Package ‘kssa’

October 13, 2022

Title Known Sub-Sequence Algorithm
Version 0.0.1
Maintainer Iván Felipe Benavides <pipeben@gmail.com>
Description Implements the Known Sub-Sequence Algorithm <doi:10.1016/j.aaf.2021.12.013>, which helps to automatically identify and validate the best method for missing data imputation in a time series. Supports the comparison of multiple state-of-the-art algorithms.
License AGPL (>= 3)
Encoding UTF-8
RoxygenNote 7.2.0
URL https://github.com/pipeben/kssa
BugReports https://github.com/pipeben/kssa/issues
Depends R (>= 4.0)
Suggests covr, testthat (>= 3.0.0)
Config/testthat/edition 3
Imports magrittr, ggplot2, rlang, methods, forecast, imputeTS, stats, zoo, Metrics, dplyr, missMethods
Date 2022-06-18
NeedsCompilation no
Author Iván Felipe Benavides [aut, cre, cph]
 (<https://orcid.org/0000-0002-1139-3909>),
 Steffen Moritz [aut] (<https://orcid.org/0000-0002-0085-1804>),
 Brayan-David Aroca-Gonzalez [aut]
 (<https://orcid.org/0000-0002-7365-5740>),
 Jhoana Romero [aut] (<https://orcid.org/0000-0002-1834-3461>),
 Marlon Santacruz [aut] (<https://orcid.org/0000-0003-2242-742X>),
 John-Josephraj Selvaraj [aut] (<https://orcid.org/0000-0002-9195-4883>)
Repository CRAN
Date/Publication 2022-06-21 19:40:02 UTC
get_imputations

R topics documented:

- `get_imputations` ... 2
- `kssa` .. 3
- `kssa_plot` ... 6

Index

- `get_imputations` ... 9

get_imputations function

Description

Function to get imputations from methods compared by kssa

Usage

```r
get_imputations(x_ts, methods = "all", seed = 1234)
```

Arguments

- **x_ts**
 - A ts object with missing data to be imputed

- **methods**
 - A string or string vector indicating the method or methods You can choose between the following:
 - "all" - get imputed values for all methods - Default
 - "auto.arima" - State space representation of an ARIMA model
 - "StructTS" - State space representation of a structural model
 - "seadec" - Seasonal decomposition with Kalman smoothing
 - "linear_i" - Linear interpolation
 - "spline_i" - Spline interpolation
 - "stine_i" - Stineman interpolation
 - "simple_ma" - Simple moving average
 - "linear_ma" - Linear moving average
 - "exponential_ma" - Exponential moving average
 - "locf" - Last observation carried forward
 - "stl" - Seasonal and trend decomposition with Loess

For further details on these imputation methods please check packages `imputeTS` and `forecast`

- **seed**
 - Numeric. Any number

Value

A list of imputed time series with the selected methods
Examples

Example 1: Get imputed values for airgap_na_ts with the methods of

library("imputeTS")
library("kssa")

Create 20% random missing data in tsAirgapComplete time series from imputeTS
airgap_na <- missMethods::delete_MCAR(as.data.frame(tsAirgapComplete), 0.2)

Convert to time series object
airgap_na_ts <- ts(airgap_na, start = c(1959, 1), end = c(1997, 12), frequency = 12)

my_imputations <- get_imputations(airgap_na_ts, methods = "all")

my_imputations contains the imputed time series with all methods.
Access it and choose the one from the best method for your purposes

my_imputations$seadec
plot.ts(my_imputations$seadec)

Example 2: Get imputed values for airgap_na_ts using only a subset of algorithms

library("imputeTS")
library("kssa")

Create 20% random missing data in tsAirgapComplete time series from imputeTS
airgap_na <- missMethods::delete_MCAR(as.data.frame(tsAirgapComplete), 0.2)

Convert to time series object
airgap_na_ts <- ts(airgap_na, start = c(1959, 1), end = c(1997, 12), frequency = 12)

my_imputations <- get_imputations(airgap_na_ts, methods = c("linear_i", "locf"))

my_imputations contains the imputed time series with all applied
methods (locf and linear interpolation).
Access it and choose the one from the best method for your purposes

my_imputations$locf
plot.ts(my_imputations$locf)
Description

Run the Known Sub-Sequence Algorithm to compare the performance of imputation methods on a time series of interest

Usage

kssa(
 x_ts,
 start_methods,
 actual_methods,
 segments = 5,
 iterations = 10,
 percentmd = 0.2,
 seed = 1234
)

Arguments

x_ts Time series object ts containing missing data (NA)
start_methods String vector. The method or methods to start the algorithm. Same as for actual_methods
actual_methods The imputation methods to be compared and validated. It can be a string vector containing the following You can choose between the following:
 • "all" - compare among all methods automatically - Default
 • "auto.arima" - State space representation of an ARIMA model
 • "StructTS" - State space representation of a structural model
 • "seadec" - Seasonal decomposition with Kalman smoothing
 • "linear_i" - Linear interpolation
 • "spline_i" - Spline interpolation
 • "stine_i" - Stineman interpolation
 • "simple_ma" - Simple moving average
 • "linear_ma" - Linear moving average
 • "exponential_ma" - Exponential moving average
 • "locf" - Last observation carried forward
 • "stl" - Seasonal and trend decomposition with Loess

