Package ‘keyATM’

May 11, 2023

Version 0.5.0
Title Keyword Assisted Topic Models
Description
Fits keyword assisted topic models (keyATM) using collapsed Gibbs samplers. The keyATM combines the latent dirichlet allocation (LDA) models with a small number of keywords selected by researchers in order to improve the interpretability and topic classification of the LDA. The keyATM can also incorporate covariates and directly model time trends. The keyATM is proposed in Eshima, Imai, and Sasaki (2023) <doi:10.1111/ajps.12779>.

License GPL-3
Depends R (>= 4.0)
Imports Rcpp (>= 1.0.7), cli (>= 3.6.1), dplyr (>= 1.1.0), fastmap, future.apply, fs (>= 1.6.0), ggplot2 (>= 3.4.0), ggrepel, magrittr, Matrix, matrixNormal (>= 0.1.0), MASS, pgdraw, purrr (>= 1.0.0), quanteda (>= 3.3.0), rlang (>= 1.1.0), stringr, tibble, tidyrr (>= 1.0.0), tidyselect (>= 1.2.0)
LinkingTo Rcpp, RcppEigen, cli
Suggests readtext, stats, testthat (>= 3.1.5)
URL https://keyatm.github.io/keyATM/
Encoding UTF-8
BugReports https://github.com/keyATM/keyATM/issues
LazyData TRUE
RoxygenNote 7.2.3
SystemRequirements C++17
NeedsCompilation yes
Author Shusei Eshima [aut, cre] (<https://orcid.org/0000-0003-3613-4046>), Tomoya Sasaki [aut], Kosuke Imai [aut], Chung-hong Chan [ctb] (<https://orcid.org/0000-0002-6232-7530>), Romain François [ctb] (<https://orcid.org/0000-0002-2444-4226>), William Lowe [ctb], Seo-young Silvia Kim [ctb] (<https://orcid.org/0000-0002-8801-9210>)
keyATM-package

Keyword Assisted Topic Models

Description

The implementation of keyATM models.
by_strata_DocTopic

Estimate document-topic distribution by strata (for covariate models)

Description

Estimate document-topic distribution by strata (for covariate models)

Usage

by_strata_DocTopic(x, by_var, labels, by_values = NULL, ...)

Arguments

x
the output from the covariate keyATM model (see keyATM()).

by_var
character. The name of the variable to use.

labels
character. The labels for the values specified in by_var (ascending order).

by_values
numeric. Specific values for by_var, ordered from small to large. If it is not specified, all values in by_var will be used.

...
other arguments passed on to the predict.keyATM_output() function.

Value

strata_topicword object (a list).

See Also

Useful links:

• https://keyatm.github.io/keyATM/
• Report bugs at https://github.com/keyATM/keyATM/issues

Author(s)

Maintainer: Shusei Eshima <shuseieshima@gmail.com> (ORCID)
Authors:
• Tomoya Sasaki <tomoyas@mit.edu>
• Kosuke Imai <imai@harvard.edu>

Other contributors:
• Chung-hong Chan <chainsawtiney@gmail.com> (ORCID) [contributor]
• Romain François (ORCID) [contributor]
• William Lowe <wlowe@princeton.edu> [contributor]
• Seo-young Silvia Kim <sy.silvia.kim@gmail.com> (ORCID) [contributor]
by_strata_TopicWord Estimate subsetted topic-word distribution

Description
Estimate subsetted topic-word distribution

Usage
by_strata_TopicWord(x, keyATM_docs, by)

Arguments
- x: the output from a keyATM model (see keyATM()).
- keyATM_docs: an object generated by keyATM_read().
- by: a vector whose length is the number of documents.

Value
strata_topicword object (a list).

covariates_get Return covariates used in the iteration

Description
Return covariates used in the iteration

Usage
covariates_get(x)

Arguments
- x: the output from the covariate keyATM model (see keyATM()).
covariates_info

covariates_info
Show covariates information

Description

Show covariates information

Usage

`covariates_info(x)`

Arguments

- `x`: the output from the covariate keyATM model (see `keyATM()`).

keyATM
keyATM main function

Description

Fit keyATM models.

