Package ‘kerSeg’

June 13, 2022

Type Package
Title New Kernel-Based Change-Point Detection
Version 1.0
Author Hoseung Song [aut, cre],
 Hao Chen [aut]
Maintainer Hoseung Song <hosong@ucdavis.edu>
Description New kernel-based test and fast tests for detecting change-points or changed-
 intervals where the distributions abruptly change. They work well particularly for high-
 dimensional data.
 Song, H. and Chen, H. (2022)
License GPL (>= 2)
Imports Rcpp (>= 1.0.7)
LinkingTo Rcpp
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-06-13 06:40:05 UTC

R topics documented:

 gaussiankernel .. 2
 kerSeg ... 2
 kerseg1 ... 4
 kerseg2 ... 6
 skew ... 7
 statint .. 8

Index 9
gaussiankernel

Compute the Gaussian kernel matrix

Description

This function provides the Gaussian kernel matrix computed with the median heuristic bandwidth.

Usage

```r
gaussiankernel(X)
```

Arguments

- `X`
The samples in the sequence.

Value

Returns a numeric matrix, the Gaussian kernel matrix computed with the specified bandwidth.

See Also

kerSeg, kerseg1, kerseg2

Examples

```r
## Sequence : change in the mean in the middle of the sequence.
d = 50
mu = 2
tau = 50
n = 100
set.seed(1)
y = rbind(matrix(rnorm(d*tau),tau), matrix(rnorm(d*(n-tau),mu/sqrt(d)), n-tau))
K = gaussiankernel(y) # Gaussian kernel matrix
```

kerSeg

New kernel-based change-point detection

Description

This package can be used to detect change-points where the distributions abruptly change. The Gaussian kernel with the median heuristic, which is the median of all pairwise distances among observations, is used.
Details
To compute the Gaussian kernel matrix with the median heuristic bandwidth, the function `gaussiankernel` should be used. The main functions are `kerseg1` for the single change-point alternative and `kerseg2` for the changed-interval alternative.

Author(s)
Hoseung Song and Hao Chen
Maintainer: Hoseung Song (hosong@ucdavis.edu)

References

See Also
kerseg1, kerseg2, gaussiankernel

Examples
```r
## Sequence 1: change in the mean in the middle of the sequence.
d = 50
mu = 2
tau = 15
n = 50
set.seed(1)
y = rbind(matrix(rnorm(d*tau),tau), matrix(rnorm(d*(n-tau),mu/sqrt(d)), n-tau))
K = gaussiankernel(y) # Gaussian kernel matrix
a = kerseg1(n, K, pval.perm=TRUE, B=1000)
# output results based on the permutation and the asymptotic results.
# the scan statistics can be found in a$scanZ.
# the approximated p-values can be found in a$appr.
# the permutation p-values can be found in a$perm.

## Sequence 2: change in both the mean and variance away from the middle of the sequence.
d = 50
mu = 2
sigma = 0.7
tau = 35
n = 50
set.seed(1)
y = rbind(matrix(rnorm(d*tau),tau), matrix(rnorm(d*(n-tau),mu/sqrt(d),sigma), n-tau))
K = gaussiankernel(y)
a = kerseg1(n, K, pval.perm=TRUE, B=1000)

## Sequence 3: change in both the mean and variance happens on an interval.
d = 50
mu = 2
sigma = 0.5
tau1 = 25
tau2 = 35
```
```r
n = 50
set.seed(1)
y1 = matrix(rnorm(d*tau1),tau1)
y2 = matrix(rnorm(d*(tau2-tau1),mu/sqrt(d),sigma), tau2-tau1)
y3 = matrix(rnorm(d*(n-tau2)), n-tau2)
y = rbind(y1, y2, y3)
K = gaussiankernel(y)
a = kerseg2(n, K, pval.perm=TRUE, B=1000)
```

kerseg1
Kernel-based change-point detection for single change-point alternatives

Description

This function finds a break point in the sequence where the underlying distribution changes.

