Package ‘kernelPSI’

December 8, 2019

Title Post-Selection Inference for Nonlinear Variable Selection
Version 1.1.1
Date 2019-12-07
Description Different post-selection inference strategies for kernel
selection, as described in "kernelPSI: a Post-Selection Inference Framework
for Nonlinear Variable Selection", Slim et al., Proceedings of Machine
gies rest upon quadratic kernel
association scores to measure the association between a given kernel and an
outcome of interest. The inference step tests for the joint effect of the
selected kernels on the outcome. A fast constrained sampling algorithm is
proposed to derive empirical p-values for the test statistics.

URL http://proceedings.mlr.press/v97/slim19a.html
Depends R (>= 3.5.0)
License GPL (>= 2)
Imports Rcpp (>= 1.0.1), CompQuadForm, pracma, kernlab, lmtest
Suggests bindata, knitr, rmarkdown, MASS, testthat
Encoding UTF-8
LinkingTo Rcpp, RcppArmadillo
VignetteBuilder knitr
RoxygenNote 7.0.2
NeedsCompilation yes
Author Lotfi Slim [aut, cre],
 Clément Chatelain [ctb],
 Chloé-Agathe Azencott [ctb],
 Jean-Philippe Vert [ctb]
Maintainer Lotfi Slim <lotfi.slim@mines-paristech.fr>
Repository CRAN
Date/Publication 2019-12-07 23:00:02 UTC
R topics documented:

- adaFOHSIC
- adaQ
- anovaLR
- FOHSIC
- forwardQ
- HSIC
- kernelPSI
- maxLR
- pcaLR
- quadHSIC
- ridgeLR
- sampleH
- SKAT

Index

- adaFOHSIC

Description

This function is similar to the FOHSIC function. The only difference lies in the adaptive selection of the number of causal kernels. First, similarly to FOHSIC, the order of selection of the \(n \) kernels in \(K \) is determined, and then, the size of the subset of ordered kernels is chosen. The size is chosen as to maximize the overall association with the kernel \(L \).

Usage

`adaFOHSIC(K, L)`

Arguments

- \(K \) : list of kernel similarity matrices
- \(L \) : kernel similarity matrix for the outcome

Value

A list where the first item `selection` is the order of selection of all kernels in the list \(K \) and the second item is the number of selected kernels.

adaptively selects a subset of kernels in a forward fashion.
 adaQ

Examples

\begin{verbatim}
n <- 50
p <- 20
K <- replicate(5, matrix(rnorm(n*p), nrow = n, ncol = p), simplify = FALSE)
L <- matrix(rnorm(n*p), nrow = n, ncol = p)
K <- sapply(K, function(X) return(X %*% t(X) / dim(X)[2]), simplify = FALSE)
L <- L %*% t(L) / p
adaS <- adaFOHSIC(K, L)
print(names(adaS) == c("selection", "n"))
\end{verbatim}

Description

Similarly to the fixed variant, the adaptive selection of the kernels in a forward fashion can also be modeled with a set of quadratic constraints. The constraints for adaptive selection can be split into two subsets. The first subset encodes the order of selection of the kernels, while the second subset encodes the selection of the number of the kernels. The two subsets are equally sized (\(\text{length}(K) - 1\)) and are sequentially included in the output list.

Usage

\begin{verbatim}
adaQ(K, select, n)
\end{verbatim}

Arguments

- **K**: list kernel similarity matrices
- **select**: integer vector containing the order of selection of the kernels in \(K\). Typically, the \text{selection} field of the output of \text{FOHSIC}.
- **n**: number of selected kernels. Typically, the \text{n} field of the output of \text{adaFOHSIC}.

Value

list of matrices modeling the quadratic constraints of the adaptive selection event

References

Examples

\[n \leftarrow 50 \]
\[p \leftarrow 20 \]
\[K \leftarrow \text{replicate}(8, \text{matrix}(\text{rnorm}(n*p), \text{nrow} = n, \text{ncol} = p), \text{simplify} = \text{FALSE}) \]
\[K \leftarrow \text{sapply}(K, \text{function}(X) \text{return}(X \%*% t(X) / \text{dim}(X)[2]), \text{simplify} = \text{FALSE}) \]
\[L \leftarrow \text{matrix}(\text{rnorm}(n*p), \text{nrow} = n, \text{ncol} = p) \]
\[L \leftarrow L \%*% t(L) / p \]
\[\text{adaS} \leftarrow \text{adaFOHSIC}(K, L) \]
\[\text{listQ} \leftarrow \text{adaQ}(K, \text{select} = \text{adaS}[["selection"]], n = \text{adaS}[["n"]]) \]

\text{anovaLR} \text{ implements a scaled variant of the maximum likelihood ratio test}

Description

Compared to \text{maxLR}, the residual sum of squares (RSS) is scaled by the degrees of freedom of the model \(df = n - k \), where \(n \) is the number of samples and \(k \) is the number of covariates. In \text{maxLR}, the RSS is instead averaged over \(n \). Both estimators are asymptotically equivalent, with minor differences for finite samples. Further details in this link.

