Package ‘kdevine’

December 17, 2018

Type Package
Title Multivariate Kernel Density Estimation with Vine Copulas
Version 0.4.2
URL https://github.com/tnagler/kdevine
BugReports https://github.com/tnagler/kdevine/issues
Description Implements the vine copula based kernel density estimator of Nagler and Czado (2016) <doi:10.1016/j.jmva.2016.07.003>. The estimator does not suffer from the curse of dimensionality and is therefore well suited for high-dimensional applications.
License GPL-3
Imports graphics, stats, utils, MASS, Rcpp, qrng, KernSmooth, cctools, kdecopula (>= 0.8.1), VineCopula, doParallel, parallel, foreach
LazyData yes
LinkingTo Rcpp
RoxygenNote 6.1.0
Suggests testthat
NeedsCompilation yes
Author Thomas Nagler [aut, cre]
Maintainer Thomas Nagler <thomas.nagler@tum.de>
Repository CRAN
Date/Publication 2018-12-17 16:00:03 UTC

R topics documented:

 kdevine-package .. 2
 contour.kdevinecop ... 3
 dkde1d .. 3
 dkdevine ... 4
 dkdevinecop ... 5
 kde1d ... 6
Description

This package implements a vine copula based kernel density estimator. The estimator does not suffer from the curse of dimensionality and is therefore well suited for high-dimensional applications (see, Nagler and Czado, 2016).

Details

The multivariate kernel density estimators is implemented by the `kdevine` function. It combines a kernel density estimator for the margins (`kde1d`) and a kernel estimator of the vine copula density (`kdevinecop`). The package is built on top of the copula density estimators in the `kdecopula` package and let’s you choose from all its implemented methods. Optionally, the vine copula can be estimated parameterically (only the margins are nonparametric).

Author(s)

Thomas Nagler

References

Nagler, T., Czado, C. (2016)
Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas.

contour.kdevinecop

Contour plots of pair copula kernel estimates

Description

Contour plots of pair copula kernel estimates

Usage

S3 method for class 'kdevinecop'
contour(x, tree = "ALL", xlim = NULL, cex.nums = 1, ...)

Arguments

- `x`: a `kdevinecop` object.
- `tree`: "ALL" or integer vector; specifies which trees are plotted.
- `xlim`: numeric vector of length 2; sets `xlim` and `ylim` for the contours.
- `cex.nums`: numeric; expansion factor for font of the numbers.
- `...`: arguments passed to `contour.kdecopula`.

Examples

data(wdbc, package = "kdecopula") # load data
u <- VineCopula::pobs(wdbc[, 5:7], ties = "average") # rank-transform

estimate density
fit <- kdevinecop(u)

contour matrix
contour(fit)

dkde1d Working with a kde1d object

Description

The density, cdf, or quantile function of a kernel density estimate are evaluated at arbitrary points with `dkde1d`, `pkde1d`, and `qkde1d` respectively.
Evaluate the density of a kdevine object

Usage

\[dkdevine(x, \text{obj})\]

Arguments

- **x**: vector of evaluation points.
- **obj**: a kdevine object.
- **n**: integer; number of observations.
- **quasi**: logical; the default (FALSE) returns pseudo-random numbers, use TRUE for quasi-random numbers (generalized Halton, see ghalton).

Value

The density or cdf estimate evaluated at \(x\).

See Also

kdevine

Examples

```r
data(wdbc)  # load data
fit <- kdevine(wdbc[, 5])  # estimate density
dkdevine(1000, fit)  # evaluate density estimate
pkdevine(1000, fit)  # evaluate corresponding cdf
qkdevine(0.5, fit)  # quantile function
hist(rkdevine(100, fit))  # simulate
```

`dkdevine` Evaluate the density of a kdevine object

Description

Evaluate the density of a kdevine object

Usage

\[dkdevine(x, \text{obj})\]
Working with a kdevinecop object

A vine copula density estimate (stored in a kdevinecop object) can be evaluated on arbitrary points with dkdevinecop. Furthermore, you can simulate from the estimated density with rkdevinecop.

Usage

\begin{verbatim}
dkdevinecop(u, obj, stable = FALSE)
rkdevinecop(n, obj, U = NULL, quasi = FALSE)
\end{verbatim}

Arguments

\begin{verbatim}
 u m \times 2 matrix of evaluation points.
 obj kdevinecop object.
 stable logical; option for stabilizing the estimator: the estimated pair copula density is cut off at 50.
 n integer; number of observations.
 U (optional) n \times d matrix of independent uniform random variables.
 quasi logical; the default (FALSE) returns pseudo-random numbers, use TRUE for quasi-random numbers (generalized Halton, see ghalton).
\end{verbatim}

Examples

\begin{verbatim}
load data
data(wdbc)

estimate density (use xmin to indicate positive support)
fit <- kdevine(wdbc[, 5:7], xmin = rep(0, 3))

evaluate density estimate
dkdevine(c(1000, 0.1, 0.1), fit)
\end{verbatim}
Value

A numeric vector of the density/cdf or a $n \times 2$ matrix of simulated data.

