forward_rtn(fraction, ts, fwd.rtn.duration, tol.frac = 1/12)
jubilee.backward_rtn(fraction, ts, bwd.rtn.duration, tol.frac = 1/12)
Arguments

fraction numeric, the ending fraction of regression
ts numeric, the time series data, typically in log-scale
fwd.rtn.duration numeric, the forward-looking regression period
tol.frac numeric, tolerance of missing data in the beginning of backward return, or the ending of the forward return, expressed as fraction. Default is 1/12, that is, one month.
bwd.rtn.duration numeric, the backward-looking regression period

Value

numeric, the same length as fraction

Author(s)

Stephen H. Lihn

Examples

```r
## Not run:
dtb <- jubilee.repo(online=FALSE)@ie
dtb$fwd.logr.10 <- jubilee.forward_rtn(dtb$fraction, dtb$log.tri, 10)
dtb$bwd.logr.10 <- jubilee.backward_rtn(dtb$fraction, dtb$log.tri, 10)
head(subset(dtb, fraction >= 1990),1)$fwd.logr.10 # 1/1990+10y: 0.16745
tail(subset(dtb, fraction <= 2000+1/12),1)$bwd.logr.10 # the same as above
## End(Not run)
```

jubilee.fred_data

Internal utility to download time series data from FRED

Description

This utility downloads time series from FRED. Many time series that this package uses are available on FRED. Therefore, this utility is used to provide daily or monthly updates by concatenating live data to the internal static data.

Usage

```r
jubilee.fred_data(symbol, col_out = "Close", retry = 3)
```

Arguments

symbol character, the name of the time series
col_out character, the name of the output closing price column. Default is "Close"
retry numeric, number of retries on the URL. Default is 3.
jubilee.locate_file

Value

The `xts` object for the time series

Examples

```r
## Not run:
jubilee.fred_data("VIXCLS") # VIX

## End(Not run)
```

Description

This utility returns the path to internal file

Usage

```r
jubilee.locate_file(local_file, stop = TRUE)
```

Arguments

- `local_file` character, the file name of an internal file.
- `stop` logical, whether to stop if file can’t be located. Default is `TRUE`.

Value

The path to the file, or else, an empty string

Author(s)

Stephen H. Lihn

Examples

```r
jubilee.locate_file("UNRATE.csv")
```
jubilee.macro_cost Calculate the cost function of the macro model

Description

This utility calculates the cost function of the macro model according to the squared error sum with penalty parameter. This utility can be used to experiment more sophisticated optimization schemes.

Usage

jubilee.macro_cost(dtb, rs, penalty = c(1, 1, 1), new.tb3ms = NA, new.gs10 = NA)

Arguments

dtb data table, usually this is the reg.dtb of the jubilee object
rs the list returned from jubilee.macro_fit
penalty numeric, the penalty vector for the 6 models. Default is c(1,1,1).
new.tb3ms numeric, vector of new rate.tb3ms with length equal to NROW of dtb. Default is NA.
new.gs10 numeric, vector of new rate.gs10 with length equal to NROW of dtb. Default is NA.

Value

The data table containing the "macro.cost" column

Author(s)

Stephen H. Lihn

jubilee.macro_fit The GUPTY macro model

Description

This utility contains the macro regression models, covering GUPTY: three types of GDP, UNRATE (unemployment rate), Payroll, and Treasury yield curve. TCU (total capacity utilization) is also covered in the model but less recommended. Given the in-sample time periods, it will perform model regressions and return a list storing relevant information about the result. The purpose of this method is to automate the regression and facilitate programatic cross validation.

Usage

jubilee.macro_fit(dtb, N, K, unrate.frac.start, gdp.frac.start, frac.end, cv.frac.end)
Arguments

- `dtb` data table, usually this is the reg.dtb of the jubilee object
- `N` numeric, number of years for GDP log-return calculation in GDP models
- `K` numeric, number of years for GDP log-return calculation in Payroll and TCU models
- `unrate.frac.start` numeric, starting fraction of unrate regression time period
- `gdp.frac.start` numeric, starting fraction of gdp regression time period
- `frac.end` numeric, ending fraction of regression time period. This is also the starting fraction of cross-validation.
- `cv.frac.end` numeric, ending fraction of cross-validation time period. Cross validation can be disabled by setting it to NA.

