Package ‘kyotil’

November 25, 2019

LazyLoad yes
LazyData yes
Version 2019.11-22
Title Utility Functions for Statistical Analysis Report Generation and Monte Carlo Studies
Depends R (>= 3.1.3)
Imports methods
Suggests RUnit, lme4, nlme, xtable, MASS, splines, survival, abind, pracma, VGAM, copula, mvtnorm, Hmisc, RColorBrewer, zoo
Description Helper functions for creating formatted summary of regression models, writing publication-ready tables to latex files, and running Monte Carlo experiments.
License GPL (>= 2)
NeedsCompilation yes
Author Youyi Fong [cre], Krisztian Sebestyen [aut], Jason Becker [ctb], Bendix Carstensen [ctb], Daryl Morris [ctb], Josh Pasek [ctb], Dennis Chao [ctb], Andri Signorell [ctb]
Maintainer Youyi Fong <youyifong@gmail.com>
Repository CRAN
Date/Publication 2019-11-25 09:50:06 UTC

R topics documented:
age_calc .. 2
base.functions ... 3
cox.zph.2 ... 6
Description

Calculate age, by Jason P Becker, modified very slightly in how arguments are passed to the function.

Usage

age_calc(dob, enddate = Sys.Date(), units = c("days","months","years"), precise = TRUE)

Arguments

dob POSIXlt or Date. Birthday
enddate POSIXlt or Date. Date to compute age
units string. Choose a unit.
precise Boolean.

Author(s)

Jason P Becker

References

Examples

age_calc (dob=strptime("29OCT2002", format="%d%b%Y"),
 enddate=strptime("30OCT2003", format="%d%b%Y"), units='years', precise=TRUE)
age_calc (dob=strptime("29OCT2002", format="%d%b%Y"),
 enddate=strptime("30DEC2003", format="%d%b%Y"), units='years', precise=FALSE)

Description

cbinduneven binds together a list of matrixes/dataframes of different lengths, rows are matched by
names binary returns binary representation of an integer. binary2 returns binary representatin of an
integer with leading 0, the length of string is n. mysystem can call any exe file that is in the PATH
f2c convert temperature from f to c/

Usage

cbinduneven(li)
binary(i)
multi.outer (f, ...)
myreshapelong(dat, cols.to.be.stacked, label.cols.to.be.stacked, new.col.name)
binary2(i, n)
f2c(f)
ftoi(f)
keepWarnings(expr)
meanmed(x, na.rm = FALSE)
methods4(classes, super = FALSE, ANY = FALSE)
myaggregate(x, by, FUN, new.col.name = "aggregate.value", ...)
myreshapewide(formula, dat, idvar, keep.extra.col=FALSE)
mysapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE, ret.mat = TRUE)
myscale(x)
mysystem(cmd, ...)

mytapply(X, INDEX, FUN = NULL, ..., simplify = TRUE)

read.sv(file, header = TRUE, ...)

read.tsv(file, header = TRUE, sep = "\t", ...)

table.prop(x,y=NULL,digit=1,style=2,whole.table.add.to.1=FALSE,useNA="ifany", add.perc=FALSE, add.total.column = FALSE)

table.cases (case,group,include.all=TRUE,desc="cases")
table.cases.3(case,group1,group2)

unix()

mycor (x, use = "everything", method = c("pearson", "kendall", "spearman"), alternative = c("two.sided", "less", "greater"), exact = NULL, conf.level = 0.95, continuity = FALSE, digits.coef=2, digits.pval=3, ...)