Usage

\text{anovaLR}(X, Y)

Arguments

\[X \quad \text{covariate matrix} \]
\[Y \quad \text{response vector} \]

Value

\(p \)-value of the test

See Also

Other LR test: \text{maxLR()}

Examples

\[n \leftarrow 50 \]
\[p \leftarrow 20 \]
\[X \leftarrow \text{matrix}(\text{rnorm}(n*p), \text{nrow} = n, \text{ncol} = p) \]
\[Y \leftarrow \text{rnorm}(n) \]
\[\text{stat.anova} \leftarrow \text{anovaLR}(X, Y) \]
selects a fixed number of kernels which are most associated with the outcome kernel.

Description

This function implements a forward algorithm for kernel selection. In the first step, the kernel which maximizes the HSIC measure with the outcome kernel \(L \) is selected. In the subsequent iterations, the kernel which, combined with the selected kernels maximizes the HSIC measure is selected. For the sum kernel combination rule, the forward algorithm can be simplified. The kernels which maximize the HSIC measure with the kernel \(L \) are selected in a descending order.

Usage

FOHSIC(K, L, mKernels = 1L)

Arguments

- **K**: list of kernel similarity matrices
- **L**: kernel similarity matrix for the outcome
- **mKernels**: number of kernels to be selected

Details

FOHSIC implements the forward algorithm with a predetermined number of kernels \(mKernels \). If the exact number of causal kernels is unavailable, the adaptive version **adaFOHSIC** should be preferred.

Value

an integer vector containing the indices of the selected kernels

Examples

```r
n <- 50
p <- 20
K <- replicate(5, matrix(rnorm(n*p), nrow = n, ncol = p), simplify = FALSE)
L <- matrix(rnorm(n*p), nrow = n, ncol = p)
K <- sapply(K, function(X) return(X %*% t(X) / dim(X)[2]), simplify = FALSE)
L <- L %*% t(L) / p
selection <- FOHSIC(K, L, 2)
```
HSIC

forwardQ
models the forward selection event of a fixed number of kernels as a succession of quadratic constraints

Description
The selection of the kernels with the forward algorithm implemented in FOHSIC can be represented as a set of quadratic constraints. This is owed to the quadratic form of the HSIC criterion. In this function, we determine the matrices of the corresponding constraints. The output is a list of matrices where the order is identical to the order of selection of the kernels. The matrices are computed such that the associated constraint is nonnegative. For a length n of the list K, the total number of constraints is $n - 1$.

Usage
forwardQ(K, select)

Arguments
K list kernel similarity matrices
select integer vector containing the indices of the selected kernels

Value
list of matrices modeling the quadratic constraints of the selection event

Examples
n <- 50
p <- 20
K <- replicate(5, matrix(rnorm(n*p), nrow = n, ncol = p), simplify = FALSE)
K <- sapply(K, function(X) return(X %*% t(X) / dim(X)[2]), simplify = FALSE)
listQ <- forwardQ(K, select = c(4, 1))

HSIC
Computes the HSIC criterion for two given kernels

Description
The Hilbert-Schmidt Independence Criterion (HSIC) is a measure of independence between two random variables. If characteristic kernels are used for both variables, the HSIC is zero iff the variables are independent. In this function, we implement an unbiased estimator for the HSIC measure. Specifically, for two positive-definite kernels K and L and a sample size n, the unbiased HSIC estimator is:

$$HSIC(K, L) = \frac{1}{n(n - 3)} \left[\text{trace}(KL) + \frac{1}{(n - 1)(n - 2)} - \frac{2}{n - 2} \right]^{\top} KL$$
Usage

```r
HSIC(K, L)
```

Arguments

- `K` : first kernel similarity matrix
- `L` : second kernel similarity matrix

Value

an unbiased estimate of the HSIC measure.

References

Examples

```r
n <- 50
p <- 20
X <- matrix(rnorm(n*p), nrow = n, ncol = p)
Y <- matrix(rnorm(n*p), nrow = n, ncol = p)
K <- X %*% t(X) / p
L <- Y %*% t(Y) / p
uHSIC <- HSIC(K, L)
```

Description

In this function, we compute an empirical p-value for the effect of a subset of kernels on the outcome. A number of statistics are supported in this function: ridge regression, kernel PCA and the HSIC criterion. The p-values are determined by comparing the statistic of the original response vector to those of the replicates. We use the `sampleH` function to sample replicates of the response in the acceptance region of the selection event.