Usage

```r
kerseg1(n, K, r1=1.2, r2=0.8, n0=0.05*n, n1=0.95*n,
pval.appr=TRUE, skew.corr=TRUE, pval.perm=FALSE, B=100)
```

Arguments

- **n**
The number of observations in the sequence.
- **K**
The kernel matrix of observations in the sequence.
- **r1**
The constant in the test statistics $Z_{W,r_1}(t)$.
- **r2**
The constant in the test statistics $Z_{W,r_2}(t)$.
- **n0**
The starting index to be considered as a candidate for the change-point.
- **n1**
The ending index to be considered as a candidate for the change-point.
- **pval.appr**
If it is TRUE, the function outputs the p-value approximation based on asymptotic properties.
- **skew.corr**
This argument is useful only when pval.appr=TRUE. If skew.corr is TRUE, the p-value approximation would incorporate skewness correction.
- **pval.perm**
If it is TRUE, the function outputs the p-value from doing B permutations, where B is another argument that you can specify. Doing permutation could be time consuming, so use this argument with caution as it may take a long time to finish the permutation.
- **B**
This argument is useful only when pval.perm=TRUE. The default value for B is 100.
Value

Returns a list `stat` containing the each scan statistic, `tauhat` containing the estimated location of change-point, `appr` containing the approximated p-values of the fast tests when argument ‘pval.appr’ is TRUE, and `perm` containing the permutation p-values of the fast tests and GKCP when argument ‘pval.perm’ is TRUE. See below for more details.

- `seq`: A vector of each scan statistic (standardized counts).
- `Zmax`: The test statistics (maximum of the scan statistics).
- `tauhat`: An estimate of the location of the change-point.
- `fGKCP1_bon`: The p-value of fGKCP$_1$ obtained by the Bonferroni procedure.
- `fGKCP1_sim`: The p-value of fGKCP$_1$ obtained by the Simes procedure.
- `fGKCP2_bon`: The p-value of fGKCP$_2$ obtained by the Bonferroni procedure.
- `fGKCP2_sim`: The p-value of fGKCP$_2$ obtained by the Simes procedure.
- `GKCP`: The p-value of GKCP obtained by the random permutation.

See Also

- `kerSeg`, `kerseg1`, `gaussiankernel`, `kerseg2`

Examples

```r
## Sequence 1: change in the mean in the middle of the sequence.
d = 50
mu = 2
tau = 25
n = 50
set.seed(1)
y = rbind(matrix(rnorm(d*tau),tau), matrix(rnorm(d*(n-tau),mu/sqrt(d)), n-tau))
K = gaussiankernel(y)  # Gaussian kernel matrix
a = kerseg1(n, K, pval.perm=TRUE, B=1000)
# output results based on the permutation and the asymptotic results.
# the scan statistics can be found in a$scanZ.
# the approximated p-values can be found in a$appr.
# the permutation p-values can be found in a$perm.

## Sequence 2: change in both the mean and variance away from the middle of the sequence.
d = 50
mu = 2
sigma = 0.7
tau = 35
n = 50
set.seed(1)
y = rbind(matrix(rnorm(d*tau),tau), matrix(rnorm(d*(n-tau),mu/sqrt(d),sigma), n-tau))
K = gaussiankernel(y)
a = kerseg1(n, K, pval.perm=TRUE, B=1000)
```

Kernel-based change-point detection for changed-interval alternatives

Description
This function finds an interval in the sequence where their underlying distribution differs from the rest of the sequence.

Usage
kerseg2(n, K, r1=1.2, r2=0.8, l0=0.05*n, l1=0.95*n, pval.appr=TRUE, skew.corr=TRUE, pval.perm=FALSE, B=100)

Arguments
- n: The number of observations in the sequence.
- K: The kernel matrix of observations in the sequence.
- r1: The constant in the test statistics $Z_{W,r1}(t_1,t_2)$.
- r2: The constant in the test statistics $Z_{W,r2}(t_1,t_2)$.
- l0: The minimum length of the interval to be considered as a changed interval.
- l1: The maximum length of the interval to be considered as a changed interval.
- pval.appr: If it is TRUE, the function outputs the p-value approximation based on asymptotic properties.
- skew.corr: This argument is useful only when pval.appr=TRUE. If skew.corr is TRUE, the p-value approximation would incorporate skewness correction.
- pval.perm: If it is TRUE, the function outputs the p-value from doing B permutations, where B is another argument that you can specify. Doing permutation could be time consuming, so use this argument with caution as it may take a long time to finish the permutation.
- B: This argument is useful only when pval.perm=TRUE. The default value for B is 100.

