Package ‘kdevine’

October 18, 2022

Type Package

Title Multivariate Kernel Density Estimation with Vine Copulas

Version 0.4.4

URL https://github.com/tnagler/kdevine

BugReports https://github.com/tnagler/kdevine/issues

Description Implements the vine copula based kernel density estimator of Nagler and Czado (2016) <doi:10.1016/j.jmva.2016.07.003>. The estimator does not suffer from the curse of dimensionality and is therefore well suited for high-dimensional applications.

License GPL-3

Imports graphics, stats, utils, MASS, Rcpp, qrng, KernSmooth, cctools, kdecopula (>= 0.8.1), VineCopula, doParallel, parallel, foreach

LazyData yes

LinkingTo Rcpp

RoxygenNote 7.2.0

Suggests testthat

NeedsCompilation yes

Author Thomas Nagler [aut, cre]

Maintainer Thomas Nagler <mail@tnagler.com>

Repository CRAN

Date/Publication 2022-10-18 12:25:15 UTC

R topics documented:

kdevine-package .. 2
contour.kdevinecop ... 3
dkde1d ... 3
dkdevine ... 4
dkdevinecop ... 5
kde1d ... 6
Description

This package implements a vine copula based kernel density estimator. The estimator does not suffer from the curse of dimensionality and is therefore well suited for high-dimensional applications (see, Nagler and Czado, 2016).

Details

The multivariate kernel density estimators is implemented by the `kdevine` function. It combines a kernel density estimator for the margins (`kde1d`) and a kernel estimator of the vine copula density (`kdevinecop`). The package is built on top of the copula density estimators in the `kdecopula::kdecopula-package` and let’s you choose from all its implemented methods. Optionally, the vine copula can be estimated parameterically (only the margins are nonparametric).

Author(s)

Thomas Nagler

References

Nagler, T., Czado, C. (2016)
Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas.

A generic approach to nonparametric function estimation with mixed data.
arXiv:1704.07457
contour.kdevinecop Contour plots of pair copula kernel estimates

Description

Contour plots of pair copula kernel estimates

Usage

S3 method for class 'kdevinecop'
contour(x, tree = "ALL", xylim = NULL, cex.nums = 1, ...)

Arguments

x a kdevinecop object.
tree "ALL" or integer vector; specifies which trees are plotted.
xlim numeric vector of length 2; sets xlim and ylim for the contours.
cex.nums numeric; expansion factor for font of the numbers.
... arguments passed to contour.kdecopula.

Examples

data(wdbc, package = "kde1d") # load data
u <- VineCopula::pobs(wdbc[, 5:7], ties = "average") # rank-transform

estimate density
fit <- kdevinecop(u)

contour matrix
contour(fit)

dkde1d Working with a kde1d object

Description

The density, cdf, or quantile function of a kernel density estimate are evaluated at arbitrary points with dkde1d, pkde1d, and qkde1d respectively.
Usage

```r
dkde1d(x, obj)
pkde1d(x, obj)
qkde1d(x, obj)
rkde1d(n, obj, quasi = FALSE)
```

Arguments

- `x`: vector of evaluation points.
- `obj`: a `kde1d` object.
- `n`: integer; number of observations.
- `quasi`: logical; the default (FALSE) returns pseudo-random numbers, use TRUE for quasi-random numbers (generalized Halton, see `ghalton`).

Value

The density or cdf estimate evaluated at `x`.

See Also

- `kde1d`

Examples

```r
data(wdbc) # load data
fit <- kde1d(wdbc[, 5]) # estimate density
dkde1d(1000, fit) # evaluate density estimate
pkde1d(1000, fit) # evaluate corresponding cdf
qkde1d(0.5, fit) # quantile function
hist(rkde1d(100, fit)) # simulate
```

dkdevine

Evaluate the density of a kdevine object

Description

Evaluate the density of a kdevine object

Usage

```r
dkdevine(x, obj)
```
Arguments

\(x \) \((m \times d)\) matrix of evaluation points (or vector of length \(d\)).