Author(s)

Thomas Nagler

References

Nagler, T., Czado, C. (2016)
Evading the curse of dimensionality in nonparametric density estimation.

Selecting and estimating regular vine copulae and application to financial returns.
Computational Statistics & Data Analysis, 59(0):52–69.

See Also

kdevinecop, dkdecop, rkdecop, ghalton

Examples

data(wdbc, package = "kdecopula") # load data
u <- VineCopula::pobs(wdbc[, 5:7], ties = "average") # rank-transform

fit <- kdevinecop(u) # estimate density
dkdevinecop(c(0.1, 0.1, 0.1), fit) # evaluate density estimate

kde1d

Univariate kernel density estimation for bounded and unbounded support

Description

Discrete variables are convoluted with the uniform distribution (see, Nagler, 2017). If a variable should be treated as discrete, declare it as ordered().

Usage

kde1d(x, mult = 1, xmin = -Inf, xmax = Inf, bw = NULL, bw_min = 0, ...)
Arguments

- **x**: vector of length \(n \).
- **mult**: numeric; the actual bandwidth used is \(bw \times mult \).
- **xmin**: lower bound for the support of the density.
- **xmax**: upper bound for the support of the density.
- **bw**: bandwidth parameter; has to be a positive number or NULL; the latter calls \texttt{KernSmooth::dpik()}.
- **bw_min**: minimum value for the bandwidth.
- **...**: unused.

Details

If \(xmin \) or \(xmax \) are finite, the density estimate will be 0 outside of \([xmin, xmax]\). Mirror-reflection is used to correct for boundary bias. Discrete variables are convoluted with the uniform distribution (see, Nagler, 2017).

Value

An object of class \texttt{kde1d}.

References

See Also

- \texttt{dkde1d, pkde1d, qkde1d, rkde1d plot.kde1d, lines.kde1d}

Examples

```r
data(wdbc, package = "kdecopula")  # load data
fit <- kde1d(wdbc[, 5])             # estimate density
dkde1d(1000, fit)                   # evaluate density estimate
```

Description

Implements the vine-copula based estimator of Nagler and Czado (2016). The marginal densities are estimated by \texttt{kde1d}, the vine copula density by \texttt{kdevinecop}. Discrete variables are convoluted with the uniform distribution (see, Nagler, 2017). If a variable should be treated as discrete, declare it as \texttt{ordered()}. Factors are expanded into binary dummy codes.
Usage

kdevine(x, mult_1d = NULL, xmin = NULL, xmax = NULL, copula.type = "kde", ...)

Arguments

x (nxd) data matrix.

mult_1d numeric; all bandwidths for marginal kernel density estimation are multiplied with mult_1d. Defaults to log(1 + d) where d is the number of variables after applying cctools::expand_as_numeric().

xmin numeric vector of length d; see kde1d.

xmax numeric vector of length d; see kde1d.

copula.type either "kde" (default) or "parametric" for kernel or parametric estimation of the vine copula.

... further arguments passed to kde1d or kdevinecop.

Value

An object of class kdevine.

References

See Also

dkdevine kde1d kdevinecop

Examples

load data
data(wdbc, package = "kdecopula")

estimate density (use xmin to indicate positive support)
fit <- kdevine(wdbc[, 5:7], xmin = rep(0, 3))

evaluate density estimate
dkdevine(c(1000, 0.1, 0.1), fit)

plot simulated data
pairs(rkdevine(nrow(wdbc), fit))
Description

The function estimates a vine copula density using kernel estimators for the pair copulas (based on the kdecopula package).

Usage

kdevinecop(data, matrix = NA, method = "TLL2", renorm.iter = 3L, mult = 1, test.level = NA, trunc.level = NA, treecrit = "tau", cores = 1, info = FALSE)

Arguments

data (nxd) matrix of copula data (have to lie in \([0,1]^d\)).
matrix R-Vine matrix (nxd) specifying the structure of the vine; if NA (default) the structure selection heuristic of Dissman et al. (2013) is applied.
method see kdecop.
renorm.iter see kdecop.
mult see kdecop.
test.level significance level for independence test. If you provide a number in \([0,1]\), an independence test (BiCopIndTest) will be performed for each pair; if the null hypothesis of independence cannot be rejected, the independence copula will be set for this pair. If test.level = NA (default), no independence test will be performed.
trunc.level integer; the truncation level. All pair copulas in trees above the truncation level will be set to independence.
treecrit criterion for structure selection; defaults to "tau".
cores integer; if cores > 1, estimation will be parallelized within each tree (using foreach).
info logical; if TRUE, additional information about the estimate will be gathered (see kdecop).