Arguments

 add.total.column

 use

 method

 alternative

 exact

 conf.level

 continuity

 digits.coef

 digits.pval

 cols.to.be.stacked

 label.cols.to.be.stacked

li a list

i

in

f In multi.out, f is a function.

case vector of 0/1
base.functions

- group: vector of multi-group indicators
- formula: a formula object
- expr: x
- na.rm: classes
- super: ANY
desc: by
- whole.table.add.to.1: Boolean
- new.col.name: ...
dat: idvar
- X: simplify
- USE.NAMES: ret.mat
cmd: INDEX
- file: header
- sep: y
- digit: style
- FUN: keep.extra.col
- useNA: add.perc
- include.all: group1
- group2
Examples

```r
binary(5) ### 101
binary2(5, 4)

a=data.frame("x"=1:2)
b=data.frame("y"=3:5);rownames(b)[3]=""
cbinduneven(list(a,b))

## Not run:
# the formula in myreshapewide can only have one variable in the right hand side
myreshapewide(fi~week, dat, c("ptid","stim"))

myreshapelong(dat.201.neut, cols.to.be.stacked=c("MN.3","SF162","SVA.MLV"),
        label.cols.to.be.stacked="antigen", new.col.name="y")

myaggregate(subset(dat.poc, select=c(HIV, trt)), list(dat.poc$f), function(x)
        with(x, c(fisher.test(HIV, trt)$estimate, fisher.test(HIV, trt)$p.value)))

## End(Not run)
```

cox.zph.2

Test the Proportional Hazards Assumption of a Cox Regression (a slightly modified version)

Description

A slightly modified test of the proportional hazards assumption for a Cox regression model fit (coxph). This version corrects some conservativeness of the test.

Usage

```r
cox.zph.2(fit, transform = "km", global = TRUE, exact=TRUE)
```

Arguments

- `fit`
- `transform`
- `global`
- `exact`
 Boolean. If FALSE, this function is an identical copy of cox.zph. If TRUE, it computes the variance of the test statistic exactly, instead of approximately.
Details
When the model uses time-dependent covariates, the approximation used in Grambsch and Therneau resulted in conservativeness of the test. This is "fixed" here at a cost of up to 2.5 times longer execution time.

References
Fong, Y. and Halloran, M Elizabeth and Gilbert, P. Using Time-Dependent Age Group in Cox Regression Analysis of Vaccine Efficacy Trials, Just Another Epi Journal, in prep.

See Also
cox.zph

Examples
library(survival)
fit <- coxph(Surv(futime, fustat) ~ age + ecog.ps,
data=ovarian)
temp <- cox.zph(fit)
print(temp)
temp.2 <- cox.zph.2(fit)
print(temp.2)

Deming

Fit Deming regression.

Description
Deming regression fit. Assume x and y variances are the same. Slightly modified from MethComp R package.

Usage
Deming(x, y, vr = sdr^2, sdr = sqrt(vr), boot = TRUE, keep.boot = FALSE, alpha = 0.05)

Arguments
x
y
vr
sdr
boot
keep.boot
alpha
Examples

```r
## Not run:
set.seed(1)
x=rnorm(100,0,1)
y=x+rnorm(100,0,.5)
x=x+rnorm(100,0,.5)
fit=Deming(x,y, boot=TRUE)
summary(fit)
plot(x,y)
abline(fit)
# compare with lm fit
fit.1=lm(y~x, data.frame(x,y))
summary(fit.1)
abline(fit.1, col=2)
## End(Not run)
```

Description

Makes a heatmap representation of correlation coefficients easier.

Usage

```r
DMHeatMap(x, Rowv = TRUE, Colv = if (symm) "Rowv" else TRUE,
distfun = dist, hclustfun = hclust, dendrogram =
c("both", "row", "column", "none"), symm = FALSE,
scale = c("none", "row", "column"), na.rm = TRUE, revC =
identical(Colv, "Rowv"), add.expr, breaks, symbreaks =
min(x < 0, na.rm = TRUE) || scale != "none", col =
"heat.colors", colsep, rowsep, sepcolor = "white",
sepside = c(0.05, 0.05), cellnote, notecex = 1,
notecol = "cyan", na.color = par("bg"), trace =
c("column", "row", "both", "none"), tracecol = "cyan",
hline = median(breaks), vline = median(breaks),
linecol = tracecol, margins = c(5, 5), ColSideColors,
RowSideColors, cexRow = 0.2 + 1/log10(nr), cexCol =
0.2 + 1/log10(nc), labRow = NULL, labCol = NULL,
labColor = NULL, key = TRUE, keysize = 1.5,
density.info = c("histogram", "density", "none"),
denscol = tracecol, symkey = min(x < 0, na.rm = TRUE)
|| symbreaks, densadj = 0.25, main = NULL, xlab =
NULL, ylab = NULL, lmat = NULL, lhei = NULL, lwid =
NULL, lower.left.only = TRUE, legend = TRUE, legend.x =
"topright", ...)
```
Arguments

