Package ‘kayadata’

October 13, 2022

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Kaya Identity Data for Nations and Regions</td>
</tr>
<tr>
<td>Version</td>
<td>1.2.0</td>
</tr>
<tr>
<td>Date</td>
<td>2022-07-22</td>
</tr>
</tbody>
</table>

Description

Provides data for Kaya identity variables (population, gross domestic product, primary energy consumption, and energy-related CO2 emissions) for the world and for individual nations, and utility functions for looking up data, plotting trends of Kaya variables, and plotting the fuel mix for a given country or region. The Kaya identity (Yoichi Kaya and Keiichi Yokobori, "Environment, Energy, and Economy: Strategies for Sustainability" (United Nations University Press, 1998) and <https://en.wikipedia.org/wiki/Kaya_identity>) expresses a nation's or region's greenhouse gas emissions in terms of its population, per-capita Gross Domestic Product, the energy intensity of its economy, and the carbon-intensity of its energy supply.

URL

https://jonathan-g.github.io/kayadata/,
https://github.com/jonathan-g/kayadata

BugReports

https://github.com/jonathan-g/kayadata/issues

License

MIT + file LICENSE

Depends

R (>= 3.5), ggplot2 (>= 3.0)

Imports

magrittr (>= 1.5), forcats (>= 0.3), dplyr (>= 0.8), tidyr (>= 0.8), stringr (>= 1.3), scales (>= 1.0), purrr (>= 0.3)

Encoding

UTF-8

Language

en-US

LazyData

true

RoxygenNote

7.2.1

Suggests

broom (>= 0.5), knitr (>= 1.22), rmarkdown (>= 1.12), testthat (>= 2.0), vdiffr (>= 0.3.1)

VignetteBuilder

knitr

1
kayadata-package

Description

kayadata is a package for working with Kaya identity data for many countries and regions.

The Kaya identity, named for the economist Yoichi Kaya, who introduced it (Kaya, 1998); It decomposes the energy-related carbon dioxide emissions from a nation, region, or the world into the product of four components:

\[F = P \times g \times e \times f, \]

where \(F \) is the total emissions, \(P \) is the population, \(g \) is the per-capita GDP, \(e \) is the energy intensity of the economy, and \(f \) is the emissions-intensity of the energy supply. (Nakicenovic and Swart, 2000, Ch. 3. p. 105; Raupach et al, 2007)

The package uses data on population and GDP from the World Bank, using market exchange rates (MER) for GDP because those data go back to 1960. From 1990 onward, Purchasing-Power-Parity (PPP) GDP figures are available as \(G_{ppp} \) but using these would require re-calculating \(G, g, e, \) and \(ef \) in the \(kaya_data \) data frame.

The package uses data on energy consumption and fossil-fuel CO2 emissions from the 2021 BP Statistical Review of World Energy

License

The \texttt{kayadata} package is open source licensed under the MIT License.

Bug reports

- \texttt{kayadata} issue tracker (https://github.com/jonathan-g/kayadata/issues)

References

\begin{verbatim}
emissions_factors

Description

Get emission factors for different energy sources

Usage

emissions_factors(collapse_renewables = TRUE)

Arguments

collapse_renewables

Combine hydroelectricity and other renewables into a single category.

Value

a tibble of values for emissions factors, in million metric tons of carbon dioxide per quad of energy.

See Also

regions
\end{verbatim}
Examples

e_fac <- emissions_factors()
e_fac

Description

A dataset containing the fuel mix of how many quads and what fraction of total primary energy supply comes from coal, gas, oil, nuclear, and renewable sources.

Usage

fuel_mix

Format

A tibble containing 948 rows and 7 variables

region Country or region name
region_code Three-letter country or region code
geography Geographic category: "nation", "region", or "world"
year The year
fuel The fuel: "Coal", "Natural Gas", "Oil", "Nuclear", "Hydro", and "Renewables"
quads The number of quads of that fuel consumed in the given country or region and year
frac The fraction of that country or region’s total primary energy consumption from the fuel

Source

See Also

regions
Nameplate capacity and capacity factors for different electrical generation technologies. The average power supplied over a year is the nameplate capacity times the capacity factor.