Value

The list of data elements and their attributes.

Author(s)

Stephen H. Lihn

References

Examples

```r
## Not run:
repo <- jubilee.repo()
ju <- jubilee(repo@ie, 45, 20)
N <- 4
K <- 1.5
rs <- jubilee.macro_fit(ju@reg.dtb, N, K, 1950, 1960, 2010, 2019)
## End(Not run)
```

Description

This utility performs the prediction from the linear models of UNRATE and GDP. The purpose of this method is to automate the prediction and to allow users experimenting optimization on the natural rate of interest.
Usage

jubilee.macro_predict(dtb, rs, new.tb3ms = NA, new.gs10 = NA)

Arguments

dtb data table, usually this is lm.dtb of the rs object, with GDP log-return percent (logrp.N, logrp.K) calculated.
rs the list returned from jubilee.macro_fit, which provides regression parameters for the prediction (not the data).
new.tb3ms numeric, vector of new rate.tb3ms with length equal to NROW of dtb. Default is NA.
new.gs10 numeric, vector of new rate.gs10 with length equal to NROW of dtb. Default is NA.

Value
The data table containing the predictions and all the required input columns

Author(s)
Stephen H. Lihn

jubilee.mcsapply
Wrapper to calculate sapply using multi-core

Description

This utility calculates sapply using multi-core capability. It is a simple wrapper on simplify2array and parallel::mclapply. It is particularly convenient on Linux and Mac when parallelism saves significant amount of computing time.

Usage

jubilee.mcsapply(x, FUN, ...)

Arguments

x numeric
FUN the function to be applied to each element of x
... optional arguments to FUN

Value
numeric
Author(s)

Stephen H. Lihn

Examples

```r
a <- seq(1,100)
jubilee.mcsapply(a, function(x) x^2) # use multi-core!
```

jubilee.ols *Internal utility to calculate OLS regression*

Description

Calculate the OLS regression for a given time series and fraction

Usage

```r
jubilee.ols(fraction, ts, lookback.channel, tol.frac = 1/6)
```

Arguments

- `fraction` numeric, the ending fraction of regression
- `ts` numeric, the time series data
- `lookback.channel` numeric, the backward-looking regression period
- `tol.frac` numeric, tolerance of missing data in the beginning, expressed as fraction. Default is 1/6, that is, two months.

Value

data.table with columns of `fraction`, `lm.a`, `lm.y`, `lm.r`

Author(s)

Stephen H. Lihn

References

See Section 2.3 of Stephen H.T. Lihn, "Jubilee Tectonic Model: Forecasting Long-Term Growth and Mean Reversion in the U.S. Stock Market." Available at http://dx.doi.org/10.2139/ssrn.315674
Examples

```r
## Not run:
dtb <- jubilee.repo(online=FALSE)@ie
df <- jubilee.ols(dtb$fraction, dtb$log.tri, 50)
subset(df, fraction > 1970 & fraction < 1970.05)
# fraction   lm.a   lm.r    lm.y
# 1970.042 11.8640 0.1007 0.0210
## End(Not run)
```

jubilee.optimal_tb3ms
Calculate the optimal TB3MS

Description

This utility calculates the optimal TB3MS using the analytic solution.

Usage

```r
jubilee.optimal_tb3ms(dtb, rs, penalty = c(1, 1, 1))
```

Arguments

- `dtb`: data table, usually this is `lm.dtb` of the `rs` object, with GDP log-return percent (`logrp.N, logrp.K`) calculated.
- `rs`: the list returned from `jubilee.macro_fit`.
- `penalty`: numeric, the penalty vector for the models. Default is `c(1, 1, 1)`.

