Package ‘keyATM’
April 24, 2024

Version 0.5.2
Title Keyword Assisted Topic Models
Description
Fits keyword assisted topic models (keyATM) using collapsed Gibbs samplers. The keyATM combines the latent dirichlet allocation (LDA) models with a small number of keywords selected by researchers in order to improve the interpretability and topic classification of the LDA. The keyATM can also incorporate covariates and directly model time trends. The keyATM is proposed in Eshima, Imai, and Sasaki (2024) <doi:10.1111/ajps.12779>.

License GPL-3
Depends R (>= 4.0)
Imports Rcpp (>= 1.0.7), cli (>= 3.6.1), dplyr (>= 1.1.0), fastmap, future.apply, fs (>= 1.6.0), ggplot2 (>= 3.4.0), ggrepel, magrittr, Matrix, matrixNormal (>= 0.1.0), MASS, pgdraw, purrr (>= 1.0.0), quanteda (>= 3.3.0), rlang (>= 1.1.0), stringr, tibble, tidy (>= 1.0.0), tidyselect (>= 1.2.0)
LinkingTo Rcpp, RcppEigen, cli
Suggests readtext, stats, testthat (>= 3.1.5)
URL https://keyatm.github.io/keyATM/
Encoding UTF-8
BugReports https://github.com/keyATM/keyATM/issues
LazyData TRUE
RoxygenNote 7.2.3
SystemRequirements C++17
NeedsCompilation yes
Author Shusei Eshima [aut, cre] (<https://orcid.org/0000-0003-3613-4046>),
 Tomoya Sasaki [aut],
 Kosuke Imai [aut],
 Chung-hong Chan [ctb] (<https://orcid.org/0000-0002-6232-7530>),
 Romain François [ctb] (<https://orcid.org/0000-0002-2444-4226>),
 William Lowe [ctb],
 Seo-young Silvia Kim [ctb] (<https://orcid.org/0000-0002-8801-9210>)
keyATM-package

Maintainer Shusei Eshima <shuseieshima@gmail.com>
Repository CRAN
Date/Publication 2024-04-24 14:50:06 UTC

R topics documented:

keyATM-package .. 2
by_strata_DocTopic .. 3
by_strata_TopicWord .. 4
covariates_get ... 4
covariates_info ... 5
keyATM ... 5
keyATMvb ... 8
keyATM_data_bills ... 9
keyATM_read ... 9
multiPGreg .. 10
plot.strata_doctopic ... 11
plot_alpha ... 12
plot_modelfit ... 13
plot_pi ... 13
plot_timetrend .. 14
plot_topicprop .. 15
predict.keyATM_output .. 16
read_keywords ... 17
save_fig ... 18
semantic_coherence ... 19
top_docs ... 19
top_topics ... 20
top_words .. 20
values_fig ... 21
visualize_keywords ... 21
weightedLDA .. 22

Index 24

<table>
<thead>
<tr>
<th>keyATM-package</th>
<th>Keyword Assisted Topic Models</th>
</tr>
</thead>
</table>

Description

The implementation of keyATM models.
by_strata_DocTopic

Estimate document-topic distribution by strata (for covariate models)

Description

Estimate document-topic distribution by strata (for covariate models)

Usage

```r
by_strata_DocTopic(x, by_var, labels, by_values = NULL, ...)
```

Arguments

- `x`
 - the output from the covariate keyATM model (see `keyATM()`).
- `by_var`
 - character. The name of the variable to use.
- `labels`
 - character. The labels for the values specified in `by_var` (ascending order).
- `by_values`
 - numeric. Specific values for `by_var`, ordered from small to large. If it is not specified, all values in `by_var` will be used.
- `...`
 - other arguments passed on to the `predict.keyATM_output()` function.

Value

`strata_topicword` object (a list).

Author(s)

Maintainer: Shusei Eshima <shuseieshima@gmail.com> (ORCID)

Authors:

- Tomoya Sasaki <tomoya@mit.edu>
- Kosuke Imai <imai@harvard.edu>

Other contributors:

- Chung-hong Chan <chainsaw.tiney@gmail.com> (ORCID) [contributor]
- Romain François (ORCID) [contributor]
- William Lowe <wlowe@princeton.edu> [contributor]
- Seo-young Silvia Kim <sy.silvia.kim@gmail.com> (ORCID) [contributor]

See Also

Useful links:

- https://keyatm.github.io/keyATM/
- Report bugs at https://github.com/keyATM/keyATM/issues
by_strata_TopicWord

Estimate subsetted topic-word distribution

Description
Estimate subsetted topic-word distribution

Usage

```r
by_strata_TopicWord(x, keyATM_docs, by)
```

Arguments
- `x`
 the output from a keyATM model (see `keyATM()`).
- `keyATM_docs`
 an object generated by `keyATM_read()`.
- `by`
 a vector whose length is the number of documents.

