Package ‘kairos’

March 11, 2022

Title Analysis of Chronological Patterns from Archaeological Count Data

Version 1.0.1

Description A toolkit for absolute dating and analysis of chronological patterns. This package includes functions for chronological modeling and dating of archaeological assemblages from count data. It allows to compute time point estimates and density estimates of the occupation and duration of an archaeological site.

License GPL (>= 3)

BugReports https://github.com/tesselle/kairos/issues

Depends R (>= 3.4)

Imports arkhe (>= 0.4.0), dimensio (>= 0.2.2), extraDistr, ggplot2, Hmisc, methods, rlang, stats, utils

Suggests covr, folio, knitr, rmarkdown, testthat (>= 3.0.0), vdiffr (>= 1.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation no

Author Nicolas Frerebeau [aut, cre] (<https://orcid.org/0000-0001-5759-4944>, Université Bordeaux Montaigne), Brice Lebrun [ctb] (<https://orcid.org/0000-0001-7503-8685>, Université Bordeaux Montaigne),
Ben Marwick [ctb] (<https://orcid.org/0000-0001-7879-4531>, University of Washington),
Anne Philippe [ctb] (<https://orcid.org/0000-0002-5331-5087>,
Université de Nantes)

Maintainer Nicolas Frerebeau <nicolas.frerebeau@u-bordeaux-montaigne.fr>
Repository CRAN
Date/Publication 2022-03-11 09:20:02 UTC

R topics documented:

- aoristic .. 2
- AoristicSum-class 5
- apportion 6
- CountApportion-class 8
- event .. 8
- EventDate-class 12
- fit .. 12
- IncrementTest-class 14
- mcd ... 14
- MeanDate-class 17
- mutators 17
- plot_aoristic 19
- plot_event 21
- plot_fit 22
- plot_mcd 24
- plot_time 25
- RateOfChange-class 27
- roc ... 27
- subset ... 29

Index 31

aoristic

Aoristic Analysis

Description

Computes the aoristic sum.

Usage

```r
aoristic(x, y, ...)
```

S4 method for signature 'numeric, numeric'
aoristic(x, y, ...)

aoristic

y,
step = 1,
start = min(x, na.rm = TRUE),
stop = max(y, na.rm = TRUE),
weight = TRUE,
groups = NULL
)

S4 method for signature 'list,missing'
aoristic(x, step = 1, start = NULL, stop = NULL, weight = TRUE, groups = NULL)

Arguments

x A numeric vector. If y is missing, must be a list (or a data.frame) with numeric components (columns) from and to.
y A numeric vector. If missing, an attempt is made to interpret x in a suitable way.
... Currently not used.
step A length-one integer vector giving the step size, i.e. the width of each time step in the time series (in years CE; defaults to 1 - i.e. annual level).
start A length-one numeric vector giving the beginning of the time window (in years CE).
stop A length-one numeric vector giving the end of the time window (in years CE).
weight A logical scalar: should the aoristic sum be weighted by the length of periods (default). If FALSE the aoristic sum is the number of elements within a time block.
groups A factor vector in the sense that as.factor(groups) defines the grouping. If x is a list (or a data.frame), groups can be a length-one vector giving the index of the grouping component (column) of x.

Details

Aoristic analysis is used to determine the probability of contemporaneity of archaeological sites or assemblages. The aoristic analysis distributes the probability of an event uniformly over each temporal fraction of the period considered. The aoristic sum is then the distribution of the total number of events to be assumed within this period.

Muller and Hinz (2018) pointed out that the overlapping of temporal intervals related to period categorization and dating accuracy is likely to bias the analysis. They proposed a weighting method to overcome this problem. This method is not implemented here (for the moment), see the aoristAAR package.

Value

An AoristicSum object.

Author(s)

N. Frerebeau
References

See Also

roc(), plot()

Other chronological analysis: apportion(), fit(), roc()

Examples

```r
## Aoristic Analysis
data("zuni", package = "folio")

## Set the start and end dates for each ceramic type
dates <- list(
  LINO = c(600, 875), KIAT = c(850, 950), RED = c(900, 1050),
  GALL = c(1025, 1125), ESC = c(1050, 1150), PUBW = c(1050, 1150),
  RES = c(1000, 1200), TULA = c(1175, 1300), PINE = c(1275, 1350),
  PUBR = c(1000, 1200), WING = c(1100, 1200), WIPO = c(1125, 1225),
  SJ = c(1200, 1300), LSJ = c(1250, 1300), SPR = c(1250, 1300),
  PINER = c(1275, 1325), HESH = c(1275, 1450), KWAK = c(1275, 1450)
)

## Keep only assemblages that have a sample size of at least 10
keep <- apply(X = zuni, MARGIN = 1, FUN = function(x) sum(x) >= 10)

## Calculate date ranges for each assemblage
span <- apply(
  X = zuni[keep, ],
  FUN = function(x, dates) {
    z <- range(unlist(dates[x > 0]))
    names(z) <- c("from", "to")
  }
)
```
AoristicSum-class

Aoristic Sum

Description

An S4 class to represent an aoristic analysis results.