\(\text{obj} \) a kdevine object.

Value

The density estimate evaluated at \(x\).

See Also

kdevine

Examples

```r
# load data
data(wdbc)

# estimate density (use xmin to indicate positive support)
fit <- kdevine(wdbc[, 5:7], xmin = rep(0, 3))

# evaluate density estimate
dkdevine(c(1000, 0.1, 0.1), fit)
```

Description

A vine copula density estimate (stored in a kdevinecop object) can be evaluated on arbitrary points with dkdevinecop. Furthermore, you can simulate from the estimated density with rkdevinecop.

Usage

```r
dkdevinecop(u, obj, stable = FALSE)
rkdevinecop(n, obj, U = NULL, quasi = FALSE)
```

Arguments

\(u\) \(m \times 2\) matrix of evaluation points.

\(\text{obj}\) kdevinecop object.

\(\text{stable}\) logical; option for stabilizing the estimator: the estimated pair copula density is cut off at 50.

\(n\) integer; number of observations.

\(U\) (optional) \(n \times d\) matrix of independent uniform random variables.

\(\text{quasi}\) logical; the default (FALSE) returns pseudo-random numbers, use TRUE for quasi-random numbers (generalized Halton, see ghalton).
Value

A numeric vector of the density/cdf or a \(n \times 2 \) matrix of simulated data.

Author(s)

Thomas Nagler

References

Nagler, T., Czado, C. (2016)
Evading the curse of dimensionality in nonparametric density estimation.

Selecting and estimating regular vine copulae and application to financial returns.
Computational Statistics & Data Analysis, 59(0):52–69.

See Also

kdevinecop, dkdecop, rkdecop, ghalton

Examples

```r
data(wdbc, package = "kdecopula") # load data
u <- VineCopula::pobs(wdbc[, 5:7], ties = "average") # rank-transform

fit <- kdevinecop(u) # estimate density
dkdevinecop(c(0.1, 0.1, 0.1), fit) # evaluate density estimate
```

Description

Discrete variables are convoluted with the uniform distribution (see, Nagler, 2017). If a variable should be treated as discrete, declare it as `ordered()`.

Usage

```r
kde1d(x, mult = 1, xmin = -Inf, xmax = Inf, bw = NULL, bw_min = 0, ...)
```
kdevine

Kernel density estimation based on simplified vine copulas

Arguments

- **x**: vector of length \(n \).
- **mult**: numeric; the actual bandwidth used is \(bw \times mult \).
- **xmin**: lower bound for the support of the density.
- **xmax**: upper bound for the support of the density.
- **bw**: bandwidth parameter; has to be a positive number or NULL; the latter calls `KernSmooth::dpik()`.
- **bw_min**: minimum value for the bandwidth.
- **...**: unused.

Details

If \(xmin \) or \(xmax \) are finite, the density estimate will be 0 outside of \([xmin, xmax]\). Mirror-reflection is used to correct for boundary bias. Discrete variables are convoluted with the uniform distribution (see, Nagler, 2017).

Value

An object of class `kde1d`.

References

See Also

- `dkde1d`, `pkde1d`, `qkde1d`, `rkde1d`, `plot.kde1d`, `lines.kde1d`

Examples

```r
data(wdbc, package = "kdecopula") # load data
fit <- kde1d(wdbc[, 5]) # estimate density
dkde1d(1000, fit) # evaluate density estimate
```

Description

Implements the vine-copula based estimator of Nagler and Czado (2016). The marginal densities are estimated by `kde1d`, the vine copula density by `kdevinecop`. Discrete variables are convoluted with the uniform distribution (see, Nagler, 2017). If a variable should be treated as discrete, declare it as `ordered()`. Factors are expanded into binary dummy codes.
Usage

kdevine(x, mult_1d = NULL, xmin = NULL, xmax = NULL, copula.type = "kde", ...)