Value
strata_topicword object (a list).

covariates_get

Return covariates used in the iteration

Description
Return covariates used in the iteration

Usage

```r
covariates_get(x)
```

Arguments
- `x`
 the output from the covariate keyATM model (see `keyATM()`).
covariates_info

Show covariates information

Description

Show covariates information

Usage

covariates_info(x)

Arguments

x the output from the covariate keyATM model (see keyATM()).

keyATM

keyATM main function

Description

Fit keyATM models.

Usage

keyATM(
 docs,
 model,
 no_keyword_topics,
 keywords = list(),
 model_settings = list(),
 priors = list(),
 options = list(),
 keep = c()
)

Arguments

docs texts read via keyATM_read().
model keyATM model: base, covariates, and dynamic.
no_keyword_topics the number of regular topics.
keywords a list of keywords.
model_settings a list of model specific settings (details are in the online documentation).
priors a list of priors of parameters.
options a list of options

- **seed**: A numeric value for random seed. If it is not provided, the package randomly selects a seed.
- **iterations**: An integer. Number of iterations. Default is 1500.
- **verbose**: If TRUE, it prints loglikelihood and perplexity. Default is FALSE.
- **llk_per**: An integer. If the value is j keyATM stores loglikelihood and perplexity every j iteration. Default value is 10 per iterations
- **use_weights**: If TRUE use weight. Default is TRUE.
- **weights_type**: There are four types of weights. Weights based on the information theory (information-theory) and inverse frequency (inv-freq) and normalized versions of them (information-theory-normalized and inv-freq-normalized). Default is information-theory.
- **prune**: If TRUE prune keywords that do not appear in the corpus. Default is TRUE.
- **store_theta**: If TRUE or 1, it stores θ (document-topic distribution) for the iteration specified by thinning. Default is FALSE (same as 0).
- **store_pi**: If TRUE or 1, it stores π (the probability of using keyword topic word distribution) for the iteration specified by thinning. Default is FALSE (same as 0).
- **thinning**: An integer. If the value is j keyATM stores following parameters every j iteration. The default is 5.
 - **theta**: For all models. If store_theta is TRUE document-level topic assignment is stored (sufficient statistics to calculate document-topic distributions theta).
 - **alpha**: For the base and dynamic models. In the base model alpha is shared across all documents whereas each state has different alpha in the dynamic model.
 - **lambda**: coefficients in the covariate model.
 - **R**: For the dynamic model. The state each document belongs to.
 - **P**: For the dynamic model. The state transition probability.
- **parallel_init**: Parallelize processes to speed up initialization. Default is FALSE. Please plan() before use this feature.
- **resume**: The resume argument is used to save and load the intermediate results of the keyATM fitting process, allowing you to resume the fitting from a previous state. The default value is NULL (do not resume).

keep a vector of the names of elements you want to keep in output.

Value

A keyATM_output object containing:

- **keyword_k** number of keyword topics
- **no_keyword_topics** number of no-keyword topics
- **V** number of terms (number of unique words)
- **N** number of documents
model the name of the model
theta topic proportions for each document (document-topic distribution)
phi topic specific word generation probabilities (topic-word distribution)

topic_counts number of tokens assigned to each topic
word_counts number of times each word type appears
doc_lens length of each document in tokens
vocab words in the vocabulary (a vector of unique words)
priors priors
options options
keywords_raw specified keywords
model_fit perplexity and log-likelihood
pi estimated \(\pi \) (the probability of using keyword topic word distribution) for the last iteration
values_iter values stored during iterations
kept_values outputs you specified to store in keep option
information information about the fitting