Slots

from A numeric vector.
to A numeric vector.
step A length-one numeric vector giving the time-blocks width.
weights A numeric vector.
breaks A numeric vector giving the date break between time-blocks.
blocks A character vector giving the time-blocks.
p A numeric array giving the aoristic probabilities.
groups A character vector.
apportion

Note
This class inherits from base `matrix`.

Author(s)
N. Frerebeau

See Also
Other classes: `CountApportion-class`, `EventDate-class`, `IncrementTest-class`, `MeanDate-class`, `RateOfChange-class`

Description
Chronological Apportioning

Usage

```r
apportion(object, ...)  
```  
```r  
## S4 method for signature 'matrix'
apportion(
   object,
   s0,  
s1,  
t0,  
t1,  
from = min(s0),
to = max(s1),
step = 25,
method = c("uniform", "truncated"),
z = 2,
progress = getOption("kairos.progress")  
)
```  
```r  
## S4 method for signature 'CountMatrix'
apportion(
   object,
   t0,  
t1,  
from = NULL,
to = NULL,
step = 25,
method = c("uniform", "truncated"),
```
apportion

z = 2, progress = getOption("kairos.progress")

Arguments

object: An \(m \times p \) \texttt{arkhe::CountMatrix} object.

... Currently not used.

s0: A length-\(m \) \texttt{numeric} vector giving the site beginning dates (in years CE).

s1: A length-\(m \) \texttt{numeric} vector giving the site end dates (in years CE).

t0: A length-\(p \) \texttt{numeric} vector giving the type beginning dates (in years CE).

t1: A length-\(p \) \texttt{numeric} vector giving the type end dates (in years CE).

from: A length-one \texttt{numeric} vector giving the beginning of the period of interest (in years CE).

to: A length-one \texttt{numeric} vector giving the end of the period of interest (in years CE).

step: A length-one \texttt{integer} vector giving the step size, i.e. the width of each time step for apportioning (in years CE; defaults to 25).

method: A \texttt{character} string specifying the distribution to be used (type popularity curve). It must be one of "uniform" (uniform distribution) or "truncated" (truncated standard normal distribution). Any unambiguous substring can be given.

z: An \texttt{integer} value giving the lower and upper truncation points (defaults to 2). Only used if \texttt{method} is "truncated".

progress: A \texttt{logical} scalar: should a progress bar be displayed?

Author(s)

N. Frerebeau

References

See Also

Other chronological analysis: \texttt{aoristic()}, \texttt{fit()}, \texttt{roc()}
CountApportion-class

Count Apportioning

Description

An S4 class to represent an artifact apportioning results. Gives the apportioning of artifact types (columns) per site (rows) and per period (dim. 3).

Slots

p An array giving the probability of apportioning an artifact type to a given period.
method A character string specifying the distribution used for apportioning (type popularity curve).
from A length-one numeric vector giving the beginning of the period of interest (in years AD).
to A length-one numeric vector giving the end of the period of interest (in years AD).
step A length-one integer vector giving the step size, i.e. the width of each time step for apportioning (in years AD).

Note

This class inherits from base array.

Author(s)

N. Frerebeau

See Also

Other classes: AoristicSum-class, EventDate-class, IncrementTest-class, MeanDate-class, RateOfChange-class

event

Event and Accumulation Dates

Description

- event() fit a date event model.
- predict_event() and predict_accumulation() estimates the event and accumulation dates of an assemblage.
Usage

 event(object, dates, ...)
 predict_event(object, data, ...)
 predict_accumulation(object, data, ...)

S4 method for signature 'CountMatrix,numeric'
 event(object, dates, cutoff = 90, level = 0.95, ...)

S4 method for signature 'EventDate,missing'
 predict_event(object, margin = 1, level = 0.95)

S4 method for signature 'EventDate,CountMatrix'
 predict_event(object, data, margin = 1, level = 0.95)

S4 method for signature 'EventDate,missing'
 predict_accumulation(object)

S4 method for signature 'EventDate,CountMatrix'
 predict_accumulation(object, data)

S4 method for signature 'EventDate'
 jackknife(object, level = 0.95, progress = getOption("kairos.progress"), ...)

