Package ‘kcmeans’

November 30, 2023

Title Conditional Expectation Function Estimation with K-Conditional-Means

Version 0.1.0

Date 2023-11-28

License GPL (>= 3)

URL https://github.com/thomaswiemann/kcmeans

BugReports https://github.com/thomaswiemann/kcmeans/issues

Encoding UTF-8

RoxygenNote 7.2.3

Depends R (>= 3.6)

Imports stats, Ckmeans.1d.dp, MASS, Matrix

Suggests testthat (>= 3.0.0), covr, knitr, rmarkdown

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

Author Thomas Wiemann [aut, cre]

Maintainer Thomas Wiemann <wiemann@uchicago.edu>

Repository CRAN

Date/Publication 2023-11-30 10:50:02 UTC

`R` topics documented:

- `kcmeans` 2
- `predict.kcmeans` 3
Description

Implementation of the K-Conditional-Means estimator.

Usage

kcmeans(y, X, which_is_cat = 1, K = 2)

Arguments

y The outcome variable, a numerical vector.
X A (sparse) feature matrix where one column is the categorical predictor.
which_is_cat An integer indicating which column of X corresponds to the categorical predictor.
K The number of support points, an integer greater than 2.

Value

kcmeans returns an object of S3 class kcmeans. An object of class kcmeans is a list containing the following components:

cluster_map A matrix that characterizes the estimated predictor of the residualized outcome \(\hat{Y} \equiv Y - X_2^\top \hat{\pi} \). The first column \(x \) denotes the value of the categorical variable that corresponds to the unrestricted sample mean mean_x of \(\hat{Y} \), the sample share \(p_x \), the estimated cluster cluster_x, and the estimated restricted sample mean mean_xK of \(\hat{Y} \) with just \(K \) support points.
mean_y The unconditional sample mean of \(\hat{Y} \).
pi The best linear prediction coefficients of \(Y \) on \(X \) corresponding to the non-categorical predictors \(X_2 \).
which_is_cat,K Passthrough of user-provided arguments. See above for details.

References

Examples

```r
# Simulate simple dataset with n=800 observations
X <- rnorm(800) # continuous predictor
Z <- sample(1:20, 800, replace = TRUE) # categorical predictor
Z0 <- Z %% 4 # lower-dimensional latent categorical variable
y <- Z0 + X + rnorm(800) # outcome
# Compute kcmeans with four support points
kcmeans_fit <- kcmeans(y, cbind(Z, X), K = 4)
# Print the estimated support points of the categorical predictor
print(unique(kcmeans_fit$cluster_map[, "mean_xK"]))
```

predict.kcmeans
Prediction Method for the K-Conditional-Means Estimator.

Description

Prediction method for the K-Conditional-Means estimator.

Usage

```r
## S3 method for class 'kcmeans'
predict(object, newdata, clusters = FALSE, ...)
```

Arguments

- `object`: An object of class `kcmeans`.
- `newdata`: A (sparse) feature matrix where the first column corresponds to the categorical predictor.
- `clusters`: A boolean indicating whether estimated clusters should be returned.
- `...`: Currently unused.

Value

A numerical vector with predicted values (if `clusters = FALSE`) or predicted clusters (if `clusters = FALSE`).

References

Examples

```r
# Simulate simple dataset with n=800 observations
X <- rnorm(800) # continuous predictor
Z <- sample(1:20, 800, replace = TRUE) # categorical predictor
Z0 <- Z %% 4 # lower-dimensional latent categorical variable
y <- Z0 + X + rnorm(800) # outcome
# Compute kcmeans with four support points
```
kcmeans_fit <- kcmeans(y, cbind(Z, X), K = 4)
Calculate in-sample predictions
fitted_values <- predict(kcmeans_fit, cbind(Z, X))
Print sample share of estimated clusters
clusters <- predict(kcmeans_fit, cbind(Z, X), clusters = TRUE)
table(clusters)
Index

kcmeans, 2
predict.kcmeans, 3