Usage

generation_capacity()

Details

Data for fossil fuels comes from EIA

Value

a tibble of values for generation sources

fuel	Energy source: Coal, Nuclear, Gas, Solar Thermal, Solar Photovoltaic, Onshore Wind, or Offshore Wind
description	Text description of the power source
nameplate_capacity	Maximum sustained power output, in megawatts
capacity_factor	Capacity factor: the fraction of the nameplate capacity that the plant can provide, averaged over a typical year

References

Examples

```r
gc <- generation_capacity()
gc
```
get_fuel_mix

get_fuel_mix
Get fuel mix for one or more countries or regions

Description

Get fuel mix for one or more countries or regions

Usage

```r
get_fuel_mix(
  region_name,  
  collapse_renewables = TRUE,  
  quiet = FALSE,  
  region_code = NULL  
)
```

Arguments

- **region_name**: A character vector with the names of one or more countries or regions to look up
- **collapse_renewables**: Combine hydroelectricity and other renewables into a single category.
- **quiet**: Suppress warnings if there is no data for that country or region.
- **region_code**: Optional three-letter country or region codes to look up instead of the region_name

Value

A tibble of fuel mix for the countries or regions specified. That is, the number of quads of each fuel and the fraction of total primary energy coming from that fuel for each country or region:

- **region**: The name of the country or region
- **year**: The year reported
- **fuel**: The name of the fuel
- **quads**: The number of quads per year the country or region consumes
- **frac**: The fraction of the country's energy that comes from that fuel

See Also

regions

Examples

```r
get_fuel_mix("United States")  
get_fuel_mix("World", collapse_renewables = FALSE)  
get_fuel_mix(region_code = "LCN")
```
get_kaya_data
Get Kaya data for one or more countries or regions

Description
Get Kaya data for one or more countries or regions

Usage
```r
get_kaya_data(
  region_name,
  gdp = c("MER", "PPP"),
  quiet = FALSE,
  region_code = NULL
)
```

Arguments
- `region_name`: The name of one or more countries or regions to look up
- `gdp`: Use market exchange rates (MER) or purchasing power parity (PPP). Default is MER.
- `quiet`: Suppress warnings if there is no such country or region.
- `region_code`: Optional three-letter country or region codes to look up instead of the `region_name`

Details
Units for \(G, g, e, \) and \(ef \) depend on whether the data is requested in MER or PPP dollars: For MER, dollars are constant 2015 U.S. dollars. For PPP, dollars are constant 2017 international dollars.

- \(_P_ \) and MER values for GDP and related quantities are available from 1960 onward.

- PPP values for GDP and related quantities are only available from 1990 onward.

- Energy-related values (\(_E_ \), \(_F_ \), and derived quantities) are available from 1965 onward.

- Note that emissions (\(_F_ \), \(_f_ \), and \(_ef_ \)) are reported as millions of metric tons of carbon dioxide, not carbon.

Value
a tibble of Kaya identity data for the countries or regions specified:

- **region** The name of the country or region
get_top_down_trends

year The year
P Population, in billions
E Total primary energy consumption, in quads
F CO2 emissions from fossil fuel consumption, in millions of metric tons
g Per-capita GDP, in thousands of dollars per person.
e Energy intensity of the economy, in quads per trillion dollars.
f Emissions intensity of the energy supply, in million metric tons per quad.
ef Emissions intensity of the economy, in metric tons per million dollars of GDP.

See Also
regions

Examples

get_kaya_data("Brazil")
get_kaya_data("United Kingdom", "PPP")
get_kaya_data(region_name = "United States")
get_kaya_data(region_code = "MYS")

get_top_down_trends Get top-down trends for Kaya variables for one or more countries or regions, using projections from U.S. Energy Information Administration’s International Energy Outlook report.

Description
Get top-down trends for Kaya variables for one or more countries or regions, using projections from U.S. Energy Information Administration’s International Energy Outlook report.