S4 method for signature 'EventDate'
 bootstrap(
 object,
 level = 0.95,
 probs = c(0.05, 0.95),
 n = 1000,
 progress = getOption("kairos.progress"),
 ...
)

Arguments

 object A `arkhe::CountMatrix` or a `EventDate` object.
 dates A `numeric` vector of dates. If named, the names must match the row names of object.
 ... Further arguments to be passed to internal methods.
 data A `arkhe::CountMatrix` object for which to predict event and accumulation dates.
 cutoff An `integer` giving the cumulative percentage of variance used to select CA factorial components for linear model fitting (see details). All compounds with a cumulative percentage of variance of less than the `cutoff` value will be retained.
 level A length-one `numeric` vector giving the confidence level.
margin
A numeric vector giving the subscripts which the prediction will be applied over: 1 indicates rows, 2 indicates columns.

progress
A logical scalar: should a progress bar be displayed?

probs
A numeric vector of probabilities with values in \([0, 1]\) (see `stats::quantile()`). If NULL, quantiles are not computed.

n
A non-negative integer giving the number of bootstrap replications.

Details
This is an implementation of the chronological modeling method proposed by Bellanger and Husi (2012, 2013).

Event and accumulation dates are density estimates of the occupation and duration of an archaeological site (Bellanger and Husi 2012, 2013). The event date is an estimation of the terminus post-quem of an archaeological assemblage. The accumulation date represents the "chronological profile" of the assemblage. According to Bellanger and Husi (2012), accumulation date can be interpreted "at best [...] as a formation process reflecting the duration or succession of events on the scale of archaeological time, and at worst, as imprecise dating due to contamination of the context by residual or intrusive material." In other words, accumulation dates estimate occurrence of archaeological events and rhythms of the long term.

This method relies on strong archaeological and statistical assumptions (see `vignette("kairos")`).

Value

- `event()` returns an `EventDate` object.
- `predict_event()` returns a `data.frame`.
- `predict_accumulation()` returns a `MeanDate` object.
- `bootstrap()` and `jackknife()` return a `data.frame`.

Resampling

If `jackknife()` is used, one type/fabric is removed at a time and all statistics are recalculated. In this way, one can assess whether certain type/fabric has a substantial influence on the date estimate. A three columns `data.frame` is returned, giving the results of the resampling procedure (jackknifing fabrics) for each assemblage (in rows) with the following columns:

- `mean` The jackknife mean (event date).
- `bias` The jackknife estimate of bias.
- `error` The standard error of predicted means.

If `bootstrap()` is used, a large number of new bootstrap assemblages is created, with the same sample size, by resampling each of the original assemblage with replacement. Then, examination of the bootstrap statistics makes it possible to pinpoint assemblages that require further investigation. A five columns `data.frame` is returned, giving the bootstrap distribution statistics for each replicated assemblage (in rows) with the following columns:

- `min` Minimum value.
- `mean` Mean value (event date).
max Maximum value.
Q5 Sample quantile to 0.05 probability.
Q95 Sample quantile to 0.95 probability.

Note

Bellanger et al. did not publish the data supporting their demonstration: no replication of their results is possible. This implementation must be considered experimental and subject to major changes in a future release.

Author(s)

N. Frerebeau

References

See Also

plot_event

Other dating methods: mcd()

Examples

Not run:
utils::vignette("kairos")

End(Not run)
EventDate-class

Date Model

Description

S4 classes to store the event and accumulation times of archaeological assemblages.

Slots

dates A numeric vector of dates.
model A multiple linear model: the Gaussian multiple linear regression model fitted for event date estimation and prediction.
cutoff An length-one integer vector giving the cutoff value.
keep An integer vector.

Author(s)

N. Frerebeau

See Also

dimensio::CA
Other classes: AoristicSum-class, CountApportion-class, IncrementTest-class, MeanDate-class, RateOfChange-class

fit

Frequency Increment Test

Description

Frequency Increment Test

Usage

fit(object, dates, ...)

S4 method for signature 'CountMatrix,missing'
fit(object)

S4 method for signature 'CountMatrix,numeric'
fit(object, dates)
fit

Arguments

- object: A `arkhe::CountMatrix` object.
- dates: A numeric vector of dates.
- ...: Currently not used.

Details

The Frequency Increment Test (FIT) rejects neutrality if the distribution of normalized variant frequency increments exhibits a mean that deviates significantly from zero.

Value

An `IncrementTest` object.

Author(s)

N. Frerebeau

References

See Also

- `plot()`
- Other chronological analysis: `aoristic()`, `apportion()`, `roc()`

Examples

data("merzbach", package = "folio")

Coerce the merzbach dataset to a count matrix
keep <- apply(X = merzbach, MARGIN = 2, FUN = function(x) max(x) >= 50)
counts <- as_count(merzbach[, keep])

Group by phase
set_dates(counts) <- as.numeric(utils::as.roman(rownames(counts)))

Frequency Increment Test
freq <- fit(counts)

Plot time vs abundance and highlight selection
plot(freq)
plot(freq, roll = TRUE, window = 5)
IncrementTest-class
Frequency Increment Test

Description

An S4 class to represent a Frequency Increment Test results.

Slots

- `counts`
 An \(m \times p \) numeric matrix of count data.

