Package ‘kmodR’

October 13, 2022

Type Package

Title K-Means with Simultaneous Outlier Detection

Version 0.2.0

Date 2022-04-11

Maintainer David Charles Howe <kmodR@edgecondition.com>

Description An implementation of the 'k-means--' algorithm proposed by Chawla and Gionis, 2013 in their paper, "k-means--: A unified approach to clustering and outlier detection. SIAM International Conference on Data Mining (SDM13)", <doi:10.1137/1.9781611972832.21>
and using 'ordering' described by Howe, 2013 in the thesis, Clustering and anomaly detection in tropical cyclones". Useful for creating (potentially) tighter clusters than standard k-means and simultaneously finding outliers inexpensively in multidimensional space.

License GPL-3

Suggests testthat

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation no

Author David Charles Howe [aut, cre] (<https://orcid.org/0000-0003-4942-1300>)

Repository CRAN

Date/Publication 2022-05-12 11:40:02 UTC

R topics documented:

 kmod .. 2

Index 4
kmod

K-Means clustering with simultaneous Outlier Detection

Description

An implementation of the 'k-means-' algorithm proposed by Chawla and Gionis, 2013 in their paper, "k-means-: A unified approach to clustering and outlier detection. SIAM International Conference on Data Mining (SDM13)", doi: 10.1137/1.9781611972832.21 and using 'ordering' described by Howe, 2013 in the thesis, "Clustering and anomaly detection in tropical cyclones".

Useful for creating (potentially) tighter clusters than standard k-means and simultaneously finding outliers inexpensively in multidimensional space.

Usage

```r
kmod(
  X,
  k = 5,
  l = 0,
  i_max = 100,
  conv_method = "delta_C",
  conv_error = 0,
  allow_empty_c = FALSE
)
```

Arguments

- **X**: matrix of numeric data or an object that can be coerced to such a matrix (such as a data frame with numeric columns only).
- **k**: the number of clusters (default = 5)
- **l**: the number of outliers (default = 0)
- **i_max**: the maximum number of iterations permissible (default = 100)
- **conv_method**: character: the method used to assess if kmod has converged (default = "delta_C")
- **conv_error**: numeric: the tolerance permissible when assessing convergence (default = 0)
- **allow_empty_c**: logical: set whether empty clusters are permissible (default = FALSE)

Value

kmod returns a list comprising the following components

- **k**: the number of clusters specified
- **l**: the number of outliers specified
- **C**: the set of cluster centroids
- **C_sizes**: cluster sizes
- **C_ss**: the sum of squares for each cluster
L the set of outliers
L_dist_sqr the distance squares for each outlier to C
L_index the index of each outlier in the supplied dataset
XC_dist_sqr_assign the distance square and cluster assignment of each point in the supplied dataset
within_ss the within cluster sum of squares (excludes outliers)
between_ss the between cluster sum of squares
tot_ss the total sum of squares
iterations the number of iterations taken to converge

Examples

a 2-dimensional example with 2 clusters and 5 outliers
x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),
 matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))
colnames(x) <- c("x", "y")
(cl <- kmod(x, 2, 5))

cluster a dataset with 8 clusters and 0 outliers
x <- kmod(x, 8)
Index

kmod, 2