Usage

get_top_down_trends(region_name, quiet = FALSE, region_code = NULL)

Arguments

region_name The name of one or more countries or regions to look up
quiet Suppress warnings if there is no data for the specified countries or regions.
region_code Optional three-letter country or region codes to look up instead of the region_name

Value

a tibble of trends for P, G, E, F, g, e, f, and ef for each country or region in percent per year.
get_top_down_values

See Also

regions

Examples

get_top_down_trends("Spain")
get_top_down_trends(region_code = "RUS")

get_top_down_values Get top-down projections of Kaya variables for one or more countries or regions

Description

Get top-down projections of Kaya variables for one or more countries or regions

Usage

get_top_down_values(region_name, quiet = FALSE, region_code = NULL)

Arguments

region_name The name of a country or region to look up
quiet Suppress warnings if there is no data for that country or region.
region_code Optional three-letter country or region code to look up instead of the region_name

Value

a tibble of values for P, G, E, F, g, e, f, and ef for each country or region:

region The name of the country or region
P Population, in billions
E Total primary energy consumption, in quads
F CO2 emissions from fossil fuel consumption, in millions of metric tons
g Per-capita GDP, in thousands of constant 2015 U.S. dollars per person.
e Energy intensity of the economy, in quads per trillion dollars.
f Emissions intensity of the energy supply, in million metric tons per quad.
ef Emissions intensity of the economy, in metric tons per million dollars of GDP.

See Also

regions
Examples

```r
get_top_down_values("New Zealand")
get_top_down_values("OECD")
get_top_down_values(region_code = "PAK")
```

kaya_data
Kaya identity data for many countries and regions

Description

A dataset containing Kaya identity parameters P, G, E, F, g, e, f, and ef for many countries

Usage

`kaya_data`

Format

A tibble containing 5,160 rows and 14 variables:

- **region**: Country or region name
- **region_code**: Three-letter country or region code
- **geography**: Geographic category: "nation", "region", or "world"
- **year**: The year
- **P**: Population, in billions
- **G**: Gross domestic product, in trillions of constant 2015 U.S. dollars.
- **E**: Total primary energy consumption, in quads
- **F**: CO2 emissions from fossil fuel consumption, in millions of tons
- **g**: Per-capita GDP, in thousands of constant 2015 U.S. dollars per person.
- **e**: Energy intensity of the economy, in quads per trillion dollars.
- **f**: Emissions intensity of the energy supply, in million metric tons per quad.
- **ef**: Emissions intensity of the economy, in metric tons per million dollars of GDP.
- **G_ppp**: Gross domestic product adjusted for purchasing power parity, in trillions of constant 2017 international dollars
- **G_mer**: Gross domestic product at market-exchange-rate, in trillions of constant 2015 U.S. dollars

Source

See Also

regions
kaya_region_list
Get a list of countries in the Kaya data

Description
Get a list of countries in the Kaya data

Usage
```r
kaya_region_list()
```

Value
A vector of country and region names

See Also
regions

megawatts_per_quad
The number of megawatts it takes to replace a quad.

Description
The number of megawatts of average power output over a year to produce one quad of energy

Usage
```r
megawatts_per_quad()
```

Value
The number of megawatts equivalent to one quad per year.

Examples
```r
mwe <- megawatts_per_quad()
mwe
```
plot_fuel_mix

Description
Plot fuel mix

Usage
plot_fuel_mix(
 fuel_mix,
 collapse_renewables = TRUE,
 title = NULL,
 colors = NULL,
 font_size = 20
)

Arguments
fuel_mix A tibble with the mixture of fuels for one or more countries or regions:
 region The name of the country or region
 fuel The name of the fuel
 quads The number of quads per year the country or region consumes
 frac The fraction of the country's energy that comes from that fuel
collapse_renewables Combine hydroelectricity and other renewables into a single category.
title Include a title on the plot. If title is NULL (default) or TRUE, a default title is created from the names of the regions in fuel_mix. If title is a character string, that string is used. If title is FALSE, the plot is produced with no title.colors A named vector with the colors to use for Coal, Oil, Natural Gas, Nuclear, Hydro, and Renewables.
font_size The base font size.