x
legend.x
legend
Rowv
Colv
distfun
hclustfun
dendrogram
symm
scale
na.rm
revC
add.expr
breaks
symbreaks
col
colsep
rowsep
sepcolor
septhickness
cellnote
notex
notecol
na.color
trace
tracecol
hline
vline
linecol
margins
ColSideColors
RowSideColors
cexRow
cexCol
labRow
labCol
Examples

cor=matrix(runif(15),5,3)
breaks=c(-1,-.7,-.5,-.3,-.1,.1,.3,.5,.7,1)
H=DMHeatMap(cor, trace="none", symm=FALSE, dendrogram="none", col=RColorBrewer::brewer.pal(
 length(breaks)-1,"RdYlGn"), distfun = function(c) as.dist(1 - c), cexRow =1.5, cexCol =1.5,
 lmat=rbind(c(2, 1), c(4,3)), lhei=c(4, 1), breaks=breaks, margins=c(2,2), key = FALSE,
 Rowv=NA, lower.left.only=FALSE)

gets.im.res

Read simulation results

description

Go through a folder and read all files and combine the results into a multidimensional array.

Usage

get.sim.res (dir, res.name="res", verbose=TRUE)
MCsummary (dir, res.name = "res", exclude.some = TRUE,
 exclude.col = 1, verbose = TRUE)
getFormattedMCsummary (path, sim, nn, fit.method, exclude.some = TRUE,
 exclude.col = 1, verbose = TRUE, coef.0 = NULL, digit1 = 2, sum.est = c("mean", "median"), sum.sd =
 c("median", "mean"), style = 1, keep.intercept = FALSE)
getK

Arguments

- **dir**: directory of MC result files
- **path**: partial path to the directory of MC result files
- **res.name**: name of the R object saved in the files, default is res, but may be others
- **verbose**: Boolean
- **sim**: a string to denote simulation setting
- **nn**: a vector of sample sizes
- **fit.method**: a string to denote fitting method. sim, nn and fit.method together forms the name of the directory containing MC result files
- **exclude.col**: column number
- **exclude.some**: whether to exclude MC results that are extreme
- **coef.0**: simulation truth
- **digit1**: digits
- **sum.est**: use mean or median as location estimate summary
- **sum.sd**: use mean or median as sd estimate summary
- **style**: integer
- **keep.intercept**: whether to include intercept in the table

Details

Depends on package abind to combine arrays from files.

Value

A multidimensional array.

getK

getK

Description

getK calculates the kernel matrix between X and itself and returns a n by n matrix. Alternatively, it calculates the kernel matrix between X and X2 and returns a n by n2 matrix.

Usage

getK (X,kernel,para=NULL,X2=NULL,C = NULL)
Arguments

X
covariate matrix with dimension n by d. Note this is not the paired difference of
covariate matrix.

kernel
string specifying type of kernel: polynomial or p (1 + <x,y>)^para,
rbf or r exp(-para*||x-y||^2),
linear or l <x,y>,
ibs or i 0.5*mean(2.0 - lx-y) or sum(w*(2.0 - lx-y))/sum(w), with x[i],y[i] in
0,1,2 and weights 'w' given in 'para'.
hamming or h for sum(x == y) with x[i],y[i] binary,
no default.

para
parameter of the kernel function. for ibs or hamming, para can be a vector of
weights.

X2
optional second covariate matrix with dimension n2 by d

C
logical. If TRUE, kernels are computed by custom routines in C, which may be
more memory efficient, and faster too for ibs and hamming kernels.