See Also

https://keyatm.github.io/keyATM/articles/pkgdown_files/Options.html

Examples

```r
## Not run:
library(keyATM)
library(quanteda)
data(keyATM_data_bills)
bills_keywords <- keyATM_data_bills$Keywords
bills_dfm <- keyATM_data_bills$doc_dfm  # quanteda dfm object
keyATM_docs <- keyATM_read(bills_dfm)

# keyATM Base
out <- keyATM(docs = keyATM_docs, model = "base",
              no_keyword_topics = 5, keywords = bills_keywords)

# Visit our website for full examples: https://keyatm.github.io/keyATM/

## End(Not run)
```
keyATMvb

keyATM with Collapsed Variational Bayes

Description

Experimental feature: Fit keyATM base with Collapsed Variational Bayes

Usage

```r
keyATMvb(
  docs,  
  model,  
  no_keyword_topics, 
  keywords = list(), 
  model_settings = list(), 
  vb_options = list(), 
  priors = list(), 
  options = list(), 
  keep = list()
)
```

Arguments

docs texts read via `keyATM_read()
model keyATM model: base, covariates, and dynamic
no_keyword_topics the number of regular topics
keywords a list of keywords
model_settings a list of model specific settings (details are in the online documentation)
vb_options a list of settings for Variational Bayes
 • `convtol`: the default is 1e-4
 • `init`: mcmc (default) or random
priors a list of priors of parameters
options a list of options same as `keyATM()`. Options are used when initialization method is `mcmc`
keep a vector of the names of elements you want to keep in output

Value

A `keyATM_output` object

See Also

https://keyatm.github.io/keyATM/articles/pkgdown_files/keyATMvb.html
keyATM_data_bills

Description

Bills data

Usage

keyATM_data_bills

Format

A list with following objects:

- **doc_dfm** A quanteda dfm object of 140 documents. The text data is a part of the Congressional Bills scraped from CONGRESS.GOV.
- **cov** An integer vector which takes one if the Republican proposed the bill.
- **keywords** A list of length 4 which contains keywords for four selected topics.
- **time_index** An integer vector indicating the session number of each bill.
- **labels** An integer vector indicating 40 labels.
- **labels_all** An integer vector indicating all labels.

Source

CONGRESS.GOV

keyATM_read

Description

Read texts and create a keyATM_docs object, which is a list of texts.

Usage

keyATM_read(
 texts,
 encoding = "UTF-8",
 check = TRUE,
 keep_docnames = FALSE,
 split = 0
)
multiPGreg

Run multinomial regression with Polya-Gamma augmentation

Description

Run multinomial regression with Polya-Gamma augmentation. There is no need to call this function directly. The keyATM Covariate internally uses this.

Usage

multiPGreg(Y, X, num_topics, PG_params, iter = 1, store_lambda = 0)
arguments

Y Outcomes.
X Covariates.
num_topics Number of topics.
PG_params Parameters used in this function.
iter The default is 1.
store_lambda The default is 0.

Description

Plot document-topic distribution by strata (for covariate models)

Usage

```R
## S3 method for class 'strata_doctopic'
plot(
  x,
  show_topic = NULL,
  var_name = NULL,
  by = c("topic", "covariate"),
  ci = 0.9,
  method = c("hdi", "eti"),
  point = c("mean", "median"),
  width = 0.1,
  show_point = TRUE,
  ...
)
```

Arguments

- `x` a strata_doctopic object (see `by_strata_DocTopic()`).
- `show_topic` a vector or an integer. Indicate topics to visualize.
- `var_name` the name of the variable in the plot.
- `by` topic or covariate. Default is by topic.
- `ci` value of the credible interval (between 0 and 1) to be estimated. Default is 0.9 (90%).
- `method` method for computing the credible interval. The Highest Density Interval (hdi, default) or Equal-tailed Interval (eti).
- `point` method for computing the point estimate. mean (default) or median.
- `width` numeric. Width of the error bars.
- `show_point` logical. Show point estimates. The default is TRUE.
- `...` additional arguments not used.
plot_alpha

Value
keyATM_fig object.

See Also
save_fig(), by_strata_DocTopic()

Description
Show a diagnosis plot of alpha

Usage
plot_alpha(x, start = 0, show_topic = NULL, scales = "fixed")

Arguments
- x: the output from a keyATM model (see keyATM()).
- start: integer. The start of slice iteration. Default is 0.
- show_topic: a vector to specify topic indexes to show. Default is NULL.
- scales: character. Control the scale of y-axis (the parameter in ggplot2::facet_wrap()): free adjusts y-axis for parameters. Default is fixed.