Arguments

x

(\textit{nxd}) data matrix.

mult_1d

numeric; all bandwidths for marginal kernel density estimation are multiplied with mult_1d. Defaults to \(\log(1 + d)\) where \(d\) is the number of variables after applying \texttt{cctools::expand_as_numeric()}.

xmin

numeric vector of length \(d\); see \texttt{kde1d}.

xmax

numeric vector of length \(d\); see \texttt{kde1d}.

copula.type

either "kde" (default) or "parametric" for kernel or parametric estimation of the vine copula.

...

further arguments passed to \texttt{kde1d} or \texttt{kdevinecop}.

Value

An object of class \texttt{kdevine}.

References

See Also

\texttt{dkdevine \ kde1d \ kdevinecop}

Examples

load data
data(wdbc, package = "kdecopula")

estimate density (use xmin to indicate positive support)
fit <- kdevine(wdbc[, 5:7], xmin = rep(0, 3))

evaluate density estimate
dkdevine(c(1000, 0.1, 0.1), fit)

plot simulated data
pairs(rkdevine(nrow(wdbc), fit))
kernel estimation of vine copula densities

Description

The function estimates a vine copula density using kernel estimators for the pair copulas (based on the kdecopula package).

Usage

kdevinecop(
 data, # (nxd) matrix of copula data (have to lie in [0, 1^d]).
 matrix = NA, # R-Vine matrix (nxd) specifying the structure of the vine; if NA (default) the structure selection heuristic of Dissman et al. (2013) is applied.
 method = "TLL2", # see kdecop.
 renorm.iter = 3L, # see kdecop.
 mult = 1, # see kdecop.
 test.level = NA, # significance level for independence test. If you provide a number in [0, 1], an independence test (BiCopIndTest) will be performed for each pair; if the null hypothesis of independence cannot be rejected, the independence copula will be set for this pair. If test.level = NA (default), no independence test will be performed.
 trunc.level = NA, # integer; the truncation level. All pair copulas in trees above the truncation level will be set to independence.
 treecrit = "tau", # criterion for structure selection; defaults to "tau".
 cores = 1, # integer; if cores > 1, estimation will be parallelised within each tree (using foreach).
 info = FALSE # logical; if TRUE, additional information about the estimate will be gathered (see kdecop).
)

Arguments

data (nxd) matrix of copula data (have to lie in [0, 1^d]).
matrix R-Vine matrix (nxd) specifying the structure of the vine; if NA (default) the structure selection heuristic of Dissman et al. (2013) is applied.
method see kdecop.
renorm.iter see kdecop.
mult see kdecop.
test.level significance level for independence test. If you provide a number in [0, 1], an independence test (BiCopIndTest) will be performed for each pair; if the null hypothesis of independence cannot be rejected, the independence copula will be set for this pair. If test.level = NA (default), no independence test will be performed.
trunc.level integer; the truncation level. All pair copulas in trees above the truncation level will be set to independence.
treecrit criterion for structure selection; defaults to "tau".
cores integer; if cores > 1, estimation will be parallelised within each tree (using foreach).
info logical; if TRUE, additional information about the estimate will be gathered (see kdecop).
Value

An object of class kdevinecop. That is, a list containing

T1, T2, ... lists of the estimated pair copulas in each tree,
matrix the structure matrix of the vine,
info additional information about the fit (if info = TRUE).

References

Nagler, T., Czado, C. (2016)
Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas.

Selecting and estimating regular vine copulae and application to financial returns.
Computational Statistics & Data Analysis, 59(0):52–69.

See Also
dkdevinecop, kdecop, BiCopIndTest, foreach

Examples

data(wdbc, package = "kdecopula")
rank-transform to copula data (margins are uniform)
u <- VineCopula::pobs(wdbc[, 5:7], ties = "average")

fit <- kdevinecop(u) # estimate density
dkdevinecop(c(0.1, 0.1, 0.1), fit) # evaluate density estimate
contour(fit) # contour matrix (Gaussian scale)
pairs(rkdevinecop(500, fit)) # plot simulated data

plot.kde1d Plotting kde1d objects

Description

Plotting kde1d objects

Usage

S3 method for class 'kde1d'
plot(x, ...)