Details

IBS stands for 'Identical By State'. If 'x', 'y' are in in 0,1,2 then
IBS(x,y) = 0 if |x-y|=2, 1 if |x-y|=1, 2 if |x-y|=0, or IBS(x,y) = 2.0 - lx-y.
K(u,v) = sum(IBS(u[i],v[i])) / 2K where K = length(u).
The 'hamming' kernel is the equivalent of the 'ibs' kernel for binary data. Note that 'hamming'
kernel is based on hamming similarity(!), not on dissimilarity distance.

Within in the code, C is default to TRUE for ibs and hamming kernels and FALSE otherwise.

Value

A kernel matrix.

Author(s)

Youyi Fong <youyifong@gmail.com>
Krisztian Sebestyen <ksebestyen@gmail.com>
Shuxin Yin <>

Examples

X = cbind(x1=rnorm(n=5), x2=rnorm(n=5))
dim(X)
X2 = cbind(x1=rnorm(n=3), x2=rnorm(n=3))
dim(X2)
K = getK(X,"linear")
dim(K)
K = getK(X,"linear",X2=X2)
dim(K)
K1 = getK(X2,"l",X2=X)
dim(K1)
all(K==t(K1))

RBF kernel
K = getK(X,"rbf",para=1,X2=X2)
K1 = getK(X2,"r",para=1,X2=X)
all(K==t(K1))

IBS kernel for ternary data
X <- as.matrix(expand.grid(0:2,0:2))
K = getK(X,kernel = 'ibs')

add weight
w = runif(ncol(X))
K = getK(X,kernel = 'ibs',para = w)

IBS kernel for binary data via option 'h' for 'hamming similarity measure'
X <- as.matrix(expand.grid(0:1,0:1))
K=getK(X,kernel = 'h')

Description

Utility functions by Youyi Fong and Krisz Sebestyen, and some functions copied from other packages for convenience (acknowledged on their manual pages).

Most useful functions: mypostscript/mypdf, mytex,

See the Index link below for a list of available functions.

The package depends on Hmisc. The main reason for that, besides the usefulness of the package, is Hmisc depends on ggplot2, which also define

make.timedep.dataset
Create Dataset for Time-dependent Covariate Proportional Hazard Model Analysis

Description

 Returns a data frame that is suitable for time-dependent covariate Cox model fit.
make.timedep.dataset

Usage

```r
make.timedep.dataset(dat, X, d, baseline.ageyrs, t.1, t.2 = NULL)
```

Arguments

- **dat**
 data frame
- **X**
 string. Name of the followup time column in dat. Unit needs to be years.
- **d**
 string. Name of the followup time column in dat.
- **baseline.ageyrs**
 string. Name of the followup time column in dat.
- **t.1**
 numerical. Cutoff for age group
- **t.2**
 numerical. Second cutoff for age group

Details

The function assumes that the followup length is such that only one change of age group is possible.

Value

Returns a data frame with the following columns added: tstart, tstop, .timedep.agegrp, .baseline.agegrp

- **tstart**
 left bound of time interval
- **tstop**
 right bound of time interval
- **.timedep.agegrp**
 time-dependent age group
- **.baseline.agegrp**
 baseline age group

Author(s)

Youyi Fong

References

Therneau, T. and Crowson, C. Using Time Dependent Covariates and Time Dependent Coefficients in the Cox Model. A vignette from the R package survival.

Examples

```r
library(survival)

n=3000; followup.length=5; incidence.density=0.015; age.sim="continuous"

dat.0=sim.dat.tvarying.two(n, followup.length, incidence.density, age.sim, seed=1)
dat=subset(dat.0, for.non.tvarying.ana, select=c(ptid, X, d, baseline.age, trt))
dat.timedep = make.timedep.dataset (dat, "X", "d", "baseline.age", 6)
```
```r
coxph(Surv(tstart, tstop, d) ~ trt * timedep.agegrp, dat.timedep)
```

Math Functions

Description

- H calculates entropy.