Value
Returns a list containing the each scan statistic, tauhat containing the estimated changed-interval, appr containing the approximated p-values of the fast tests when argument ‘pval.appr’ is TRUE, and perm containing the permutation p-values of the fast tests and GKCP when argument ‘pval.perm’ is TRUE. See below for more details.

seq: A matrix of each scan statistic (standardized counts).
Zmax: The test statistics (maximum of the scan statistics).
tauhat: An estimate of the two ends of the changed-interval.
fGKCP1_bon: The p-value of fGKCP obtained by the Bonferroni procedure.
skew

fGKCP1_sim The p-value of fGKCP\(_1\) obtained by the Simes procedure.
fGKCP2_bon The p-value of fGKCP\(_2\) obtained by the Bonferroni procedure.
fGKCP2_sim The p-value of fGKCP\(_2\) obtained by the Simes procedure.
GKCP The p-value of GKCP obtained by the random permutation.

See Also
kerSeg, kerseg2, gaussiankernel, kerseg1

Examples

```r
## Sequence 3: change in both the mean and variance happens on an interval.
d = 50
mu = 2
sigma = 0.5
tau1 = 25
tau2 = 35
n = 50
set.seed(1)
y1 = matrix(rnorm(d*tau1), tau1)
y2 = matrix(rnorm(d*(tau2-tau1), mu/sqrt(d), sigma), tau2-tau1)
y3 = matrix(rnorm(d*(n-tau2)), n-tau2)
y = rbind(y1, y2, y3)
K = gaussiankernel(y)
a = kerseg2(n, K, pval.perm=TRUE, B=1000)
```

skew

Compute some components utilized in the third moment formulas.

Description

This function provides some components used in the third moment formulas.

Usage

skew(K, Rtemp, Rtemp2, R0, R2)

Arguments

K A kernel matrix of observations in the sequence.
Rtemp A numeric vector of \(k_i\), the sum of kernel values for each row \(i\).
Rtemp2 A numeric vector, the sum of squared kernel values for each row \(i\).
R0 The term \(R_0\), defined in the paper.
R2 The term \(R_2\), defined in the paper.

Value

Returns a list of components used in the third moment formulas.
Compute the test statistics, D and W, for the changed-interval alternatives.

Description
This function provides the test statistics, $D(t_1, t_2)$, $W(t_1, t_2)$, and the weighted $W(t_1, t_2)$ for the changed-interval alternatives.

Usage
statint(K, Rtemp, R0, r1, r2)

Arguments
- **K**: A kernel matrix of observations in the sequence.
- **Rtemp**: A numeric vector of k_i, the sum of kernel values for each row i.
- **R0**: The term R_0, defined in the paper.
- **r1**: The constant in the test statistics $Z_{W,r1}(t_1, t_2)$.
- **r2**: The constant in the test statistics $Z_{W,r2}(t_1, t_2)$.

Value
Returns a list of test statistics, $D(t_1, t_2)$, $W(t_1, t_2)$, $W_{r1}(t_1, t_2)$, and $W_{r2}(t_1, t_2)$.

Examples
```r
## Sequence : change in the mean in the middle of the sequence.
d = 50
mu = 2
tau = 50
n = 100
set.seed(1)
y = rbind(matrix(rnorm(d*tau),tau), matrix(rnorm(d*(n-tau),mu/sqrt(d)), n-tau))
K = gaussiankernel(y) # Gaussian kernel matrix
R_temp = rowSums(K)
R0 = sum(K)
a = statint(K, R_temp, R0, r1=1.2, r2=0.8)
```
Index

gaussiankernel, 2, 3, 5, 7
kerSeg, 2, 2, 5, 7
kerseg1, 2, 3, 4, 5, 7
kerseg2, 2, 3, 5, 6, 7
skew, 7
statint, 8