Usage

```r
keyATM(
  docs,
  model,
  no_keyword_topics,
  keywords = list(),
  model_settings = list(),
  priors = list(),
  options = list(),
  keep = c()
)
```

Arguments

- `docs`: texts read via `keyATM_read()`.
- `model`: keyATM model: base, covariates, and dynamic.
- `no_keyword_topics`: the number of regular topics.
- `keywords`: a list of keywords.
- `model_settings`: a list of model specific settings (details are in the online documentation).
- `priors`: a list of priors of parameters.
options

- **seed**: A numeric value for random seed. If it is not provided, the package randomly selects a seed.
- **iterations**: An integer. Number of iterations. Default is 1500.
- **verbose**: If TRUE, it prints loglikelihood and perplexity. Default is FALSE.
- **llk_per**: An integer. If the value is j keyATM stores loglikelihood and perplexity every j iteration. Default value is 10 per iterations
- **use_weights**: If TRUE use weight. Default is TRUE.
- **weights_type**: There are four types of weights. Weights based on the information theory (information-theory) and inverse frequency (inv-freq) and normalized versions of them (information-theory-normalized and inv-freq-normalized). Default is information-theory.
- **prune**: If TRUE remove keywords that do not appear in the corpus. Default is TRUE.
- **store_theta**: If TRUE or 1, it stores θ (document-topic distribution) for the iteration specified by thinning. Default is FALSE (same as 0).
- **store_pi**: If TRUE or 1, it stores π (the probability of using keyword topic word distribution) for the iteration specified by thinning. Default is FALSE (same as 0).
- **thinning**: An integer. If the value is j keyATM stores following parameters every j iteration. The default is 5.
 - θ : For all models. If store_theta is TRUE document-level topic assignment is stored (sufficient statistics to calculate document-topic distributions θ).
 - α : For the base and dynamic models. In the base model alpha is shared across all documents whereas each state has different alpha in the dynamic model.
 - λ : coefficients in the covariate model.
 - R : For the dynamic model. The state each document belongs to.
 - P : For the dynamic model. The state transition probability.
- **parallel_init**: Parallelize processes to speed up initialization. Default is FALSE. Please plan() before use this feature.
- **resume**: The resume argument is used to save and load the intermediate results of the keyATM fitting process, allowing you to resume the fitting from a previous state. The default value is NULL (do not resume).

keep

A vector of the names of elements you want to keep in output.

Value

A keyATM_output object containing:

- **keyword_k** number of keyword topics
- **no_keyword_topics** number of no-keyword topics
- **V** number of terms (number of unique words)
- **N** number of documents
model topic proportions for each document (document-topic distribution)

theta topic specific word generation probabilities (topic-word distribution)

phi number of tokens assigned to each topic

word_counts number of times each word type appears

doc_lens length of each document in tokens

vocab words in the vocabulary (a vector of unique words)

priors priors

options options

keywords_raw specified keywords

model_fit perplexity and log-likelihood

pi estimated \(\pi \) (the probability of using keyword topic word distribution) for the last iteration

values_iter values stored during iterations

kept_values outputs you specified to store in keep option

information information about the fitting

See Also

save.keyATM_output(), https://keyatm.github.io/keyATM/articles/pkgdown_files/Options.html

Examples

```r
## Not run:
library(keyATM)
library(quanteda)
data(keyATM_data_bills)
bills_keywords <- keyATM_data_bills$keywords
bills_dfm <- keyATM_data_bills$doc_dfm # quanteda dfm object
keyATM_docs <- keyATM_read(bills_dfm)

# keyATM Base
out <- keyATM(docs = keyATM_docs, model = "base",
              no_keyword_topics = 5, keywords = bills_keywords)

# Visit our website for full examples: https://keyatm.github.io/keyATM/

## End(Not run)
```
keyATMvb

keyATM with Collapsed Variational Bayes

Description

Experimental feature: Fit keyATM base with Collapsed Variational Bayes

Usage

```
keyATMvb(
  docs, 
  model, 
  no_keyword_topics, 
  keywords = list(), 
  model_settings = list(), 
  vb_options = list(), 
  priors = list(), 
  options = list(), 
  keep = list()
)
```

Arguments

- `docs` texts read via `keyATM_read()`
- `model` keyATM model: base, covariates, and dynamic
- `no_keyword_topics` the number of regular topics
- `keywords` a list of keywords
- `model_settings` a list of model specific settings (details are in the online documentation)
- `vb_options` a list of settings for Variational Bayes
 - `convtol`: the default is 1e-4
 - `init`: mcmc (default) or random
- `priors` a list of priors of parameters
- `options` a list of options same as `keyATM()`. Options are used when initialization method is mcmc.
- `keep` a vector of the names of elements you want to keep in output