Usage

- `as.binary(n, base = 2, r = FALSE)`
- `binom.coef(n, m)`
- `expit(x)`
- `logDiffExp(logx1, logx2)`
- `logit(x)`
- `logMeanExp(logx, B = NULL)`
- `logSumExp(logx)`
- `logSumExpFor2(logx, logy)`
- `permn(x, fun = NULL, ...)`
- `Stirling2(n, m)`
- `interpolate(pt1, pt2, x)`

Arguments

- **n**
- **base**
- **r**
- **m**
- **pt1** — a vector of length 2
- **pt2** — a vector of length 2
- **x**
Examples

H(rep(1/5, 5))
H(rep(3, 5))

matrix.array.functions

Matrix and Array Functions

Description

concatList returns a string that concatenates the elements of the input list or array

Usage

AR1(p, w)
concatList(lis, sep = "")
EXCH(p, rho)
fill.jagged.array(a)
getMidPoints(x)
getUpperRight(matri, func = NULL)
last(x, n = 1, ...)
mix(a, b)

S3 method for class 'data.frame'
rep(x, times = 1, ...)

S3 method for class 'matrix'
rep(x, times = 1, each = 1, by.row = TRUE, ...)
S3 method for class 'matrix.block'
rep(x, times = 2, ...)

shift.left(x, k = 1)

shift.right(x, k = 1)

thin.rows(dat, thin.factor = 10)

ThinRows(dat, thin.factor = 10)

tr(m)

Arguments

- `p`
- `w`
- `lis` : list or array
- `sep`
- `rho`
- `a`
- `x`
- `matri`
- `func`
- `n`
- `...`
- `b`
- `times`
- `each`
- `by.row`
- `k`
- `dat`
- `thin.factor`
- `m`

Examples

```r
concatList(1:3, "_")
```
Description

DXD computes \(D \times X \times D \), where \(D \) is a diagonal matrix. \(tXDX \) computes \(t(X) \times D \times X \). \(symprod \) computes \(S \times X \) for symmetric \(S \). \(txSy \) computes \(t(x) \times S \times y \) for symmetric \(S \).

Usage

\[
\begin{align*}
DXD(d1, X, d2) \\
tXDX(X,D) \\
symprod(S, X) \\
txSy(x, S, y) \\
.as.double(x, stripAttributes = FALSE)
\end{align*}
\]

Arguments

- \(d1 \): a diagonal matrix or an array
- \(d2 \): a diagonal matrix or an array
- \(x \): array
- \(y \): array
- \(S \): symmetric matrix
- \(X \): matrix
- \(D \): matrix
- \(stripAttributes \): boolean

Details

.as.double does not copying whereas as.double(x) for older versions of R when using \(.C(DUP = FALSE) \) make duplicate copy of x. In addition, even if x is a ‘double’, since x has attributes (dim(x)) as.double(x) duplicates.

The functions do not check whether \(S \) is symmetric. If it is not symmetric, then the result will be wrong. DXD offers a big gain, while symprod and txSy gains are more incremental.

Author(s)

Krisztian Sebestyen
Examples

d1=1:3
d2=4:6
X=matrix(1:9,3,3)
all(DXD(d1, X, d2) == diag(d1) %*% X %*% diag(d2))

S=matrix(c(1,2,3,2,4,5,3,5,8),3,3)
X=matrix(1:9,3,3)
all(symprod(S, X) == S %*% X)

x=1:3
y=4:6
S=matrix(c(1,2,3,2,4,5,3,5,8),3,3)
txSy(x, S, y) == drop(t(x)%*%S%*%y)

Description

Misc functions. summ computes iterative sum, sort of like diff.

Usage

pava (x, wt = rep(1, length(x)))
summ(x)
sample.for.cv (dat, v, seed)
empty2na(x)
S3 method for class 'pcc'
predict(object, newdat, ...)

Arguments

dat a data frame. One of the columns must be named y and y should be 0/1 with 1 for case and 0 for control
v v-fold cross validation
seed seed for random number generators
x
wt
object
newdat
...
Details
sample.for.cv: case and controls are sampled separately.

Value
sample.for.cv returns a list of two vector of integers: train and test, which refer to the rows of dat

plotting

Plotting Functions

Description
mypostscript and mypdf sets the width and height based on mfrow input.

Usage

myplot (object, ...)