- `dates`
 A length-\(m \) numeric vector of dates.

- `statistic`
 A numeric vector giving the values of the t-statistic.

- `parameter`
 An integer giving the degrees of freedom for the t-statistic.

- `p_value`
 A numeric vector giving the the p-value for the test.

Coerce

In the code snippets below, \(x \) is an IncrementTest object.

- `as.data.frame(x)` Coerces to a `data.frame`.

Author(s)

N. Frerebeau

See Also

Other classes: `AoristicSum-class`, `CountApportion-class`, `EventDate-class`, `MeanDate-class`, `RateOfChange-class`

mcd
Mean Ceramic Date

Description

Estimates the Mean Ceramic Date of an assemblage.
Usage

mcd(object, dates, ...)

S4 method for signature 'numeric,numeric'
mcd(object, dates, na.rm = FALSE)

S4 method for signature 'CountMatrix,numeric'
mcd(object, dates)

S4 method for signature 'MeanDate'
bootstrap(
 object,
 level = 0.95,
 type = c("student", "normal"),
 probs = c(0.25, 0.5, 0.75),
 n = 1000
)

S4 method for signature 'MeanDate'
jackknife(object)

Arguments

object
A numeric vector, a arkhe::CountMatrix or a MeanDate object.
dates
A numeric vector of dates.
...
Currently not used.
na.rm
A logical scalar: should missing values (including NaN) be removed?
level
A length-one numeric vector giving the confidence level. Must be a single number between 0 and 1. If NULL, no confidence interval are computed.
type
A character string giving the type of confidence interval to be returned. It must be one "student" (default) or "normal". Any unambiguous substring can be given. Only used if level is not NULL.
probs
A numeric vector of probabilities with values in [0, 1] (see stats::quantile()). If NULL, quantiles are not computed.
n
A non-negative integer giving the number of bootstrap replications.

Details

The Mean Ceramic Date (MCD) is a point estimate of the occupation of an archaeological site (South 1977). The MCD is estimated as the weighted mean of the date midpoints of the ceramic types (based on absolute dates or the known production interval) found in a given assemblage. The weights are the relative frequencies of the respective types in the assemblage.

A bootstrapping procedure is used to estimate the confidence interval of a given MCD. For each assemblage, a large number of new bootstrap replicates is created, with the same sample size, by resampling the original assemblage with replacement. MCDs are calculated for each replicates and upper and lower boundaries of the confidence interval associated with each MCD are then returned.
Value

• `mcd()` returns a single numeric value or a `MeanDate` object.
• `bootstrap()` and `jackknife()` return a `data.frame`.

Author(s)

N. Frerebeau

References

See Also

`plot_mcd`

Other dating methods: `event()`

Examples

```r
## Mean Ceramic Date
## Coerce the zuni dataset to an abundance (count) matrix
data("zuni", package = "folio")
counts <- as_count(zuni)
## Set the start and end dates for each ceramic type
dates <- list(
  LINO = c(600, 875), KIAT = c(850, 950), RED = c(900, 1050),
  GALL = c(1025, 1125), ESC = c(1050, 1150), PUBW = c(1050, 1150),
  RES = c(1000, 1200), TULA = c(1175, 1300), PINE = c(1275, 1350),
  PUBR = c(1000, 1200), WING = c(1100, 1200), WIPO = c(1125, 1225),
  SJ = c(1200, 1300), LSJ = c(1250, 1300), SPR = c(1250, 1300),
  PINER = c(1275, 1325), HESH = c(1275, 1450), KWAK = c(1275, 1450)
)
## Calculate date midpoints
mid <- vapply(X = dates, FUN = mean, FUN.VALUE = numeric(1))
## Calculate MCD
mc_dates <- mcd(counts, dates = mid)
head(mc_dates)
## Plot
plot(mc_dates, select = 100:125)
## Bootstrap resampling
boot <- bootstrap(mc_dates, n = 30)
head(boot)
## Jackknife resampling
jack <- jackknife(mc_dates)
head(jack)
```
MeanDate-class

Mean Date

Description
An S4 class to store the weighted mean date (e.g. Mean Ceramic Date) of archaeological assemblages.

Slots
- types: A length-\(p\) numeric vector giving the dates of the (ceramic) types.
- weights: An \(m \times p\) integer matrix giving the weights used.

Coerce
In the code snippets below, \(x\) is a MeanDate object.

as.data.frame(x) Coerces to a data.frame.

Note
This class inherits from base numeric.