Value
A plot object.

Examples
usa_fuel <- get_fuel_mix("United States", collapse_renewables = FALSE)
plot_fuel_mix(usa_fuel)
plot_fuel_mix(usa_fuel, collapse_renewables = FALSE,
 colors = c(Coal = "black", "Natural Gas" = "gray60",
 Oil = "gray30", Nuclear = "forestgreen",
 Hydro = "royalblue", Renewables="palegreen"))
Description

Plot Kaya-identity variable

Usage

plot_kaya(
 kaya_data,
 variable,
 start_year = NA,
 stop_year = NA,
 y_lab = NULL,
 log_scale = FALSE,
 trend_line = FALSE,
 points = TRUE,
 font_size = 20,
 colors = NULL,
 pre_color = NULL,
 post_color = NULL,
 in_range_color = NULL,
 trend_color = NULL,
 line_sizes = NULL,
 pre_line_size = NULL,
 post_line_size = NULL,
 in_range_line_size = NULL,
 trend_line_size = NULL,
 point_sizes = NULL,
 pre_point_size = NULL,
 post_point_size = NULL,
 in_range_point_size = NULL
)

Arguments

kaya_data A tibble with Kaya-identity data
variable The name of the variable to plot (character)
start_year The year to start highlighting the data (should correspond to the beginning of
 the trend calculation). Set to NULL to turn off highlighting.
stop_year The year to stop highlighting the data (should correspond to the beginning of
 the trend calculation). Set to NULL to turn off highlighting.
y_lab Optional label for the y-axis
log_scale Use log scale for y axis
trend_line Include a trend line
points Plot points in addition to the line.
font_size Base size of the font for axis labels and titles.
colors Named vector of colors to use for the plot. Elements should include PRE, POST, IN-RANGE, and TREND, which respectively give the colors for the portion of the plot before start_year, after stop_year, between start_year and stop_year, and the trend line.
pre_color Override default color for the portion of the chart before start_year.
post_color Override default color for the portion of the chart after stop_year.
in_range_color Override default color for the portion of the chart between start_year and stop_year.
trend_color Override default color for the trend line.
line_sizes Named vector of sizes to use for the lines in the plot. Elements should include PRE, POST, IN-RANGE, and TREND, which respectively give the sizes for lines in the portion of the plot before start_year, after stop_year, between start_year and stop_year, and the trend line.
pre_line_size Override default line size for the portion of the chart before start_year.
post_line_size Override default line size for the portion of the chart after stop_year.
in_range_line_size Override default line size for the portion of the chart between start_year and stop_year.
trend_line_size Override default size for the trend line.
point_sizes Named vector of sizes to use for the points in the plot. Elements should include PRE, POST, and IN-RANGE, which respectively give the sizes for points in the portion of the plot before start_year, after stop_year, and between start_year and stop_year.
pre_point_size Override default point size for the portion of the chart before start_year.
post_point_size Override default point size for the portion of the chart after stop_year.
in_range_point_size Override default point size for the portion of the chart between start_year and stop_year.

Value
A plot object.

Examples

```r
cchina <- get_kaya_data("China")
plot_kaya(china, "F", 2001, 2011)
## Not run:
uk <- get_kaya_data("United Kingdom")
plot_kaya(uk, "e", log_scale = TRUE, trend_line = TRUE)
```
project_top_down

Get top-down projections of Kaya variables for one or more countries or regions for a given year

Description

Get top-down projections of Kaya variables for one or more countries or regions for a given year

Usage

```r
project_top_down(region_name, year, quiet = FALSE, region_code = NULL)
```

Arguments

- `region_name`: The name of a country or region to look up
- `year`: The year to project to
- `quiet`: Suppress warnings if there is no data for that country or region.
- `region_code`: Optional three-letter country or region code to look up instead of the `region_name`

Value

A tibble of values for `P`, `G`, `E`, `g`, `e`, and `ef` for each country or region:

- **region**: The name of the country or region
- **year**: The year
- **P**: Population, in billions
- **G**: Gross domestic product, in trillions of constant 2015 U.S. dollars.
- **E**: Total primary energy consumption, in quads

```r
plot_kaya(uk, "e", log_scale = TRUE, trend_line = TRUE,
        start_year = 1970, stop_year = 2000,
        colors = c(PRE="limegreen", POST="darkgreen",
                  "IN-RANGE" = "cadetblue", TREND="orange"),
        line_sizes = c(PRE=0.5, POST=0.5, "IN-RANGE"=1, TREND=1.5),
        point_sizes = c(PRE=2, POST=2, "IN-RANGE"=3))

plot_kaya(uk, "e", log_scale = TRUE, trend_line = TRUE,
        start_year = 1970, stop_year = 2000,
        pre_color = "limegreen", post_color = "limegreen",
        trend_color = "magenta",
        pre_line_size = 0.5, post_line_size = 0.5,
        trend_line_size = 1.5,
        pre_point_size = 2, post_point_size = 2, in_range_point_size = 3)

## End(Not run)

world <- get_kaya_data("World")
plot_kaya(world, "g", 1982, log_scale = TRUE, trend_line = TRUE)
F  CO2 emissions from fossil fuel consumption, in millions of metric tons

g  Per-capita GDP, in thousands of constant 2015 U.S. dollars per person.

e  Energy intensity of the economy, in quads per trillion dollars.

f  Emissions intensity of the energy supply, in million metric tons per quad.

ef  Emissions intensity of the economy, in metric tons per million dollars of GDP.

See Also

regions

Examples

project_top_down("China", 2037)
project_top_down(region_code = "VNM", year = 2043)

regions  Aggregate regional data

Description

Problems with aggregate regional data

Details

The World Bank is missing GDP data for a number of nations, such as Syria and Taiwan. Because of this and the incommensurability between the regions used for aggregate statistics in the World Bank data and the BP data, aggregate regional data (e.g., for the Middle East and Africa) should be treated with caution. This problem does not hold for individual nations, where missing data appears as NA values.

td_trends  Top-down projections of trends in Kaya variables for many countries and regions

Description


Usage

td_trends
td_values

Format
A tibble containing 226 rows and 11 variables

region Country or region name
region_code Three-letter country or region code
geography Geographic category: "nation", "region", or "world"
P Trend in population, in fraction per year
G Trend in gross domestic product, in fraction per year
E Trend in total primary energy consumption, in fraction per year
F Trend in CO2 emissions, in fraction per year
g Trend in per-capita GDP, in fraction per year
e Trend in energy intensity of the economy, in fraction per year
f Trend in emissions intensity of the energy supply, in fraction per year
ef Trend in emissions intensity of the economy, in fraction per year

Source
https://www.eia.gov/outlooks/archive/ieo17/

See Also
regions

td_values  Top-down projections of future Kaya variables for many countries and regions

Description

Usage
td_values

Format
A tibble containing 640 rows and 12 variables

region Country or region name
region_code Three-letter country or region code
geography Geographic category: "nation", "region", or "world"
year The year
P Population, in billions
G Gross domestic product, in trillions of constant 2015 U.S. dollars
E Total primary energy consumption, in quads
F Total CO2 emissions, in millions of metric tons
g Per-capita GDP, in thousands of constant 2015 U.S. dollars per person.
e Energy intensity of the economy, in quads per trillion dollars.
f Emissions intensity of the energy supply, in million metric tons per quad.
ef Emissions intensity of the economy, in metric tons per million dollars of GDP.

Source
https://www.eia.gov/outlooks/archive/ieo17/

See Also
regions
Index

* datasets
  - fuel_mix, 4
  - kaya_data, 10
  - td_trends, 16
  - td_values, 17

emissions_factors, 3

fuel_mix, 4

generation_capacity, 5
get_fuel_mix, 6
get_kaya_data, 7
get_top_down_trends, 8
get_top_down_values, 9

kaya_data, 10
kaya_region_list, 11
kayadata-package, 2

megawatts_per_quad, 11

plot_fuel_mix, 12
plot_kaya, 13
project_top_down, 15

regions, 16

td_trends, 16
td_values, 17