S3 method for class 'kde1d'
lines(x, ...)
rkdevine

Arguments

x kde1d object.

... further arguments passed to plot.default.

See Also

kde1d lines.kde1d

Examples

data(wdbc) # load data
fit <- kde1d(wdbc[, 7]) # estimate density
plot(fit) # plot density estimate

fit2 <- kde1d(as.ordered(wdbc[, 1])) # discrete variable
plot(fit2, col = 2)

rkdevine Simulate from a kdevine object

Description

Simulate from a kdevine object

Usage

rkdevine(n, obj, quasi = FALSE)

Arguments

n number of observations.
obj a kdevine object.
quasi logical; the default (FALSE) returns pseudo-random numbers, use TRUE for quasi-random numbers (generalized Halton, only works for fully nonparametric fits).

Value

An nxd matrix of simulated data from the kdevine object.

See Also

kdevine, rkdevinecop, rkde1d
Examples

load and plot data
data(wdbc)

estimate density
fit <- kdevine(wdbc[, 5:7], xmin = rep(0, 3))

plot simulated data
pairs(rkdevine(nrow(wdbc), fit))

wdbc Wisconsin Diagnostic Breast Cancer (WDBC)

Description

The data contain measurements on cells in suspicious lumps in a women’s breast. Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. All samples are classified as either benign or malignant.

Usage

data(wdbc)

Format

wdbc is a data.frame with 31 columns. The first column indicates whether the sample is classified as benign (B) or malignant (M). The remaining columns contain measurements for 30 features.

Details

Ten real-valued features are computed for each cell nucleus:

a) radius (mean of distances from center to points on the perimeter)
b) texture (standard deviation of gray-scale values)
c) perimeter
d) area
e) smoothness (local variation in radius lengths)
f) compactness (perimeter^2 / area - 1.0)
g) concavity (severity of concave portions of the contour)
h) concave points (number of concave portions of the contour)
i) symmetry
j) fractal dimension ("coastline approximation" - 1)

The references listed below contain detailed descriptions of how these features are computed. The mean, standard error, and "worst" or largest (mean of the three largest values) of these features were computed for each image, resulting in 30 features.
Note

This breast cancer database was obtained from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg.

Source

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

References

Examples

data(wdbc)
str(wdbc)
Index

* datasets
 wdbc, 12

* package
 kdevine-package, 2
 BiCopIndTest, 9, 10
 cctools::expand_as_numeric(), 8
 contour.kdecopula, 3
 contour.kdevinecop, 3
 dkde1d, 3, 3, 7
 dkdecop, 6
 dkdevine, 4, 8
 dkdevinecop, 5, 10
 dkevinecop (dkdevinecop), 5
 foreach, 9, 10
 ghalton, 4–6
 kde1d, 2, 4, 6, 7, 8, 11
 kdecop, 9, 10
 kdecopula, 9
 kdecopula::kdecopula-package, 2
 kdevine, 2, 5, 7, 11
 kdevine-package, 2
 kdevinecop, 2, 3, 6–8, 9
 KernSmooth::dpik(), 7
 lines.kde1d, 7, 11
 lines.kde1d (plot.kde1d), 10
 ordered(), 6, 7
 pkde1d, 3, 7
 pkde1d (dkde1d), 3
 pkde1d, (dkde1d), 3
 plot.default, 11
 plot.kde1d, 7, 10
 qkde1d, 3, 7
 qkde1d (dkde1d), 3
 qkde1d, (dkde1d), 3
 rkde1d, 7, 11
 rkde1d (dkde1d), 3
 rkdecop, 6
 rkdevine, 11
 rkdevinecop, 11
 rkdevinecop (dkdevinecop), 5
 wdbc, 12