Value

The data table containing the "optimal.tb3ms" column

Author(s)

Stephen H. Lihn
jubilee.predict
Make prediction based on linear regression

Description

Make prediction based on the linear regression of the forward return. Refer to the tutorial for more detail.

Usage

```r
jubilee.predict(object, lm, data)
```

```r
jubilee.predict_real(object, lm, data)
```

Arguments

- `object`
 object of jubilee class

- `lm`
 the linear model

- `data`
 data used to predict (similar to `newdata` of `stats::predict`)

Value

data.table containing the prediction

Author(s)

Stephen H. Lihn

References

See Section 7 of Stephen H.T. Lihn, "Jubilee Tectonic Model: Forecasting Long-Term Growth and Mean Reversion in the U.S. Stock Market." Available at http://dx.doi.org/10.2139/ssrn.3156574

jubilee.read_fred_file

Internal utility to read FRED file

Description

This utility reads the internal static file, optionally amends with FRED online data, and returns the values of a given symbol.
Usage

jubilee.read_fred_file(fraction, local_file, symbol, online = FALSE,
daily_symbol = NULL, period = "M")

Arguments

fraction numeric, the fraction to return the value. The utility will lookup within a month
to find value. For debug purpose, set it to NULL, and the intermediate data table
will be returned.

local_file character, the file name of an internal file. For debug purpose, set it to NULL,
and the process will initiate the source data from FRED via symbol, instead of
a local file.

symbol character, the FRED symbol.

online logical, whether to fetch online data from FRED. Default is FALSE.

daily_symbol character, the FRED symbol to read daily data that supplements the monthly
data. Default is NULL.

period character, length-1 string indicating the data period of the symbol. M is monthly,
Q is quarterly. Default is M.

Value

The values of the symbol, numeric with the same length as fraction.

Author(s)

Stephen H. Lihn

Examples

Not run:
repo <- jubilee.repo(online=FALSE)
a <- jubilee.read_fred_file(repo@ie$fraction, "BAA.csv", "BAA")
tail(a)

End(Not run)

jubilee.repo Constructor of jubilee.repo class

Description

Construct a jubilee.repo class by combining data from that of Robert Shiller since 1871, his-
torical stock market data from 1802 to 1987 by William Schwert, 3-month Treasury bill rate, gold
price, and several other economic time series from FRED. Optionally, this function can fetch more
recent data from the website of Robert Shiller and Federal Reserve FRED website if the R session
has connection to the internet.
Usage

jubilee.repo(online = TRUE, force = TRUE)

Arguments

online logical, indicating whether to fetch data from online resource or not. Default is TRUE.

force logical, if FALSE, allowed to retrieve previous object stored in option. The FALSE setting overrides the online=TRUE setting. Default is TRUE.

Value

An object of jubilee.repo class

Author(s)

Stephen H. Lihn

Examples

Not run:
repo <- jubilee.repo(online=FALSE)
dtb <- repo@ie
tail(dtb,1)
End(Not run)

The jubilee repository class

Description

This S4 class stores the raw data for the jubilee package

Slots

call The match.call slot

ie data.table, contains the combined data from ie.raw, ws, and inflation.
yield.inversion numeric, the fractions of yield curve inversion

raw.ie data.table, contains the data from ie_data.xls of Robert Shiller
ws data.table, contains the historical market return data from William Schwert
inflation data.table, contains the historical inflation data from Minneapolis FED
comm.int data.table, contains the historical commercial interest rate
	tb3ms data.table, contains the historical 3-month Treasury bill rate
Description

This utility stores the data configuration for the jubilee's data repository. This is used internally to provide proper abstraction to the data sources, such as file name, URL, FRED symbol, column name, decimal format, etc.

Usage

jubilee.repo.config()

Value

The list of data elements and their attributes.

Author(s)

Stephen H. Lihn

Examples

c <- jubilee.repo.config()
cieurl

Description

This method defines a collection of standard fault line data sets that have been analyzed and optimized in the research. It is intended for end users to produce standard regressions, forecasts, and charts quickly.

