Package ‘kelvin’

June 18, 2020

Type Package
Title Calculate Solutions to the Kelvin Differential Equation using Bessel Functions
Version 2.0-2
Date 2020-06-17
Author Andrew J Barbour
Maintainer Andrew J Barbour <andy.barbour@gmail.com>
Description Uses Bessel functions to calculate the fundamental and complementary analytic solutions to the Kelvin differential equation.
Depends R (>= 2.10.1)
Imports Bessel (>= 0.5-4)
Suggests knitr, rmarkdown, testthat
License GPL (>= 2)
URL https://github.com/abarbour/kelvin
BugReports https://github.com/abarbour/kelvin/issues
LazyLoad TRUE
VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.1.0
NeedsCompilation no
Repository CRAN
Date/Publication 2020-06-18 05:00:02 UTC

R topics documented:

kelvin-package ... 2
Beir ... 3
Keir ... 4

Index
Fundamental and equivalent solutions to the Kelvin differential equation using Bessel functions

Description

The functions here use Bessel functions to calculate the analytic solutions to the Kelvin differential equation, namely the fundamental (Be) and equivalent (Ke) complex functions.

Details

The complex second-order ordinary differential equation, known as the Kelvin differential equation, is defined as

\[x^2 \ddot{y} + x \dot{y} - (ix^2 + \nu^2) y = 0 \]

and has a suite of complex solutions. One set of solutions, \(B_{\nu} \), is defined in the following manner:

\[
B_{\nu} \equiv Ber_{\nu}(x) + iBei_{\nu}(x) \\
= J_{\nu}(x \cdot \exp(3\pi i/4)) \\
= \exp(\nu\pi i) \cdot J_{\nu}(x \cdot \exp(-\pi i/4)) \\
= \exp(\nu\pi i/2) \cdot I_{\nu}(x \cdot \exp(\pi i/4)) \\
= \exp(3\nu\pi i/2) \cdot I_{\nu}(x \cdot \exp(-3\pi i/4))
\]

where \(J_{\nu} \) is a Bessel function of the first kind, and \(I_{\nu} \) is a modified Bessel function of the first kind.

Similarly, the complementary solutions, \(K_{\nu} \), are defined as

\[
K_{\nu} \equiv Ker_{\nu}(x) + iKei_{\nu}(x) \\
= \exp(-\nu\pi i/2) \cdot K_{\nu}(x \cdot \exp(\pi i/4))
\]

where \(K_{\nu} \) is a modified Bessel function of the second kind.

The relationships between \(y \) in the differential equation, and the solutions \(B_{\nu} \) and \(K_{\nu} \) are as follows

\[
y = Ber_{\nu}(x) + iBei_{\nu}(x) \\
= Ber_{-\nu}(x) + iBei_{-\nu}(x) \\
= Ker_{\nu}(x) + iKei_{\nu}(x) \\
= Ker_{-\nu}(x) + iKei_{-\nu}(x)
\]

In the case where \(\nu = 0 \), the differential equation reduces to

\[x^2 \ddot{y} + x \dot{y} - ix^2 y = 0 \]

which has the set of solutions:

\[
J_0\left(i\sqrt{1} \cdot x\right) \\
= J_0\left(\sqrt{2} \cdot (i - 1) \cdot x/2\right) \\
= Ber_0(x) + iBei_0(x) \equiv B_0
\]

This package has functions to calculate \(B_{\nu} \) and \(K_{\nu} \).
Beir

Author(s)
Andrew Barbour <andy.barbour@gmail.com>

References

Kelvin functions: http://mathworld.wolfram.com/KelvinFunctions.html

Bessel functions: http://mathworld.wolfram.com/BesselFunction.html

See Also
Fundamental solution: `Beir`
Equivalent solution: `Keir`

Beir
Fundamental solution to the Kelvin differential equation (J)

Description
This function calculates the complex solution to the Kelvin differential equation using modified Bessel functions of the *first kind*, specifically those produced by `BesselJ`.

Usage
```
Beir(x, ...)  
## Default S3 method:  
Beir(x, nu. = 0, nSeq. = 1, return.list = FALSE, ...)  
Bei(...)  
Ber(...)  
```

Arguments

- `x`
 numeric; values to evaluate the complex solution at

- `...`
 additional arguments passed to `BesselK` or `Beir`

- `nu.`
 numeric; value of ν in B_ν solutions

- `nSeq.`
 positive integer; equivalent to `nSeq` in `BesselJ`

- `return.list`
 logical; Should the result be a list instead of matrix?
Details

\texttt{Ber} and \texttt{Bei} are wrapper functions which return the real and imaginary components of \texttt{Beir}, respectively.

Value

If \texttt{return.list==FALSE} (the default), a complex matrix with as many columns as using \texttt{nSeq.} creates. Otherwise the result is a list with matrices for Real and Imaginary components.

Author(s)

Andrew Barbour

References

http://mathworld.wolfram.com/KelvinFunctions.html

Imaginary: http://mathworld.wolfram.com/Bei.html

Real: http://mathworld.wolfram.com/Ber.html

See Also

\texttt{kelvin-package,Keir,BesselJ}

Examples

\begin{verbatim}
Beir(1:10) # defaults to nu.=0
Beir(1:10, nu.=2)
Beir(1:10, nSeq.=2)
Beir(1:10, nSeq.=2, return.list=TRUE)

Imaginary component only
Bei(1:10)

Real component only
Ber(1:10)
\end{verbatim}

\hline
\texttt{Keir} & \textit{Complementary solution to the Kelvin differential equation (K)} \\

\hline

Description

This function calculates the complex solution to the Kelvin differential equation using modified Bessel functions of the second kind, specifically those produced by \texttt{BesselK}.
Usage

Keir(x, ...)

Default S3 method:
Keir(
 x,
 nu. = 0,
 nSeq. = 1,
 add.tol = TRUE,
 return.list = FALSE,
 show.scaling = FALSE,
 ...
)

Kei(...)

Ker(...)

Arguments

x numeric; values to evaluate the complex solution at
...
additional arguments passed to BesselK or Keir
nu. numeric; value of \(\nu \) in \(K_\nu \) solutions
nSeq. positive integer; equivalent to nSeq in BesselK
add.tol logical; Should a fudge factor be added to prevent an error for zero-values?
return.list logical; Should the result be a list instead of matrix?
show.scaling logical; Should the normalization values be given as a message?

Details

Ker and Kei are wrapper functions which return the real and imaginary components of Keir, respectively.

Value

If return.list==FALSE (the default), a complex matrix with as many columns as using nSeq. creates. Otherwise the result is a list with matrices for Real and Imaginary components.

Author(s)

Andrew Barbour

References

http://mathworld.wolfram.com/KelvinFunctions.html
Imaginary: http://mathworld.wolfram.com/Kei.html
Real: http://mathworld.wolfram.com/Ker.html
See Also

kelvin-package, Beir, BesselK

Examples

Keir(1:10) # defaults to nu.=0, nSeq=1
Keir(1:10, nu.=2)
Keir(1:10, nSeq=2)
Keir(1:10, nSeq=2, return.list=TRUE)

Imaginary component only
Kei(1:10)

Real component only
Ker(1:10)
Index

Bei, 4
Bei (Beir), 3
Beir, 3, 3, 4, 6
Ber, 4
Ber (Beir), 3
BesselJ, 3, 4
BesselK, 3–6

Kei, 5
Kei (Keir), 4
Keir, 3, 4, 4, 5
kelvin (kelvin-package), 2
kelvin-package, 2
Ker, 5
Ker (Keir), 4