S3 method for class 'loess'
myplot(object, xlab="x", ylab="fitted", ...)

whiskers (x, s, ...)

abline.pt.slope(pt1, slope, x2=NULL, ...)

abline.pnts(pt1, pt2 = NULL)

butterfly.plot(dat, dat2 = NULL, add = FALSE, xaxislabels = rep("", 4), x.ori = 0,
 xlab = "", ylab = "", cex.axis = 1, ...)

empty.plot()

getMfrow(len)

myhist (x, add.norm=TRUE, col.norm="blue", ...)

myforestplot(dat, xlim=NULL, xlab="", main="", col.1="red", col.2="blue",
 plot.labels=TRUE,order=FALSE,decreasing=FALSE, vline=TRUE,cols=NULL,log="")

my.interaction.plot(dat, x.ori = 0, xaxislabels = rep("", 2), cex.axis = 1, add = FALSE,
 xlab = "", ylab = "", pcol = NULL, lcol = NULL, ...)

myboxplot(object, ...)

S3 method for class 'formula'
myboxplot(formula, data, cex = 0.5, xlab = "", ylab = "", main =
"", box = TRUE, at = NULL, na.action = NULL, p.val = NULL, pch = 1, col = 1, test = "",
friedman.test.formula = NULL, reshape.formula = NULL,
reshape.id = NULL, jitter = TRUE, add.interaction = FALSE, drop.unused.levels = TRUE, bg.pt = NULL, add = FALSE, seed = 1, ...)

S3 method for class 'data.frame'
myboxplot(object, cex = 0.5, ylab = "", xlab = "", main = "", box = TRUE, at = NULL, pch = 1, col = 1, test = "", paired = FALSE, ...)

S3 method for class 'list'
myboxplot(object, paired = FALSE, ...)

abline.shade.2(x, col=c(0,1,0))
abline.shade(pt, quadrant=c(1,2,3,4), col=c(0,1,0), alpha=0.3)

S3 method for class 'glm'
VEplot(object, X1, X2, x, ...)

add.mtext.label (text, cex = 1.4, adj = -0.2)

mydev.off(file = "temp", ext = c("pdf"), res = 200, mydev = NULL)

mylegend(legend, x, y=NULL, lty = NULL, bty = "n", ...)

mymatplot(x, y, type = "b", lty = c(1, 2, 1, 2, 1, 2), pch = NULL, col = rep(c("darkgray", "black"), each = 3), xlab = NULL, ylab = "", draw.x.axis = TRUE, bg = NA, lwd = 1, at = NULL, make.legend = TRUE, legend = NULL, impute.missing.for.line = TRUE, legend.x = 9, legend.title = NULL, legend.cex = 1, legend.inset = 0, xaxt = "s", y.intersp = 1.5, x.intersp = 0.3, ...)

mypairs(dat, ladder = FALSE, show.data.cloud = TRUE, ladder.add.line = T, ladder.add.text = T, ...)

wtd.hist (x, breaks = "Sturges", freq = NULL, probability = !freq,
include.lowest = TRUE, right = TRUE, density = NULL, angle = 45,
col = NULL, border = NULL, main = paste("Histogram of", xname),
xlim = range(breaks), ylim = NULL, xlab = xname, ylab, axes = TRUE,
plot = TRUE, labels = FALSE, nclass = NULL, weight = NULL, ...)

mylines(x, y, ...)

myfigure(mfrow = c(1, 1), mfcol = NULL, width = NULL,


```r
height = NULL, oma = NULL, mar = NULL, main.outer = FALSE, bg=NULL)

mypdf(...)

mypng(...)
mytiff(...)

mypostscript(file = "temp", mfrow = c(1, 1), mfcol = NULL, width = NULL,
height = NULL, ext = c("eps", "pdf", "png", "tiff"), oma = NULL,
mar = NULL, main.outer = FALSE, save2file = TRUE, res = 200,
...

panel.cor(x, y, digits=2, prefix="", cex.cor, cor., ...)

panel.hist(x, ...)

panel.nothing(x, ...)

corplot(object, ...)

## Default S3 method:
corplot(object, y, ...)

## S3 method for class 'formula'
corplot(formula, data, main = "", method = c("pearson", "spearman"),
col=1,cex=.5,add.diagonal.line=TRUE,add.lm.fit=FALSE,col.lm=2,add.deming.fit=FALSE,
    col.deming=4,add=FALSE,log="",same.xylim=FALSE,xlim=NULL,ylim=NULL, ...)
```