Value
keyATM_fig object

See Also
save_fig()
plot_modelfit

Show a diagnosis plot of log-likelihood and perplexity

Description
Show a diagnosis plot of log-likelihood and perplexity

Usage
plot_modelfit(x, start = 1)

Arguments
x
the output from a keyATM model (see keyATM()).
start
integer. The starting value of iteration to use in plot. Default is 1.

Value
keyATM_fig object.

See Also
save_fig()

plot_pi

Show a diagnosis plot of pi

Description
Show a diagnosis plot of pi

Usage
plot_pi(
x,
 show_topic = NULL,
 start = 0,
 ci = 0.9,
 method = c("hdi", "eti"),
 point = c("mean", "median")
)

plot_timetrend

Description

Plot time trend

Usage

```r
plot_timetrend(x, show_topic = NULL, time_index_label = NULL, ci = 0.9, method = c("hdi", "eti"), point = c("mean", "median"), xlab = "Time", scales = "fixed", show_point = TRUE, ...)
```

Arguments

- `x` the output from a keyATM model (see `keyATM()`).
- `show_topic` an integer or a vector. Indicate topics to visualize. Default is NULL.
- `start` integer. The starting value of iteration to use in the plot. Default is 0.
- `ci` value of the credible interval (between 0 and 1) to be estimated. Default is 0.9 (90%). This is an option when calculating credible intervals (you need to set `store_pi = TRUE` in `keyATM()`).
- `method` method for computing the credible interval. The Highest Density Interval (hdi, default) or Equal-tailed Interval (eti). This is an option when calculating credible intervals (you need to set `store_pi = TRUE` in `keyATM()`).
- `point` method for computing the point estimate. mean (default) or median. This is an option when calculating credible intervals (you need to set `store_pi = TRUE` in `keyATM()`).

Value

keyATM_fig object.

See Also

`save_fig()`
plot_topicprop

Arguments

- **x**: the output from the dynamic keyATM model (see keyATM()).
- **show_topic**: an integer or a vector. Indicate topics to visualize. Default is NULL.
- **time_index_label**: a vector. The label for time index. The length should be equal to the number of documents (time index provided to keyATM()).
- **ci**: value of the credible interval (between 0 and 1) to be estimated. Default is 0.9 (90%). This is an option when calculating credible intervals (you need to set store_theta = TRUE in keyATM()).
- **method**: method for computing the credible interval. The Highest Density Interval (hdi, default) or Equal-tailed Interval (eti). This is an option when calculating credible intervals (you need to set store_theta = TRUE in keyATM()).
- **point**: method for computing the point estimate. mean (default) or median. This is an option when calculating credible intervals (you need to set store_theta = TRUE in keyATM()).
- **xlab**: a character.
- **scales**: character. Control the scale of y-axis (the parameter in ggplot2::facet_wrap()): free adjusts y-axis for parameters. Default is fixed.
- **show_point**: logical. The default is TRUE. This is an option when calculating credible intervals.
- **...**: additional arguments not used.

Value

keyATM_fig object.

See Also

save_fig()

plot_topicprop

Show the expected proportion of the corpus belonging to each topic

Description

Show the expected proportion of the corpus belonging to each topic

Usage

plot_topicprop(
 x,
 n = 3,
 show_topic = NULL,
 show_topwords = TRUE,
label_topic = NULL,
order = c("proportion", "topicid"),
xmax = NULL
)

Arguments

x the output from a keyATM model (see keyATM()).
n The number of top words to show. Default is 3.
show_topic an integer or a vector. Indicate topics to visualize. Default is NULL.
show_topwords logical. Show topwords. The default is TRUE.
label_topic a character vector. The name of the topics in the plot.
order The order of topics.
xmax a numeric. Indicate the max value on the x axis

