Package ‘kinematics’

October 13, 2022

Type Package

Title Studying Sampled Trajectories

Version 1.0.0

Maintainer Pablo Rodriguez-Sanchez <pablo.rodriguez.sanchez@gmail.com>

Description Allows analyzing time series representing two-dimensional movements. It accepts a data frame with a time (t), horizontal (x) and vertical (y) coordinate as columns, and returns several dynamical properties such as speed, acceleration or curvature.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

VignetteBuilder knitr

Suggests testthat, knitr, utils, markdown, rmarkdown, ggplot2

Imports numDeriv, stats

Depends R (>= 3.5.0)

NeedsCompilation no

Repository CRAN

Date/Publication 2021-07-19 07:30:02 UTC

R topics documented:

accel ... 2
append_displacement .. 2
append_dynamics ... 3
approx_derivative .. 4
curvature .. 4
curvature_radius ... 5
accel

Return accelerations

Description

Return accelerations

Usage

`accel(t, x, y)`

Arguments

- **t**
The times vector
- **x**
The x positions
- **y**
The y positions

Value

The accelerations

See Also

`speed, approx_derivative`

append_displacement

Return a dataframe with information about the time-to-time displacements

Description

The displacement is a bit more complicated than other dynamical variables, as it depends on the sampling frequency. If you are subsampling, always re-run `append_displacement` after subsampling.

Usage

`append_displacement(data)`
append_dynamics

Arguments

data A dataframe containing t, x and y

Value

A data frame including all the dynamical information, including displacements

See Also

append_dynamics, speed

append_dynamics

Return a data frame with extra columns with dynamical information

Description

Return a data frame with extra columns with dynamical information

Usage

append_dynamics(data, append.displacement = TRUE)

Arguments

data A dataframe containing t, x and y
append.displacement (Optional) Set it to FALSE to not calculate displacements. Useful if the data is going to be resampled

Value

A data frame including instantaneous dynamical variables, such as speed and acceleration

See Also

speed, accel, append_displacement
approx_derivative

Description
Approximate derivative

Usage
approx_derivative(t, x)

Arguments
- **t**: Vector of times
- **x**: Vector of values

Value
A vector (of the same size of t) representing the numerical derivative

See Also
speed, accel

curvature

Description
Return curvatures

Usage
curvature(t, x, y)

Arguments
- **t**: The times vector
- **x**: The x positions
- **y**: The y positions

Value
The local curvature

See Also
speed, accel, curvature_radius
Description

Return curvature radius

Usage

curvature_radius(t, x, y)

Arguments

- **t**: The times vector
- **x**: The x positions
- **y**: The y positions

Value

The local curvature radius

See Also

speed, accel, curvature

Description

Return displacements

Usage

displacement(x, y)

Arguments

- **x**: The x positions
- **y**: The y positions

Value

The displacements between a position and its previous
get_polar_coordinates

example_mov
Example data set

Description
Experimental sample of 3000 positions of a macroinvertebrate

Format
A data frame with 3000 observations of:

- **x** horizontal position
- **y** vertical position
- **t** time ...

get_polar_coordinates
Get polar coordinates

Description
Get polar coordinates

Usage

```r
get_polar_coordinates(x, y, origin = c(0, 0))
```

Arguments

- **x**
 Vector of x coordinates
- **y**
 Vector if y coordinates
- **origin**
 (Default = c(0, 0)) Position of the origin of coordinates

Value
Data frame with radius (r) and angle vectors (th)
speed

Return speeds

Description
Return speeds

Usage
speed(t, x, y)

Arguments
\begin{itemize}
 \item \texttt{t} \quad The times vector
 \item \texttt{x} \quad The x positions
 \item \texttt{y} \quad The y positions
\end{itemize}

Value
The speeds

See Also
\texttt{accel, approx_derivative}
Index

accel, 2, 3–5, 7
append_displacement, 2, 3
append_dynamics, 3, 3
approx_derivative, 2, 4, 7

curvature, 4, 5
curvature_radius, 4, 5

displacement, 5

example_moving, 6

get_polar_coordinates, 6

speed, 2–5, 7