Value

A `keyATM_output` object

See Also

https://keyatm.github.io/keyATM/articles/pkgdown_files/keyATMvb.html
keyATM_data_bills

Description

Bills data

Usage

keyATM_data_bills

Format

A list with following objects:

- **doc_dfm** A `quanteda dfm` object of 140 documents. The text data is a part of the Congressional Bills scraped from CONGRESS.GOV.
- **cov** An integer vector which takes one if the Republican proposed the bill.
- **keywords** A list of length 4 which contains keywords for four selected topics.
- **time_index** An integer vector indicating the session number of each bill.
- **labels** An integer vector indicating 40 labels.
- **labels_all** An integer vector indicating all labels.

Source

CONGRESS.GOV

keyATM_read

Description

Read texts and create a keyATM_docs object, which is a list of texts.

Usage

keyATM_read(
 texts,
 encoding = "UTF-8",
 check = TRUE,
 keep_docnames = FALSE,
 split = 0
)
multiPGreg

Run multinomial regression with Polya-Gamma augmentation

Description

Run multinomial regression with Polya-Gamma augmentation. There is no need to call this function directly. The keyATM Covariate internally uses this.

Usage

multiPGreg(Y, X, num_topics, PG_params, iter = 1, store_lambda = 0)
Arguments

Y Outcomes.
X Covariates.
num_topics Number of topics.
PG_params Parameters used in this function.
iter The default is 1.
store_lambda The default is 0.

plot.strata_doctopic Plot document-topic distribution by strata (for covariate models)

Description

Plot document-topic distribution by strata (for covariate models)

Usage

S3 method for class 'strata_doctopic'
plot(
 x,
 show_topic = NULL,
 var_name = NULL,
 by = c("topic", "covariate"),
 ci = 0.9,
 method = c("hdi", "eti"),
 point = c("mean", "median"),
 width = 0.1,
 show_point = TRUE,
 ...
)

Arguments

x a strata_doctopic object (see by_strata_DocTopic()).
show_topic a vector or an integer. Indicate topics to visualize.
var_name the name of the variable in the plot.
by topic or covariate. Default is by topic.
ci value of the credible interval (between 0 and 1) to be estimated. Default is 0.9 (90%).
method method for computing the credible interval. The Highest Density Interval (hdi, default) or Equal-tailed Interval (eti).
point method for computing the point estimate. mean (default) or median.
width numeric. Width of the error bars.
show_point logical. Show point estimates. The default is TRUE.
... additional arguments not used.
plot_alpha

Value

keyATM_fig object.

See Also

save_fig(), by_strata_DocTopic()

plot_alpha

Show a diagnosis plot of alpha

Description

Show a diagnosis plot of alpha

Usage

plot_alpha(x, start = 0, show_topic = NULL, scales = "fixed")

Arguments

x the output from a keyATM model (see keyATM()).
start integer. The start of slice iteration. Default is 0.
show_topic a vector to specify topic indexes to show. Default is NULL.
scales character. Control the scale of y-axis (the parameter in ggplot2::facet_wrap()): free adjusts y-axis for parameters. Default is fixed.

Value

keyATM_fig object

See Also

save_fig()
plot_modelfit

Show a diagnosis plot of log-likelihood and perplexity

Description

Show a diagnosis plot of log-likelihood and perplexity

Usage

plot_modelfit(x, start = 1)

Arguments

x
the output from a keyATM model (see keyATM()).

start
integer. The starting value of iteration to use in plot. Default is 1.

Value

keyATM_fig object.

See Also

save_fig()

plot_pi

Show a diagnosis plot of pi

Description

Show a diagnosis plot of pi

Usage

plot_pi(
 x,
 show_topic = NULL,
 start = 0,
 ci = 0.9,
 method = c("hdi", "eti"),
 point = c("mean", "median")
)
Arguments

- **x**: the output from a keyATM model (see `keyATM()`).
- **show_topic**: an integer or a vector. Indicate topics to visualize. Default is NULL.
- **start**: integer. The starting value of iteration to use in the plot. Default is 0.
- **ci**: value of the credible interval (between 0 and 1) to be estimated. Default is 0.9 (90%). This is an option when calculating credible intervals (you need to set `store_pi = TRUE` in `keyATM()`).
- **method**: method for computing the credible interval. The Highest Density Interval (hdi, default) or Equal-tailed Interval (eti). This is an option when calculating credible intervals (you need to set `store_pi = TRUE` in `keyATM()`).
- **point**: method for computing the point estimate. mean (default) or median. This is an option when calculating credible intervals (you need to set `store_pi = TRUE` in `keyATM()`).