Value

keyATM_fig object

See Also

save_fig()

predict.keyATM_output Predict topic proportions for the covariate keyATM

Description

Predict topic proportions for the covariate keyATM

Usage

S3 method for class 'keyATM_output'
predict(
 object,
 newdata,
 transform = FALSE,
 burn_in = NULL,
 parallel = TRUE,
 posterior_mean = TRUE,
 ci = 0.9,
 method = c("hdi", "eti"),
 point = c("mean", "median"),
 label = NULL,
 raw_values = FALSE,
 ...
)
Arguments

object: the keyATM_output object for the covariate model.
newdata: New observations which should be predicted.
transform: Transorm and standardize the newdata with the same formula and option as model_settings used in keyATM().
burn_in: integer. Burn-in period. If not specified, it is the half of samples. Default is NULL.
parallel: logical. If TRUE, parallelization for speeding up. Default is TRUE. Please plan() before use this function.
posterior_mean: logical. If TRUE, the quantity of interest to estimate is the posterior mean. Default is TRUE.
ci: value of the credible interval (between 0 and 1) to be estimated. Default is 0.9 (90%).
method: method for computing the credible interval. The Highest Density Interval (hdi, default) or Equal-tailed Interval (eti).
point: method for computing the point estimate. mean (default) or median.
label: a character. Add a label column to the output. The default is NULL (do not add it).
raw_values: a logical. Returns raw values. The default is FALSE.
...: additional arguments not used.

Description

This function converts or reads a dictionary object from quanteda to a named list. "Glob"-style wildcard expressions (e.g. politic*) are resolved based on the available terms in your texts.

Usage

read_keywords(file = NULL, docs = NULL, dictionary = NULL, split = TRUE, ...)

Arguments

file: file identifier for a foreign dictionary, e.g. path to a dictionary in YAML or LIWC format
docs: texts read via keyATM_read()
dictionary: a quanteda dictionary object, ignore if file is not NULL
split: boolean, if multi-word terms be seperated, e.g. "air force" splits into "air" and "force".
...: additional parameters for quanteda::dictionary()
Value

a named list which can be used as keywords for e.g. `keyATM()

See Also

dictionary

Examples

```r
## Not run:
library(keyATM)
library(quanteda)
## using the moral foundation dictionary example from quanteda
dictfile <- tempfile()
data(keyATM_data_bills)
bills_dfm <- keyATM_data_bills$doc_dfm
keyATM_docs <- keyATM_read(bills_dfm)
read_keywords(file = dictfile, docs = keyATM_docs, format = "LIWC")

## End(Not run)
```

Description

Save a figure

Usage

```r
save_fig(x, filename, ...)
```

Arguments

- `x` the keyATM_fig object.
- `filename` file name to create on disk.
- `...` other arguments passed on to the `ggplot2::ggsave()` function.

See Also

`visualize_keywords()`, `plot_alpha()`, `plot_modelfit()`, `plot_pi()`, `plot_timetrend()`, `plot_topicprop()`, `by_strata_DocTopic()`, `values_fig()`
semantic_coherence

Semantic Coherence: Mimno et al. (2011)

Description

Usage

```r
semantic_coherence(x, docs, n = 10)
```

Arguments

- `x`: the output from a keyATM model (see `keyATM()`).
- `docs`: texts read via `keyATM_read()`.
- `n`: integer. The number terms to visualize. Default is 10.

Details

Equation 1 of Mimno et al. 2011 adopted to keyATM.

Value

A vector of topic coherence metric calculated by each topic.

top_docs

Show the top documents for each topic

Description

Show the top documents for each topic

Usage

```r
top_docs(x, n = 10)
```

Arguments

- `x`: the output from a keyATM model (see `keyATM()`).
- `n`: How many documents to show. Default is 10.

Value

An n x k table of the top n documents for each topic, each number is a document index.
top_topics

Show the top topics for each document

Description

Show the top topics for each document

Usage

top_topics(x, n = 2)

Arguments

x the output from a keyATM model (see keyATM()).
n integer. The number of topics to show. Default is 2.

Value

An n x k table of the top n topics in each document.

top_words

Show the top words for each topic

Description

If show_keyword is TRUE then words in their keyword topics are suffixed with a check mark. Words from another keyword topic are labeled with the name of that category.

Usage

top_words(x, n = 10, measure = c("probability", "lift"), show_keyword = TRUE)

Arguments

x the output (see keyATM() and by_strata_TopicWord()).
n integer. The number of terms to visualize. Default is 10.
measure character. The way to sort the terms: probability (default) or lift.
show_keyword logical. If TRUE, mark keywords. Default is TRUE.

Value

An n x k table of the top n words in each topic
values_fig

Get values used to create a figure

Description
Get values used to create a figure

Usage
values_fig(x)

Arguments
x the keyATM_fig object.