Usage

```r
kernelPSI(  
    Y, 
    K_select, 
    constraints, 
    method = "all", 
    mu = 0, 
)```
sigma = 1,
lambda = 1,
n_replicates = 5000,
burn_in = 1000
)

Arguments

Y the response vector
K_select list of selected kernel
constraints list of quadratic matrices modeling the selection of the kernels in K_select
method test statistic. Must be one of the following: ridge for log-likelihood ratio for ridge regression, pca for log-likelihood for kernel PCA, hsic for HSIC measures, or all to obtain significance values for all three former methods.
mu mean of the response
sigma standard deviation of the response
lambda regularization parameter for ridge regression.
n_replicates number of replicates for the hit-and-run sampler in sampleH
burn_in number of burn_in iteration in sampleH

Details

For valid inference on hundreds of samples, we recommend setting the number of replicates to 50000 and the number of burn-in iterations to 10000. These ranges are to be increased for higher sample sizes.

Value

$p$-values for the chosen methods

Examples

n <- 30
p <- 20
K <- replicate(5, matrix(rnorm(n*p), nrow = n, ncol = p), simplify = FALSE)
K <- sapply(K, function(X) return(X %*% t(X) / dim(X)[2]), simplify = FALSE)
Y <- rnorm(n)
L <- Y %*% t(Y)
selectK <- FOHSIC(K, L, mKernels = 2)
constraintFO <- forwardQ(K, selectK)
kernelPSI(Y, K[selectK], constraintFO, method = "ridge")
maxLR

implies the maximum likelihood ratio test

Description

The maximum likelihood ratio test is a classical goodness-of-fit test for linear models. Mathematically speaking, the average residual sum of squares for an ordinary least squares (OLS) is approximated as a chi-square distribution to generate a $p$-value.

Usage

maxLR(X, Y)

Arguments

X       covariate matrix
Y       response vector

Details

The test is valid when the number of samples is larger than the number of covariates.

Value

$p$-value of the test

See Also

Other LR test: anovaLR()

Examples

```r
n <- 50
p <- 20
X <- matrix(rnorm(n*p), nrow = n, ncol = p)
Y <- rnorm(n)
stat.likelihood <- maxLR(X, Y)
```
Description

This function implements the same prototype statistics in the ridgeLR function, but for kernel principal component regression (see reference). In our simulations, we observed that this method underperforms the ridge prototype. The main benefit of this approach is the possibility of exact post-selection without the need for replicates sampling.

Usage

pcaLR(K, mu = 0, sigma = 1)

Arguments

- **K**: a single or a list of selected kernel similarity matrices.
- **mu**: marginal mean of the response Y
- **sigma**: standard deviation of the response

Value

a closure for the calculation of the LR statistic for the kernel PCA prototype

References


See Also

Other prototype: ridgeLR()

Examples

```r
n <- 30
p <- 20
K <- replicate(5, matrix(rnorm(n*p), nrow = n, ncol = p), simplify = FALSE)
K <- sapply(K, function(X) return(X %*% t(X) / dim(X)[2]), simplify = FALSE)
print(typeof(pcaLR(K, mu = 0, sigma = 1)) == "closure")
```
**quadHSIC**

Determines the quadratic form of the HSIC unbiased estimator

**Description**

For a linear kernel of the outcome \( L = Y^\top Y \), the unbiased HSIC estimator implemented in \( \text{HSIC} \) can be expressed as a quadratic form of the outcome \( Y \) i.e. \( \text{HSIC}(K, L) = Y^\top Q(K)Y \). Here, the matrix \( Q \) only depends on the kernel similarity matrix \( K \).

**Usage**

```r
quadHSIC(K)
```

**Arguments**

- \( K \) kernel similarity matrix

**Value**

the matrix of the HSIC estimator quadratic form

**Examples**

```r
n <- 50
p <- 20
X <- matrix(rnorm(n*p), nrow = n, ncol = p)
K <- X %*% t(X) / p
Q <- quadHSIC(K)
```

---

**ridgeLR**

generates a closure for the computation of the likelihood ratio statistic for the ridge prototype.

**Description**

The main inspiration for the kernel ridge prototype is the prototype concept developed in Reid (2018, see references). A prototype is a synthetic scalar variable that aggregates the effect of a set of variables in the outcome. Here, we extend this concept to kernels, where the prototype is the prediction of ridge regression with the selected kernels. In this function, we implement a likelihood ratio (LR) statistic to test for the effect of the prototype on the outcome \( Y \).

**Usage**