Usage

jubilee.std_fault_line(name)
Arguments

name character, the name of the collection. If "list" is supplied, the list of names will be returned. If a numeric array is supplied, it will be converted to a matrix format.

Value

numeric, pairs of fault lines, each is c(year, delta)

Author(s)

Stephen H. Lihn

Examples

jubilee.std_fault_line("r_nom_f10_5ftr_4f1")
jubilee.std_fault_line("r_nom_f20_5ftr_2f1")
jubilee.std_fault_line("r_nom_f20_5ftr_2f1_ramp5y")

jubilee.yield_inversion

List of dates for yield curve inversion

Description

List of dates for yield curve inversion, generally compliant to the dating of business cycles after WWII in the U.S.. This data is also stored in the yield.inversion slot in the jubilee.repo object.

Usage

jubilee.yield_inversion()

Value

numeric, in the unit of fraction.

Author(s)

Stephen H. Lihn

Examples

jubilee.yield_inversion()
tri.wave

Constructor of tri.wave class

Description

Construct an tri.wave object to simulate the triangular wave model.

Usage

```r
tri.wave()
```

Value

an object of tri.wave class

Author(s)

Stephen H. Lihn

Examples

```r
w <- tri.wave()
```

tri.wave class

The triangular wave model class

Description

This S4 class defines the parameters in the triangular wave model.

Slots

- `call` the match.call slot.
- `a` numeric, the look-back channel in years
- `a0` numeric, the look-back channel in years
- `s1` numeric, the forward return duration in years
- `s2` numeric, the start fraction of in-sample training period
- `y.mean` numeric, the end fraction of in-sample training period
- `y.amp` numeric, the end fraction of in-sample training period
- `y.t` numeric, the end fraction of in-sample training period
- `y.p` numeric, the end fraction of in-sample training period
References
See Section 4 of Stephen H.T. Lihn, "Jubilee Tectonic Model: Forecasting Long-Term Growth and Mean Reversion in the U.S. Stock Market." Available at http://dx.doi.org/10.2139/ssrn.3156574

triangle Methods of triangular wave model

Description
Methods of triangular wave model

Usage
triangle(t, p)
tri.wave.s(object, t)
tri.wave.a(object, t)
tri.wave.y(object, t)
tri.wave.x(object, t)
tri.wave.logr.y(object, t, p)
tri.wave.logr(object, t, p)
tri.wave.logr.semi(object, t)
tri.wave.logr.quarter(object, t)

Arguments

 t the time vector in fraction
 p the period of the triangle wave
object the object of tri.wave class

Value
numeric

Author(s)
Stephen H. Lihn
References

See Section 4 of Stephen H.T. Lihn, "Jubilee Tectonic Model: Forecasting Long-Term Growth and Mean Reversion in the U.S. Stock Market." Available at http://dx.doi.org/10.2139/ssrn.3156574

Examples

```r
w <- tri.wave()
t <- seq(1900, 2000, by=1)
tri.wave.y(w, t)
```
<table>
<thead>
<tr>
<th>Topic</th>
<th>Class</th>
<th>Constructor</th>
<th>Data</th>
<th>Model</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>jpeople.py</td>
<td>jubilee-class, 5</td>
<td>jubilee, 4</td>
<td>jubilee.fred_data, 9</td>
<td>jubilee.adj_fault_line, 6</td>
<td>daily2fraction, 3, fraction2daily, 4</td>
</tr>
<tr>
<td>jbed.py</td>
<td>jubilee-repo-class, 18</td>
<td>jubilee-repo, 17</td>
<td>jubilee.locate_file, 10</td>
<td>jubilee.predict, 16</td>
<td>tri.wave, 21</td>
</tr>
<tr>
<td>jpeople.py</td>
<td>tri.wave-class, 21</td>
<td></td>
<td></td>
<td>jubilee.std_fault_line, 19</td>
<td></td>
</tr>
</tbody>
</table>