See Also
save_fig(), visualize_keywords(), plot_alpha(), plot_modelfit(), plot_pi(), plot_timetrend(), plot_topicprop(), by_strata_DocTopic()

visualize_keywords
Visualize keywords

Description
Visualize the proportion of keywords in the documents.

Usage
visualize_keywords(docs, keywords, prune = TRUE, label_size = 3.2)

Arguments
docs a keyATM_docs object, generated by keyATM_read() function
keywords a list of keywords
prune logical. If TRUE, prune keywords that do not appear in docs. Default is TRUE.
label_size the size of keyword labels in the output plot. Default is 3.2.

Value
keyATM_fig object

See Also
save_fig()
Examples

```r
## Not run:
# Prepare a keyATM_docs object
keyATM_docs <- keyATM_read(input)

# Keywords are in a list
keywords <- list(Education = c("education", "child", "student"),
                 Health    = c("public", "health", "program"))

# Visualize keywords
keyATM_viz <- visualize_keywords(keyATM_docs, keywords)

# View a figure
keyATM_viz

# Save a figure
save_fig(keyATM_viz, filename)
## End(Not run)
```

weightedLDA

Weighted LDA main function

Description

Fit weighted LDA models.

Usage

```r
weightedLDA(
  docs,
  model,
  number_of_topics,
  model_settings = list(),
  priors = list(),
  options = list(),
  keep = c()
)
```

Arguments

- **docs**: texts read via `keyATM_read()`.
- **model**: Weighted LDA model: base, covariates, and dynamic.
- **number_of_topics**: the number of regular topics.
- **model_settings**: a list of model specific settings (details are in the online documentation).
- **priors**: a list of priors of parameters.
weightedLDA

options a list of options (details are in the documentation of `keyATM()`).
keep a vector of the names of elements you want to keep in output.

Value

A `keyATM_output` object containing:

V number of terms (number of unique words)
N number of documents
model the name of the model
theta topic proportions for each document (document-topic distribution)
phi topic specific word generation probabilities (topic-word distribution)
topic_counts number of tokens assigned to each topic
word_counts number of times each word type appears
doc_lens length of each document in tokens
vocab words in the vocabulary (a vector of unique words)
priors priors
options options
keywords_raw NULL for LDA models
model_fit perplexity and log-likelihood
pi estimated pi for the last iteration (NULL for LDA models)
values_iter values stored during iterations
number_of_topics number of topics
kept_values outputs you specified to store in keep option
information information about the fitting

See Also

https://keyatm.github.io/keyATM/articles/pkgdown_files/Options.html

Examples

```r
# Not run:
library(keyATM)
library(quanteda)
data(keyATM_data_bills)
bills_dfm <- keyATM_data_bills$doc_dfm  # quanteda dfm object
keyATM_docs <- keyATM_read(bills_dfm)

# Weighted LDA
out <- weightedLDA(docs = keyATM_docs, model = "base",
                   number_of_topics = 5)

# Visit our website for full examples: https://keyatm.github.io/keyATM/
```

End(Not run)
Index

* datasets
 keyATM_data_bills, 9
 by_strata_DocTopic, 3
 by_strata_DocTopic(), 11, 12, 18, 21
 by_strata_TopicWord, 4
 by_strata_TopicWord(), 20

covariates_get, 4
covariates_info, 5
dictionary, 18

ggplot2::facet_wrap(), 12, 15
ggplot2::ggsave(), 18

keyATM, 5
keyATM(), 3–5, 8, 12–20, 23
keyATM-package, 2
keyATM_data_bills, 9
keyATM_read, 9
keyATM_read(), 4, 5, 8, 17, 19, 22
keyATMvb, 8

multiPGreg, 10

plot.strata_doctopic, 11
plot_alpha, 12
plot_alpha(), 18, 21
plot_modelfit, 13
plot_modelfit(), 18, 21
plot_pi, 13
plot_pi(), 18, 21
plot_timetrend, 14
plot_timetrend(), 18, 21
plot_topicprop, 15
plot_topicprop(), 18, 21
predict.keyATM_output, 16
predict.keyATM_output(), 3
quanteda::dictionary(), 17

read_keywords, 17
save_fig, 18
save_fig(), 12–16, 21
semantic_coherence, 19
top_docs, 19
top_topics, 20
top_words, 20

values_fig, 21
values_fig(), 18
visualize_keywords, 21
visualize_keywords(), 18, 21

weightedLDA, 22

24