Value

- keyATM_fig object.

See Also

- `save_fig()`

plot_timetrend

Plot time trend

Description

Plot time trend

Usage

```r
plot_timetrend(
  x,
  show_topic = NULL,
  time_index_label = NULL,
  ci = 0.9,
  method = c("hdi", "eti"),
  point = c("mean", "median"),
  xlab = "Time",
  scales = "fixed",
  show_point = TRUE,
  ...
)
```
Arguments

- **x**: the output from the dynamic keyATM model (see `keyATM()`).
- **show_topic**: an integer or a vector. Indicate topics to visualize. Default is NULL.
- **time_index_label**: a vector. The label for time index. The length should be equal to the number of documents (time index provided to `keyATM()`).
- **ci**: value of the credible interval (between 0 and 1) to be estimated. Default is 0.9 (90%). This is an option when calculating credible intervals (you need to set `store_theta = TRUE` in `keyATM()`).
- **method**: method for computing the credible interval. The Highest Density Interval (hdi, default) or Equal-tailed Interval (eti). This is an option when calculating credible intervals (you need to set `store_theta = TRUE` in `keyATM()`).
- **point**: method for computing the point estimate. mean (default) or median. This is an option when calculating credible intervals (you need to set `store_theta = TRUE` in `keyATM()`).
- **xlab**: a character.
- **scales**: character. Control the scale of y-axis (the parameter in `ggplot2::facet_wrap()`: `free` adjusts y-axis for parameters. Default is `fixed`.
- **show_point**: logical. The default is `TRUE`. This is an option when calculating credible intervals.
- **...**: additional arguments not used.

Value

A `keyATM_fig` object.

See Also

- `save_fig()`

Description

Show the expected proportion of the corpus belonging to each topic

Usage

```
plot_topicprop(
  x,  # the output from the dynamic keyATM model
  n = 3,  # number of topics to show
  show_topic = NULL,  # topics to visualize, NULL for all
  show_topwords = TRUE)  # show top words for each topic
```
predict.keyATM_output

label_topic = NULL,
order = c("proportion", "topicid"),
xmax = NULL
)

Arguments

x the output from a keyATM model (see keyATM()).
n The number of top words to show. Default is 3.
show_topic an integer or a vector. Indicate topics to visualize. Default is NULL.
show_topwords logical. Show topwords. The default is TRUE.
label_topic a character vector. The name of the topics in the plot.
order The order of topics.
xmax a numeric. Indicate the max value on the x axis

Value

keyATM_fig object

See Also

save_fig()

predict.keyATM_output Predict topic proportions for the covariate keyATM

Description

Predict topic proportions for the covariate keyATM

Usage

S3 method for class 'keyATM_output'
predict(
 object,
 newdata,
 transform = FALSE,
 burn_in = NULL,
 parallel = TRUE,
 posterior_mean = TRUE,
 ci = 0.9,
 method = c("hdi", "eti"),
 point = c("mean", "median"),
 label = NULL,
 raw_values = FALSE,
 ...
)
Arguments

- **object**
 the keyATM_output object for the covariate model.

- **newdata**
 New observations which should be predicted.

- **transform**
 Transorm and standardize the newdata with the same formula and option as model_settings used in keyATM().

- **burn_in**
 integer. Burn-in period. If not specified, it is the half of samples. Default is NULL.

- **parallel**
 logical. If TRUE, parallelization for speeding up. Default is TRUE. Please plan() before use this function.

- **posterior_mean**
 logical. If TRUE, the quantity of interest to estimate is the posterior mean. Default is TRUE.

- **ci**
 value of the credible interval (between 0 and 1) to be estimated. Default is 0.9 (90%).

- **method**
 method for computing the credible interval. The Highest Density Interval (hdi, default) or Equal-tailed Interval (eti).

- **point**
 method for computing the point estimate. mean (default) or median.

- **label**
 a character. Add a label column to the output. The default is NULL (do not add it).