Value

An object of class kdevinecop. That is, a list containing

T1, T2, ... lists of the estimated pair copulas in each tree,
matrix the structure matrix of the vine,
info additional information about the fit (if info = TRUE).
plot.kde1d

plot.kde1d

Plotting kde1d objects

Description

Plotting kde1d objects

Usage

```r
## S3 method for class 'kde1d'
plot(x, ...)

## S3 method for class 'kde1d'
lines(x, ...)
```

Arguments

- `x`: kde1d object.
- `...`: further arguments passed to `plot.default`.

Examples

```r
data(wdbc, package = "kdecopula")
# rank-transform to copula data (margins are uniform)
u <- VineCopula::pobs(wdbc[, 5:7], ties = "average")

fit <- kdevinecop(u)  # estimate density
dkdevinecop(c(0.1, 0.1, 0.1), fit)  # evaluate density estimate
contour(fit)  # contour matrix (Gaussian scale)
pairs(rkdevinecop(500, fit))  # plot simulated data
```

See Also

dkdevinecop, kdecop, BiCopIndTest, foreach

References

Nagler, T., Czado, C. (2016)
Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas.

Selecting and estimating regular vine copulae and application to financial returns.
Computational Statistics & Data Analysis, 59(0):52–69.
rkdevine

See Also

kde1d, lines.kde1d

Examples

data(wdbc) # load data
fit <- kde1d(wdbc[, 7]) # estimate density
plot(fit) # plot density estimate

fit2 <- kde1d(as.ordered(wdbc[, 1])) # discrete variable
plot(fit2, col = 2)

rkdevine(n, obj, quasi = FALSE)

Arguments

n number of observations.
obj a kdevine object.
quasi logical; the default (FALSE) returns pseudo-random numbers, use TRUE for quasi-
 random numbers (generalized Halton, only works for fully nonparametric fits).

Value

An nxd matrix of simulated data from the kdevine object.

See Also

kdevine, rkdevinecop, rkde1d

Examples

load and plot data
data(wdbc)

estimate density
fit <- kde1d(wdbc[, 7], xinm = rep(0, 3))

plot simulated data
pairs(rkdevine(nrow(wdbc), fit))
Description

The data contain measurements on cells in suspicious lumps in a women’s breast. Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. All samples are classified as either *benign* or *malignant*.

Usage

```r
data(wdbc)
```

Format

`wdbc` is a `data.frame` with 31 columns. The first column indicates whether the sample is classified as benign (B) or malignant (M). The remaining columns contain measurements for 30 features.

Details

Ten real-valued features are computed for each cell nucleus:

a) radius (mean of distances from center to points on the perimeter)
b) texture (standard deviation of gray-scale values)
c) perimeter
d) area
e) smoothness (local variation in radius lengths)
f) compactness (perimeter^2 / area - 1.0)
g) concavity (severity of concave portions of the contour)
h) concave points (number of concave portions of the contour)
i) symmetry
j) fractal dimension ("coastline approximation" - 1)

The references listed below contain detailed descriptions of how these features are computed.

The mean, standard error, and "worst" or largest (mean of the three largest values) of these features were computed for each image, resulting in 30 features.

Note

This breast cancer database was obtained from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg.
Source

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

References

Examples

data(wdbc)
str(wdbc)
Index

∗Topic datasets
 wdbc, 12

∗Topic package
 kdevine-package, 2
 BiCopIndTest, 9, 10
 cctools::expand_as_numeric(), 8
 contour.kdecopula, 3
 contour.kdevinecop, 3
 dkde1d, 3, 7
 dkdecop, 6
 dkdevine, 4, 8
 dkdevinecop, 5, 10
 dkevinecop (dkdevinecop), 5
 foreach, 9, 10
 ghalton, 4–6
 kde1d, 2, 4, 6, 7, 8, 11
 kdecop, 9, 10
 kdecopula, 9
 kdecopula::kdecopula-package, 2
 kdevine, 2, 5, 7, 11
 kdevine-package, 2
 kdevinecop, 2, 3, 6–8, 9
 KernSmooth::dpik(), 7
 lines.kde1d, 7, 11
 lines.kde1d (plot.kde1d), 10
 ordered(), 6, 7
 pkde1d, 3, 7
 pkde1d (dkde1d), 3
 pkde1d, (dkde1d), 3
 plot.default, 10
 plot.kde1d, 7, 10
 qkde1d, 3, 7
 qkde1d (dkde1d), 3
 qkde1d, (dkde1d), 3
 rkde1d, 7, 11
 rkde1d (dkde1d), 3
 rkdecop, 6
 rkdevine, 11
 rkdevinecop, 11
 rkdevinecop (dkdevinecop), 5
 wdbc, 12