Package ‘kalmanfilter’

September 25, 2023

Type Package
Title Kalman Filter
Version 2.0.2
Date 2023-10-01
License GPL (>= 2)
Imports Rcpp (>= 1.0.9)
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.2.3
Suggests data.table (>= 1.14.2), maxLik (>= 1.5-2), ggplot2 (>= 3.3.6), gridExtra (>= 2.3), knitr, rmarkdown, testthat
VignetteBuilder knitr
Encoding UTF-8
NeedsCompilation yes
Author Alex Hubbard [aut, cre]
Maintainer Alex Hubbard <hubbard.alex@gmail.com>
Depends R (>= 3.5.0)
Repository CRAN
Date/Publication 2023-09-25 21:20:08 UTC

R topics documented:

contains .. 2
gen_inv .. 2
kalman_filter .. 3
contains

Check if list contains a name

Description
Check if list contains a name

Usage
contains(s, L)

Arguments
s a string name
L a list object

Value
boolean

gen_inv Generalized matrix inverse

Description
Generalized matrix inverse

Usage
gen_inv(m)

Arguments
m matrix

Value
matrix inverse of m
Kalman Filter

Description
Kalman Filter

Usage

```
kalman_filter(ssm, yt, Xo = NULL, Xs = NULL, weight = NULL, smooth = FALSE)
```

Arguments

- `ssm`: list describing the state space model, must include names B0 - N_b x 1 matrix, initial guess for the unobserved components P0 - N_b x N_b matrix, initial guess for the covariance matrix of the unobserved components Dm - N_b x 1 matrix, constant matrix for the state equation Am - N_y x 1 matrix, constant matrix for the observation equation Fm - N_b x p matrix, state transition matrix Hm - N_y x N_b matrix, observation matrix Qm - N_b x N_b matrix, state error covariance matrix Rm - N_y x N_y matrix, state error covariance matrix betaO - N_y x N_o matrix, coefficient matrix for the observation exogenous data betaS - N_b x N_s matrix, coefficient matrix for the state exogenous data
- `yt`: N x T matrix of data
- `Xo`: N_o x T matrix of exogenous observation data
- `Xs`: N_s x T matrix of exogenous state
- `weight`: column matrix of weights, T x 1
- `smooth`: boolean indication whether to run the backwards smoother

Value
list of matrices and cubes output by the Kalman filter

Examples

```
#Nelson-Siegel dynamic factor yield curve
library(kalmanfilter)
library(data.table)
data(treasuries)
tau = unique(treasuries$maturity)

#Set up the state space model
ssm = list()
ssm[["Fm"]]= rbind(c(0.9720, -0.0209, -0.0061),
                  c(0.1009, 0.8189, -0.1446),
                  c(-0.1226, 0.0192, 0.8808))
ssm[["Dm"]]= matrix(c(0.1234, -0.2285, 0.2020), nrow = nrow(ssm[["Fm"]]), ncol = 1)
ssm[["Qm"]]= rbind(c(0.1017, 0.0937, 0.0303),
```
c(0.0937, 0.2267, 0.0351),
c(0.0303, 0.0351, 0.7964))
ssm[["Hm"]]
 = cbind(rep(1, 11),
 -(1 - exp(-tau*0.0423))/(tau*0.0423),
 (1 - exp(-tau*0.0423))/(tau*0.0423) - exp(-tau*0.0423))
ssm[["Am"]]
 = matrix(0, nrow = length(tau), ncol = 1)
ssm[["Rm"]]
 = diag(c(0.0087, 0.0145, 0.0233, 0.0176, 0.0073,
 0, 0.0016, 0.0035, 0.0207, 0.0210))
ssm[["B0"]]
 = matrix(c(5.9030, -0.7090, 0.8690), nrow = nrow(ssm[["Fm"]]), ncol = 1)
ssm[["P0"]]
 = diag(rep(0.0001, nrow(ssm[["Fm"]])))

#Convert to an NxT matrix
yt = dcast(treasuries, "date ~ maturity", value.var = "value")
yt = t(yt[, 2:ncol(yt)])
kf = kalman_filter(ssm, yt, smooth = TRUE)

Rginv

R's implementation of the Moore-Penrose pseudo matrix inverse

Description

R's implementation of the Moore-Penrose pseudo matrix inverse

Usage

`Rginv(m)`

Arguments

`m`
matrix

Value

matrix inverse of m

sw_dcf

Stock and Watson Dynamic Common Factor Data Set

Description

Stock and Watson Dynamic Common Factor Data Set

Usage

`data(sw_dcf)`
treasuries

Format

data.table with columns DATE, VARIABLE, VALUE, and MATURITY The data is monthly frequency with variables ip (industrial production), gmyxpg (total personal income less transfer payments in 1987 dollars), mtq (total manufacturing and trade sales in 1987 dollars), lpnag (employees on non-agricultural payrolls), and dcoinc (the coincident economic indicator)

Source

<table>
<thead>
<tr>
<th>treasuries</th>
<th>Treasuries</th>
</tr>
</thead>
</table>

Description

Treasuries

Usage

```r
data(treasuries)
```

Format

data.table with columns DATE, VARIABLE, VALUE, and MATURITY The data is quarterly frequency with variables DGS1MO, DGS3MO, DGS6MO, DGS1, DGS2, DGS3, DGS5, DGS7, DGS10, DGS20, and DGS30

Source

FRED
Index

* datasets
 sw_dcf, 4
 treasuries, 5
contains, 2

gen_inv, 2

kalman_filter, 3
Rginv, 4
sw_dcf, 4

treasuries, 5