- **raw_values**
 a logical. Returns raw values. The default is FALSE.

- **...**
 additional arguments not used.

read_keywords

Convert a quanteda dictionary to keywords

Description

This function converts or reads a dictionary object from quanteda to a named list. "Glob"-style wildcard expressions (e.g. politic*) are resolved based on the available terms in your texts.

Usage

```
read_keywords(file = NULL, docs = NULL, dictionary = NULL, split = TRUE, ...)
```

Arguments

- **file**
 file identifier for a foreign dictionary, e.g. path to a dictionary in YAML or LIWC format

- **docs**
 texts read via keyATM_read()

- **dictionary**
 a quanteda dictionary object, ignore if file is not NULL

- **split**
 boolean, if multi-word terms be seperated, e.g. "air force" splits into "air" and "force".

- **...**
 additional parameters for quanteda::dictionary()
Value

a named list which can be used as keywords for e.g. keyATM()

See Also

dictionary

Examples

```r
## Not run:
library(keyATM)
library(quanteda)
## using the moral foundation dictionary example from quanteda
dictfile <- tempfile()
data(keyATM_data_bills)
bills_dfm <- keyATM_data_bills$doc_dfm
keyATM_docs <- keyATM_read(bills_dfm)
read_keywords(file = dictfile, docs = keyATM_docs, format = "LIWC")

## End(Not run)
```

Description

Save a keyATM_output object

Usage

```r
save.keyATM_output(x, file = stop("'file' must be specified"))
```

Arguments

- **x**: a keyATM_output object (see keyATM()).
- **file**: file name to create on disk.

See Also

keyATM(), weightedLDA(), keyATMvb()
save_fig
Save a figure

Description

Save a figure

Usage

```r
save_fig(x, filename, ...)
```

Arguments

- `x` the keyATM_fig object.
- `filename` file name to create on disk.
- `...` other arguments passed on to the `ggplot2::ggsave()` function.

See Also

- `visualize_keywords()`, `plot_alpha()`, `plot_modelfit()`, `plot_pi()`, `plot_timetrend()`, `plot_topicprop()`, `by_strata_DocTopic()`, `values_fig()`

semantic_coherence
Semantic Coherence: Mimno et al. (2011)

Description

Usage

```r
semantic_coherence(x, docs, n = 10)
```

Arguments

- `x` the output from a keyATM model (see `keyATM()`).
- `docs` texts read via `keyATM_read()`.
- `n` integer. The number terms to visualize. Default is 10.

Details

Equation 1 of Mimno et al. 2011 adopted to keyATM.
top_topics

Value
A vector of topic coherence metric calculated by each topic.

top_docs

Show the top documents for each topic

Description
Show the top documents for each topic

Usage
top_docs(x, n = 10)

Arguments
x the output from a keyATM model (see keyATM()).
n How many documents to show. Default is 10.

Value
An n x k table of the top n documents for each topic, each number is a document index.

top_topics

Show the top topics for each document

Description
Show the top topics for each document

Usage
top_topics(x, n = 2)

Arguments
x the output from a keyATM model (see keyATM()).
n integer. The number of topics to show. Default is 2.

Value
An n x k table of the top n topics in each document.
top_words

Show the top words for each topic

Description

If `show_keyword` is TRUE then words in their keyword topics are suffixed with a check mark. Words from another keyword topic are labeled with the name of that category.

Usage

top_words(x, n = 10, measure = c("probability", "lift"), show_keyword = TRUE)

Arguments

- `x` the output (see `keyATM()` and `by_strata_TopicWord()`).
- `n` integer. The number terms to visualize. Default is 10.
- `measure` character. The way to sort the terms: `probability` (default) or `lift`.
- `show_keyword` logical. If TRUE, mark keywords. Default is TRUE.

Value

An n x k table of the top n words in each topic

values_fig

Get values used to create a figure

Description

Get values used to create a figure

Usage

values_fig(x)

Arguments

- `x` the keyATM_fig object.

See Also

`save_fig()`, `visualize_keywords()`, `plot_alpha()`, `plot_modelfit()`, `plot_pi()`, `plot_timetrend()`, `plot_topicprop()`, `by_strata_DocTopic()`
visualize_keywords

Description
Visualize the proportion of keywords in the documents.