For further details on these imputation methods please check packages imputeTS and forecast

segments Integer. Into how many segments the time series will be divided
iterations Integer. How many iterations to run
percentmd Numeric. Percentage of missing data. Must match with the true percentage of missing data in x_ts
seed Numeric. Random seed to choose
Value

A list of results to be plotted with function `kssa_plot` for easy interpretation

References

Examples

```r
# Example 1: Compare all imputation methods

library("kssa")
library("imputeTS")

# Create 20% random missing data in tsAirgapComplete time series from imputeTS
airgap_na <- missMethods::delete_MCAR(as.data.frame(tsAirgapComplete), 0.2)

# Convert to time series object
airgap_na_ts <- ts(airgap_na, start = c(1959, 1), end = c(1997, 12), frequency = 12)

# Apply the kssa algorithm with 5 segments, 10 iterations, 20% of missing data,
# compare among all available methods in the package.
# Remember that percentmd must match with
# the real percentage of missing data in the input time series
results_kssa <- kssa(airgap_na_ts,
start_methods = "all",
actual_methods = "all",
segments = 5,
iterations = 10,
percentmd = 0.2)

# Print and check results
results_kssa

# For an easy interpretation of kssa results
# please use function kssa_plot

# Example 2: Compare only locf and linear imputation

library("kssa")
library("imputeTS")

# Create 20% random missing data in tsAirgapComplete time series from imputeTS
```
airgap_na <- missMethods::delete_MCAR(as.data.frame(tsAirgapComplete), 0.2)

Convert to time series object
airgap_na_ts <- ts(airgap_na, start = c(1959, 1), end = c(1997, 12), frequency = 12)

Apply the kssa algorithm with 5 segments, 10 iterations, 20% of missing data,
compare among all applied methods (locf and linear interpolation).
Remember that percentmd must match with
the real percentage of missing data in the input time series

results_kssa <- kssa(airgap_na_ts,
 start_methods = c("locf", "linear_i"),
 actual_methods = c("locf", "linear_i"),
 segments = 5,
 iterations = 10,
 percentmd = 0.2)

Print and check results
results_kssa

For an easy interpretation of kssa results
please use function kssa_plot

kssa_plot function

Description

Function to plot the results of kssa for easy interpretation

Usage

```r
kssa_plot(results, type, metric)
```

Arguments

- `results`: An object with results produced with function `kssa`
- `type`: A character value with the type of plot to show. It can be "summary" or "complete".
- `metric`: A character with the performance metric to be plotted. It can be "rmse", "mase", "cor", or "smape"
 - "rmse" - Root Mean Squared Error (default choice)
 - "mase" - Mean Absolute Scaled Error
 - "smape" - Symmetric Mean Absolute Percentage Error
 - "cor" - Pearson correlation coefficient

For further details on these metrics please check package Metrics
Value

A plot of kssa results in which imputation methods are ordered from lower to higher (left to right) error.

Examples

Example 1: Plot the results from comparing all imputation methods

library("kssa")
library("imputeTS")

Create 20% random missing data in tsAirgapComplete time series from imputeTS
airgap_na <- missMethods::delete_MCAR(as.data.frame(tsAirgapComplete), 0.2)

Convert to time series object
airgap_na_ts <- ts(airgap_na, start = c(1959, 1), end = c(1997, 12), frequency = 12)

Apply the kssa algorithm with 5 segments,
10 iterations, 20% of missing data, and
compare among all available methods in the package.
Remember that percentmd must match with
the real percentage of missing data in the input time series

results_kssa <- kssa(airgap_na_ts,
 start_methods = "all",
 actual_methods = "all",
 segments = 5,
 iterations = 10,
 percentmd = 0.2)

kssa_plot(results_kssa, type = "complete", metric = "rmse")

Conclusion: Since kssa_plot is ordered from lower to
higher error (left to right), method 'linear_i' is the best to
impute missing data in airgap_na_ts. Notice that method 'locf' is the worst

To obtain imputations with the best method, or any method of preference
please use function get_imputations

Example 2: Plot the results when only applying locf and linear interpolation

library("kssa")
library("imputeTS")

Create 20% random missing data in tsAirgapComplete time series from imputeTS
airgap_na <- missMethods::delete_MCAR(as.data.frame(tsAirgapComplete), 0.2)
Convert to time series object
airgap_na_ts <- ts(airgap_na, start = c(1959, 1), end = c(1997, 12), frequency = 12)

Apply the kssa algorithm with 5 segments,
10 iterations, 20% of missing data, and compare among all
applied methods (loCF and linear interpolation).
Remember that percentmd must match with
the real percentage of missing data in the input time series

results_kssa <- kssa(airgap_na_ts,
 start_methods = c("linear_i", "loCF"),
 actual_methods = c("linear_i", "loCF"),
 segments = 5,
 iterations = 10,
 percentmd = 0.2
)

kssa_plot(results_kssa, type = "complete", metric = "rmse")
Index

forecast, 2, 4
get_imputations, 2
imputeTS, 2, 4
kssa, 3, 6
kssa_plot, 5, 6
ts, 4