Author(s)
N. Frerebeau

See Also
Other classes: AoristicSum-class, CountApportion-class, EventDate-class, IncrementTest-class, RateOfChange-class

mutators

Get or Set Parts of an Object

Description
Getters and setters to retrieve or set parts of an object.
Usage

get_model(x)
get_weights(x)

S4 method for signature 'AoristicSum'
get_dates(x)

S4 method for signature 'EventDate'
get_dates(x)

S4 method for signature 'RateOfChange'
get_dates(x)

S4 method for signature 'AoristicSum'
get_groups(x)

S4 method for signature 'EventDate'
get_model(x)

S4 method for signature 'AoristicSum'
get_weights(x)

S4 method for signature 'CountApportion'
get_weights(x)

S4 method for signature 'MeanDate'
get_weights(x)

Arguments

x An object from which to get or set element(s).

Value

• set_*(x) returns an object of the same sort as x with the new values assigned.
• get_*(x) returns the part of x.

Author(s)

N. Frerebeau

See Also

Other mutators: subset()
Description

Plot Aoristic Analysis

Usage

```r
## S4 method for signature 'AoristicSum'
autoplot(object, ..., facet = TRUE)

## S4 method for signature 'AoristicSum,missing'
plot(x, facet = TRUE, ...)

## S4 method for signature 'RateOfChange'
autoplot(object, ..., level = 0.95, facet = TRUE)

## S4 method for signature 'RateOfChange,missing'
plot(x, level = 0.95, facet = TRUE, ...)
```

Arguments

- `object, x`: An `AoristicSum` object.
- `...`: Currently not used.
- `facet`: A `logical` scalar: should a matrix of panels defined by groups be drawn?
- `level`: A length-one `numeric` vector giving the confidence level.

Value

- `autoplot()` returns a `ggplot` object.
- `plot()` is called it for its side-effects: it results in a graphic being displayed (invisibly returns `x`).

Author(s)

N. Frerebeau

See Also

- `aoristic()`, `roc()`
- Other plotting methods: `plot_event`, `plot_fit`, `plot_mcd`, `plot_time()`
Examples

```r
## Aoristic Analysis
data("zuni", package = "folio")

## Set the start and end dates for each ceramic type
dates <- list(  
  LINO = c(600, 875), KIAT = c(850, 950), RED = c(900, 1050),  
  GALL = c(1025, 1125), ESC = c(1050, 1150), PUBW = c(1050, 1150),  
  RES = c(1000, 1200), TULA = c(1175, 1300), PINE = c(1275, 1350),  
  PUBR = c(1000, 1200), WING = c(1100, 1200), WIPO = c(1125, 1225),  
  SJ = c(1200, 1300), LSJ = c(1250, 1300), SPR = c(1250, 1300),  
  PINER = c(1275, 1325), HESH = c(1275, 1450), KWAK = c(1275, 1450)  
)

## Keep only assemblages that have a sample size of at least 10
keep <- apply(X = zuni[,], FUN = function(x) sum(x) >= 10)

## Calculate date ranges for each assemblage
span <- apply(  
  X = zuni[,keep,],  
  FUN = function(x, dates) {
    z <- range(unlist(dates[x > 0]))  
    names(z) <- c("from", "to")  
    z  
  },  
  MARGIN = 1,  
  dates = dates
)

## Coerce to data.frame
span <- as.data.frame(t(span))

## Calculate aoristic sum (normal)
aorist_raw <- aoristic(span, step = 50, weight = FALSE)
plot(aorist_raw)

## Calculate aoristic sum (weights)
aorist_weighted <- aoristic(span, step = 50, weight = TRUE)
plot(aorist_weighted)

## Calculate aoristic sum (weights) by group
groups <- rep(c("A", "B", "C"), times = c(50, 90, 139))
aorist_groups <- aoristic(span, step = 50, weight = TRUE, groups = groups)
plot(aorist_groups)

## Rate of change
roc_weighted <- roc(aorist_weighted, n = 30)
plot(roc_weighted)

## Rate of change by group
roc_groups <- roc(aorist_groups, n = 30)
plot(roc_groups)
```
Description

Produces an activity or a tempo plot.

Usage

```r
## S4 method for signature 'EventDate'
autoplot(
  object,
  ..., 
  type = c("activity", "tempo"),
  event = FALSE,
  select = 1,
  n = 500
)

## S4 method for signature 'EventDate,missing'
plot(x, type = c("activity", "tempo"), event = FALSE, select = 1, n = 500, ...)
```

Arguments

- `object, x` A `EventDate` object.
- `...` Currently not used.
- `type` A `character` string indicating the type of plot. It must be one of "activity" (default) or "tempo". Any unambiguous substring can be given.
- `event` A `logical` scalar: should the distribution of the event date be displayed? Only used if type is "activity".
- `select` A `numeric` or `character` vector giving the selection of the assemblage that are drawn.
- `n` A length-one non-negative `numeric` vector giving the desired length of the vector of quantiles for density computation.

Value

- `autoplot()` returns a `ggplot` object.
- `plot()` is called it for its side-effects: it results in a graphic being displayed (invisibly returns `x`).
Event and Accumulation Dates

plot() displays the probability estimate density curves of archaeological assemblage dates (event and accumulation dates; Bellanger and Husi 2012). The event date is plotted as a line, while the accumulation date is shown as a grey filled area.

