Package ‘kmodR’

August 29, 2016

Type Package
Title K-Means with Simultaneous Outlier Detection
Version 0.1.0
Date 2015-03-26
Author David Charles Howe [aut, cre]
Maintainer David Charles Howe <kmodR@edgecondition.com>
Description An implementation of the 'k-means--' algorithm proposed by Chawla and Gio- nis, 2013 in their paper, "k-means--: A unified approach to clustering and outlier detec- tion. SIAM International Conference on Data Mining (SDM13)”, and using 'ordering' de- scribed by Howe, 2013 in the thesis, "Clustering and anomaly detection in tropical cy- clones”. Useful for creating (potentially) tighter clusters than standard k-means and simultane- ously finding outliers inexpensively in multidimensional space.
License GPL-3
LazyData TRUE
Suggests testthat
NeedsCompilation no
Repository CRAN
Date/Publication 2015-03-26 10:51:13

R topics documented:

kmod .. 2

Index 4
kmod

K-Means clustering with simultaneous Outlier Detection

Description

K-Means clustering with simultaneous Outlier Detection

Usage

kmod(x, k = 5, l = 0, i_max = 100, conv_method = "delta_C", conv_error = 0, allow_empty_c = FALSE)

Arguments

- **X**: matrix of numeric data or an object that can be coerced to such a matrix (such as a data frame with numeric columns only).
- **k**: the number of clusters (default = 5)
- **l**: the number of outliers (default = 0)
- **i_max**: the maximum number of iterations permissible (default = 100)
- **conv_method**: character: the method used to assess if kmod has converged (default = "delta_C")
- **conv_error**: numeric: the tolerance permissible when assessing convergence (default = 0)
- **allow_empty_c**: logical: set whether empty clusters are permissible (default = FALSE)

Value

kmod returns a list comprising the following components:

@return k the number of clusters specified
1 the number of outliers specified
C the set of cluster centroids
C_sizes cluster sizes
C_ss the sum of squares for each cluster
L the set of outliers
L_dist_sqr the distance squares for each outlier to C
L_index the index of each outlier in the supplied dataset
XC_dist_sqr_assign the distance square and cluster assignment of each point in the supplied dataset
within_ss the within cluster sum of squares (excludes outliers)
between_ss the between cluster sum of squares
tot_ss the total sum of squares
iterations the number of iterations taken to converge
Examples

a 2-dimensional example with 2 clusters and 5 outliers
x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),
 matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))
colnames(x) <- c("x", "y")
(cl <- kmod(x, 2, 5))

cluster a dataset with 8 clusters and 0 outliers
x <- kmod(x, 8)
Index

kmod, 2