Usage

```r  
visualize_keywords(docs, keywords, prune = TRUE, label_size = 3.2)  
```  

Arguments
- `docs`
a keyATM_docs object, generated by `keyATM_read()` function
- `keywords`
a list of keywords
- `prune`
logical. If `TRUE`, prune keywords that do not appear in `docs`. Default is `TRUE`.
- `label_size`
the size of keyword labels in the output plot. Default is `3.2`.

Value
keyATM_fig object

See Also
`save_fig()`

Examples

```r  
## Not run:  
# Prepare a keyATM_docs object  
keyATM_docs <- keyATM_read(input)  

# Keywords are in a list  
keywords <- list(Education = c("education", "child", "student"),  
                 Health = c("public", "health", "program"))  

# Visualize keywords  
keyATM_viz <- visualize_keywords(keyATM_docs, keywords)  

# View a figure  
keyATM_viz  

# Save a figure  
save_fig(keyATM_viz, filename)  

## End(Not run)  
```
weightedLDA

Weighted LDA main function

Description
Fit weighted LDA models.

Usage
weightedLDA(
 docs,
 model,
 number_of_topics,
 model_settings = list(),
 priors = list(),
 options = list(),
 keep = c()
)

Arguments
 docs texts read via keyATM_read().
 model Weighted LDA model: base, covariates, and dynamic.
 number_of_topics
 the number of regular topics.
 model_settings a list of model specific settings (details are in the online documentation).
 priors a list of priors of parameters.
 options a list of options (details are in the documentation of keyATM()).
 keep a vector of the names of elements you want to keep in output.

Value
A keyATM_output object containing:

 V number of terms (number of unique words)
 N number of documents
 model the name of the model
 theta topic proportions for each document (document-topic distribution)
 phi topic specific word generation probabilities (topic-word distribution)
 topic_counts number of tokens assigned to each topic
 word_counts number of times each word type appears
 doc_lens length of each document in tokens
 vocab words in the vocabulary (a vector of unique words)
weightedLDA

priors priors
options options
keywords_raw NULL for LDA models
model_fit perplexity and log-likelihood
pi estimated pi for the last iteration (NULL for LDA models)
values_iter values stored during iterations
number_of_topics number of topics
kept_values outputs you specified to store in keep option
information information about the fitting

See Also

save.keyATM_output(), https://keyatm.github.io/keyATM/articles/pkgdown_files/Options.html

Examples

Not run:
library(keyATM)
library(quanteda)
data(keyATM_data_bills)
bills_dfm <- keyATM_data_bills$doc_dfm # quanteda dfm object
keyATM_docs <- keyATM_read(bills_dfm)

Weighted LDA
out <- weightedLDA(docs = keyATM_docs, model = "base",
 number_of_topics = 5)

Visit our website for full examples: https://keyatm.github.io/keyATM/

End(Not run)
Index

* datasets
 keyATM_data_bills, 9
 by_strata_DocTopic, 3
 by_strata_DocTopic(), 11, 12, 19, 21
 by_strata_TopicWord, 4
 by_strata_TopicWord(), 21
 covariates_get, 4
 covariates_info, 5
 dictionary, 18
 ggplot2::facet_wrap(), 12, 15
 ggplot2::ggsave(), 19
 keyATM, 5
 keyATM(), 3–5, 8, 12–21, 23
 keyATM-package, 2
 keyATM_data_bills, 9
 keyATM_read, 9
 keyATM_read(), 4, 5, 8, 17, 19, 23
 keyATMvb, 8
 keyATMvb(), 18
 multiPGreg, 10
 plot.strata_doctopic, 11
 plot_alpha, 12
 plot_alpha(), 19, 21
 plot_modelfit, 13
 plot_modelfit(), 19, 21
 plot_pi, 13
 plot_pi(), 19, 21
 plot_timetrend, 14
 plot_timetrend(), 19, 21
 plot_topicprop, 15
 plot_topicprop(), 19, 21
 predict.keyATM_output, 16
 predict.keyATM_output(), 3
 quanteda::dictionary(), 17
 read_keywords, 17
 save.keyATM_output, 18
 save.keyATM_output(), 7, 24
 save_fig, 19
 save_fig(), 12–16, 21, 22
 semantic_coherence, 19
 top_docs, 20
 top_topics, 20
 top_words, 21
 values_fig, 21
 values_fig(), 19
 visualize_keywords, 22
 visualize_keywords(), 19, 21
 weightedLDA, 23
 weightedLDA(), 18

25