The accumulation date can be displayed as a tempo plot (Dye 2016) or an activity plot (Philippe and Vibet 2017):

Tempo plot A tempo plot estimates the cumulative occurrence of archaeological events, such as the slope of the plot directly reflects the pace of change.

Activity plot An activity plot displays the first derivative of the tempo plot.

Author(s)

N. Frerebeau

References

See Also

event()

Other plotting methods: plot_aoristic, plot_fit, plot_mcd, plot_time()
Usage

```r
## S4 method for signature 'IncrementTest'
autoplot(object, ..., level = 0.95, roll = FALSE, window = 3)

## S4 method for signature 'IncrementTest,missing'
plot(x, level = 0.95, roll = FALSE, window = 3, ...)
```

Arguments

- `object, x`: An object to be plotted.
- `...`: Currently not used.
- `level`: A length-one `numeric` vector giving the confidence level.
- `roll`: A `logical` scalar: should each time series be subsetted to look for episodes of selection?
- `window`: An odd `integer` giving the size of the rolling window. Only used if `roll` is `TRUE`.

Details

Results of the frequency increment test can be displayed on an abundance vs time diagram aid in the detection and quantification of selective processes in the archaeological record. If `roll` is `TRUE`, each time series is subsetted according to `window` to see if episodes of selection can be identified among decoration types that might not show overall selection. If so, shading highlights the data points where `fit()` identifies selection.

Value

- `autoplot()` returns a `ggplot` object.
- `plot()` is called it for its side-effects: it results in a graphic being displayed (invisibly returns `x`).

Note

Displaying FIT results on an abundance vs time diagram is adapted from Ben Marwick’s original idea.

Author(s)

N. Frerebeau

See Also

- `fit()`
- Other plotting methods: `plot_aoristic`, `plot_event`, `plot_mcd`, `plot_time()`
Examples

data("merzbach", package = "folio")

Coerce the merzbach dataset to a count matrix
Keep only decoration types that have a maximum frequency of at least 50
keep <- apply(X = merzbach, MARGIN = 2, FUN = function(x) max(x) >= 50)
counts <- as_count(merzbach[, keep])

Group by phase
We use the row names as time coordinates (roman numerals)
set_dates(counts) <- as.numeric(utils::as.roman(rownames(counts)))

Frequency Increment Test
freq <- fit(counts)

Plot time vs abundance and highlight selection
plot(freq)
plot(freq, roll = TRUE, window = 5)

Description

MCD Plot

Usage

S4 method for signature 'MeanDate'
autoplot(object, ..., select = NULL, decreasing = TRUE)

S4 method for signature 'MeanDate,missing'
plot(x, select = NULL, decreasing = TRUE, ...)

Arguments

object, x A MeanDate object.
... Currently not used.
select A numeric or character vector giving the selection of the assemblage that are
drawn.
decreasing A logical scalar: should the sort be increasing or decreasing?

Value

- autoplot() returns a ggplot object.
- plot() is called it for its side-effects: it results in a graphic being displayed (invisibly returns x).
plot_time

Author(s)
N. Frerebeau

See Also
mcd()
Other plotting methods: plot_aoristic, plot_event, plot_fit, plot_time()

Examples

Mean Ceramic Date
Coerce the zuni dataset to an abundance (count) matrix
data("zuni", package = "folio")
counts <- as_count(zuni)

Set the start and end dates for each ceramic type
dates <- list(
 LINO = c(600, 875), KIAT = c(850, 950), RED = c(900, 1050),
 GALL = c(1025, 1125), ESC = c(1050, 1150), PUBW = c(1050, 1150),
 RES = c(1000, 1200), TULA = c(1175, 1300), PINE = c(1275, 1350),
 PUBR = c(1000, 1200), WING = c(1100, 1200), WIPO = c(1125, 1225),
 SJ = c(1200, 1300), LSJ = c(1250, 1300), SPR = c(1250, 1300),
 PINER = c(1275, 1325), HESH = c(1275, 1450), KWAK = c(1275, 1450)
)

Calculate date midpoints
mid <- vapply(X = dates, FUN = mean, FUN.VALUE = numeric(1))

Calculate MCD
mc_dates <- mcd(counts, dates = mid)
head(mc_dates)

Plot
plot(mc_dates, select = 100:125)

Bootstrap resampling
boot <- bootstrap(mc_dates, n = 30)
head(boot)

Jackknife resampling
jack <- jackknife(mc_dates)
head(jack)

plot_time Abundance vs Time Plot

Description
Produces an abundance vs time diagram.
Usage

plot_time(object, dates, ...)