```r
ridgeLR(K, mu = 0, sigma = 1, lambda = 1, tol = 1e-06, n_iter = 10000)
```
Arguments

- **K**: a single or a list of selected kernel similarity matrices.
- **mu**: mean of the response \( Y \)
- **sigma**: standard deviation of the response
- **lambda**: regularization parameter for the ridge prototype
- **tol**: convergence tolerance used as a stopping criterion for the Newton-Raphson algorithm
- **n_iter**: maximum number of iterations for the Newton-Raphson algorithm

Details

To maximize the likelihood objective function, we implement in the output closure a Newton-Raphson algorithm that determines the maximum for each input vector \( Y \).

For our post-selection inference framework, the output closure is used to compute the test statistics for both the replicates and the original outcome in order to derive empirical \( p \)-values.

Value

- a closure for the calculation of the LR statistic for the ridge prototype

References


See Also

- pcaLR

Other prototype: pcaLR()

Examples

```r
n <- 30
p <- 20
K <- replicate(5, matrix(rnorm(n*p), nrow = n, ncol = p), simplify = FALSE)
K <- sapply(K, function(X) return(X %*% t(X) / dim(X)[2]), simplify = FALSE)
print(typeof(ridgeLR(K, mu = 0, sigma = 1, lambda = .1)) == "closure")
```
sampleH

samples within the acceptance region defined by the kernel selection event

Description

To approximate the distribution of the test statistics, we iteratively sample replicates of the response in order to generate replicates of the test statistics. The response replicates are iteratively sampled within the acceptance region of the selection event. The goal of the constrained sampling is to obtain a valid post-selection distribution of the test statistic. To perform the constrained sampling, we develop a hit-and-run sampler based on the hypersphere directions algorithm (see references).

Usage

```r
sampleH(
 A,
 initial,
 n_replicates,
 mu = 0,
 sigma = 1,
 n_iter = 1e+05,
 burn_in = 1000
)
```

Arguments

- `A`: list of matrices modeling the quadratic constraints of the selection event
- `initial`: initialization sample. This sample must belong to the acceptance region given by `A`. In practice, this parameter is set to the outcome of the original dataset.
- `n_replicates`: total number of replicates to be generated
- `mu`: mean of the outcome
- `sigma`: standard deviation of the outcome
- `n_iter`: maximum number of rejections for the parameter $\lambda$ in a single iteration
- `burn_in`: number of burn-in iterations

Details

Given the iterative nature of the sampler, a large number of `n_replicates` and `burn_in` iterations is needed to correctly approximate the test statistics distributions.

For high-dimensional responses, and depending on the initialization, the sampler may not scale well to generate tens of thousands of replicates because of an intermediate rejection sampling step.

Value

- a matrix with `n_replicates` columns where each column contains a sample within the acceptance region
References


Examples

```r
n <- 30
p <- 20
K <- replicate(5, matrix(rnorm(n*p), nrow = n, ncol = p), simplify = FALSE)
K <- sapply(K, function(X) return(X %*% t(X) / dim(X)[2]), simplify = FALSE)
Y <- rnorm(n)
L <- Y %*% t(Y)
selection <- FOHSIC(K, L, 2)
constraintQ <- forwardQ(K, select = selection)
samples <- sampleH(A = constraintQ, initial = Y,
 n_replicates = 50, burn_in = 20)
```

SKAT implements the sequence kernel association test for GWAS data

Description

The SKAT test is a quadratic test of association between a phenotype of interest and a genomic region. One of the main benefits of the SKAT test is the incorporation of nonlinear effects through the use of a kernel similarity matrix in the quadratic form. For instance, the identical-by-state (IBS) kernel which computes the number of identical alleles between two samples can be used.

Usage

```r
SKAT(Y, K, sigma = 1)
```

Arguments

- **Y**: response vector
- **K**: list of kernel similarity matrices. The sum kernel is used in the quadratic form.
- **sigma**: standard deviation of the response Y

Details

The null hypothesis in the SKAT test is the absence of effects of the SNPs within the region of interest and the outcome. Under the null, the distribution of the test statistic is a weighted sum of chi-square distributions whose quantiles are computed using the davies formula.
Value

\( p \)-value of the SKAT test

References


Examples

\[
\begin{align*}
n & \leftarrow 30 \\
p & \leftarrow 20 \\
K & \leftarrow \text{replicate}(5, \text{matrix(rnorm}(n*p), \text{nrow} = n, \text{ncol} = p), \text{simplify} = \text{FALSE}) \\
K & \leftarrow \text{sapply}(K, \text{function}(X) \text{return}(X \%\% t(X) / \text{dim}(X)[2]), \text{simplify} = \text{FALSE}) \\
Y & \leftarrow \text{rnorm}(n) \\
\text{SKAT}(Y, K)
\end{align*}
\]
Index

adaFOHSIC, 2, 3, 5
adaQ, 3
anovaLR, 4, 9
FOHSIC, 2, 3, 5, 6
forwardQ, 6
HSIC, 6, 11
kernelPSI, 7
maxLR, 4, 9
pcaLR, 10, 12
quadHSIC, 11
ridgeLR, 10, 11
sampleH, 7, 8, 13
SKAT, 14