S4 method for signature 'CountMatrix,missing'
plot_time(object, facet = FALSE)

S4 method for signature 'CountMatrix,numeric'
plot_time(object, dates, facet = FALSE)

Arguments

object A CountMatrix object.
dates A numeric vector of dates.
... Currently not used.
facet A logical scalar: should a matrix of panels defined by type/taxon be drawn?

Value

A ggplot object.

Author(s)

N. Frerebeau

See Also

Other plotting methods: plot_aoristic, plot_event, plot_fit, plot_mcd

Examples

data("merzbach", package = "folio")

Coerce the merzbach dataset to a count matrix
Keep only decoration types that have a maximum frequency of at least 50
keep <- apply(X = merzbach, MARGIN = 2, FUN = function(x) max(x) >= 50)
counts <- as_count(merzbach[, keep])

Set dates
We use the row names as time coordinates (roman numerals)
set_dates(counts) <- as.numeric(utils::as.roman(rownames(counts)))

Plot abundance vs time
plot_time(counts)
plot_time(counts, facet = TRUE)
RateOfChange-class

Rate of Change

Description
An S4 class to represent rates of change from an aoristic analysis.

Slots
- replicates: A non-negative integer giving the number of replications.
- breaks: A numeric vector giving the date break between time-blocks.
- groups: A character vector.

Note
This class inherits from base array.

Author(s)
N. Frerebeau

See Also
Other classes: AoristicSum-class, CountApportion-class, EventDate-class, IncrementTest-class, MeanDate-class

roc
Rate of Change

Description
Computes the rate of change from an aoristic analysis.

Usage
roc(object, ...)

S4 method for signature 'AoristicSum'
roc(object, n = 100)

Arguments
- object: An AoristicSum object.
- ...: Currently not used.
- n: A non-negative integer giving the number of replications (see details).
Value

A `RateOfChange` object.

Author(s)

N. Frerebeau

References

See Also

`aoristic()`, `plot()`

Other chronological analysis: `aoristic()`, `apportion()`, `fit()`

Examples

```r
## Aoristic Analysis
data("zuni", package = "folio")

## Set the start and end dates for each ceramic type
dates <- list(
  LINO = c(600, 875),
  KIAT = c(850, 950),
  RED = c(900, 1050),
  GALL = c(1025, 1125),
  ESC = c(1050, 1150),
  PUBW = c(1050, 1150),
  RES = c(1000, 1200),
  TULA = c(1175, 1300),
  PINE = c(1275, 1350),
  PUBR = c(1000, 1200),
  WING = c(1100, 1200),
  WIPO = c(1125, 1225),
  SJ = c(1200, 1300),
  LSI = c(1250, 1300),
  SPR = c(1250, 1300),
  PINER = c(1275, 1325),
  HESH = c(1275, 1450),
  KWAK = c(1275, 1450)
)

## Keep only assemblages that have a sample size of at least 10
keep <- apply(X = zuni, MARGIN = 1, FUN = function(x) sum(x) >= 10)

## Calculate date ranges for each assemblage
span <- apply(
  X = zuni[keep, ],
  FUN = function(x, dates) {
    z <- range(unlist(dates[x > 0]))
    names(z) <- c("from", "to")
    z
  },
  MARGIN = 1,
  dates = dates
)

## Coerce to data.frame
```
span <- as.data.frame(t(span))

Calculate aoristic sum (normal)
aorist_raw <- aoristic(span, step = 50, weight = FALSE)
plot(aorist_raw)

Calculate aoristic sum (weights)
aorist_weighted <- aoristic(span, step = 50, weight = TRUE)
plot(aorist_weighted)

Calculate aoristic sum (weights) by group
groups <- rep(c("A", "B", "C"), times = c(50, 90, 139))
aorist_groups <- aoristic(span, step = 50, weight = TRUE, groups = groups)
plot(aorist_groups)

Rate of change
roc_weighted <- roc(aorist_weighted, n = 30)
plot(roc_weighted)

Rate of change by group
roc_groups <- roc(aorist_groups, n = 30)
plot(roc_groups)

subset

Extract or Replace Parts of an Object

Description

Operators acting on objects to extract or replace parts.

Usage

S4 method for signature 'IncrementTest,ANY,missing'
x[[i]]

Arguments

x An object from which to extract element(s) or in which to replace element(s).
i A character string specifying elements to extract. Any unambiguous substring can be given (see details).

Value

A subsetted object.

Author(s)

N. Frerebeau
See Also

Other mutators: mutators
Index

* chronological analysis
 aoristic, 2
 apportion, 6
 fit, 12
 roc, 27

* classes
 AoristicSum-class, 5
 CountApportion-class, 8
 EventDate-class, 12
 IncrementTest-class, 14
 MeanDate-class, 17
 RateOfChange-class, 27

* dating methods
 event, 8
 mcd, 14

* mutators
 mutators, 17
 subset, 29

* plotting methods
 plot_aoristic, 19
 plot_event, 21
 plot_fit, 22
 plot_mcd, 24
 plot_time, 25
 .AoristicSum (AoristicSum-class), 5
 .CountApportion (CountApportion-class), 8
 .EventDate (EventDate-class), 12
 .IncrementTest (IncrementTest-class), 14
 .MeanDate (MeanDate-class), 17
 .RateOfChange (RateOfChange-class), 27
 [[,IncrementTest,ANY,missing-method (subset), 29

 aoristic, 2, 7, 13, 28
 aoristic(), 19, 28
 aoristic,list,missing-method (aoristic), 2
 aoristic,numeric,numeric-method (aoristic), 2
 aoristic-method (aoristic), 2
 AoristicSum, 3, 19, 27
 AoristicSum-class, 5
 apportion, 4, 6, 13, 28
 apportion,CountMatrix-method (apportion), 6
 apportion,matrix-method (apportion), 6
 arkhe::CountMatrix, 7, 9, 13, 15
 array, 5, 8, 27
 autoplot,AoristicSum-method (plot_aoristic), 19
 autoplot,EventDate-method (plot_event), 21
 autoplot,IncrementTest-method (plot_fit), 22
 autoplot,MeanDate-method (plot_mcd), 24
 autoplot,RateOfChange-method (plot_aoristic), 19
 bootstrap,EventDate-method (event), 8
 bootstrap,MeanDate-method (mcd), 14

 character, 5, 7, 8, 15, 21, 24, 27, 29
 CountApportion-class, 8
 CountMatrix, 26

 data.frame, 3, 10, 14, 16, 17
 dimensio::CA, 12

 event, 8, 16
 event(), 22
 event,CountMatrix,numeric-method (event), 8
 event-method (event), 8
 EventDate, 9, 10, 21
 EventDate-class, 12

 factor, 3
 fit, 4, 7, 12, 28
 fit(), 23
fit, CountMatrix, missing-method (fit), 12
fit, CountMatrix, numeric-method (fit), 12
fit-method (fit), 12
get (mutators), 17
get_dates, AoristicSum-method (mutators), 17
get_dates, EventDate-method (mutators), 17
get_dates, RateOfChange-method (mutators), 17
get_groups, AoristicSum-method (mutators), 17
get_model (mutators), 17
get_model, EventDate-method (mutators), 17
get_model-method (mutators), 17
get_weights (mutators), 17
get_weights, AoristicSum-method (mutators), 17
get_weights, CountApportion-method (mutators), 17
get_weights, MeanDate-method (mutators), 17
get_weights-method (mutators), 17
ggplot, 19, 21, 23, 24, 26
IncrementTest, 13
IncrementTest-class, 14
integer, 3, 7–10, 12, 14, 15, 17, 23, 27
jackknife, EventDate-method (event), 8
jackknife, MeanDate-method (mcd), 14
list, 3
logical, 3, 7, 10, 15, 19, 21, 23, 24, 26
matrix, 6, 17
mcd, 11, 14
mcd(), 25
mcd, CountMatrix, numeric-method (mcd), 14
mcd, numeric, numeric-method (mcd), 14
mcd-method (mcd), 14
MeanDate, 10, 15, 16, 24
MeanDate-class, 17
multiple linear model, 12
mutators, 17, 30
numeric, 3, 5, 7–10, 12–17, 19, 21, 23, 24, 26, 27
plot(), 4, 13, 28
plot, AoristicSum, missing-method
(plot_aoristic), 19
plot, EventDate, missing-method
(plot_event), 21
plot, IncrementTest, missing-method
(plot_fit), 22
plot, MeanDate, missing-method
(plot_mcd), 24
plot, RateOfChange, missing-method
(plot_aoristic), 19
plot_aoristic, 19, 22, 23, 25, 26
plot_event, 11, 19, 21, 23, 25, 26
plot_fit, 19, 22, 23, 25, 26
plot_mcd, 16, 19, 22, 23, 24, 26
plot_time, 19, 22, 23, 25, 25
plot_time, CountMatrix, missing-method
(plot_time), 25
plot_time, CountMatrix, numeric-method
(plot_time), 25
plot_time-method (plot_time), 25
predict_accumulation (event), 8
predict_accumulation, EventDate, CountMatrix-method
(event), 8
predict_accumulation, EventDate, missing-method
(event), 8
predict_accumulation-method (event), 8
predict_event, 8
predict_event, EventDate, CountMatrix-method
(event), 8
predict_event, EventDate, missing-method
(event), 8
predict_event-method (event), 8
RateOfChange, 28
RateOfChange-class, 27
roc, 4, 7, 13, 27
roc(), 4, 19
roc, AoristicSum-method (roc), 27
roc-method (roc), 27
set (mutators), 17
stats::quantile(), 10, 15
subset, 18, 29