Arguments

- `add.norm` Boolean, whether to add normal approximation density line
- `col.norm` string, color of added normal density line
- `pt1` s
- `ladder` slope
- `friedman.test.formula`

- `reshape.id`
- `impute.missing.for.line`
- `cor.`
mydev
jitter Boolean
add.interaction Boolean
...
adj
xaxt
breaks
freq
bg.pt
probability
include.lowest
right
density
angle
border
axes
plot
labels
nclass
weight
pt2
pt
quadrant
alpha
dat
lwd line width.
X.intersp controls the look of legend.
y.intersp controls the look of legend.
res resolution.
legend.inset legend inset
dat2
add
text
log
add.lm.fit
add.deming.fit
col.lm
col.deming
reshape.formula
 a formula object.
xaxislabels
x.ori
xlab
ylab
cex.axis
len
same.xylim Boolean. Whether xlim and ylim should be the same
xlim
ylim
main
col.1
col.2
pcol
lcol
object
formula
data
cex
box
at
pch
col
test string. For example, "t", "w", "f", "k", "tw"
legend
x
X1
X2
lty
bty
type
make.legend
legend.x
legend.title
legend.cex
plotting

draw.x.axis
bg
method
file
mfrow
mfcol
width
height
ext
oma
mar
main.outer
save2file
y
digits
prefix
cex.cor
plot.labels Boolean
order Boolean
decreasing Boolean
add.diagonal.line

x2
vline
cols
na.action
drop.unused.levels

p.val
seed
paired
show.data.cloud

ladder.add.line

ladder.add.text
print.functions

Details

myboxplot shows data points along with boxes. The data points are jittered and the pattern of jittering is made reproducible in repeated calls. The test can only take one type of test currently.

myforestplot is modified from code from Allan deCamp/SCHARP. dat should have three columns. first column should be point estimate, second and third lci and uci, fourth p value. col.1 is the color used for CIs that do not include null, col.2 is used for CIs that do include null. If order is TRUE, the rows are ordered by the first column of dat. descreasing can be used to change the behavior of order.

corplot.formula uses MethComp::Deming by Bendix Carstensen to fit Deming regression.

wtd.hist is copied from weights package, author: Josh Pasek.

mymatplot will use na.approx (zoo) to fill in NA before plotting in order to draw continuous lines. The filled-in values will not be shown as points.

Examples

```r
set.seed(1)
x=1:50+rnorm(50,0,4)
y=1:50+rnorm(50,0,4)
dat=data.frame(x, y)
corplot(y~x,dat,add.lm.fit=TRUE,add.deming.fit=TRUE,col.lm="red",col.deming="blue")
myboxplot(list(jitter(1:10), jitter(3:12)), test="w")
myboxplot(list(jitter(1:10), jitter(3:12)), test="w", paired=TRUE)

## Not run:
myfigure(mfrow=c(1,2))
  plot(1:10)
  plot(1:10)
mydev.off(ext="png,pdf", file="tmp")
## End(Not run)

#myboxplot x axis may look weird if log="xy"
```

print.functions

Description

roundup prints a specified number of digits after decimal point even if 0s are needed at the end.

digits prints a specified number of digits before decimal point even if 0s are needed at the beginning.
print.functions

Usage

formatInt(x, digits, fill = "0", ...)

make.tex.coef.table(models, model.names = NULL, row.major = FALSE, round.digits = NULL)

mytex (dat = NULL, file.name = "temp", digits = NULL, display = NULL, align = "r", include.rownames = TRUE, include.colnames = TRUE, col.headers = NULL, comment = FALSE, floating = FALSE, lines = TRUE, hline.after = NULL, add.to.row = NULL, sanitize.text.function = NULL, append = FALSE, preamble = ",", stand.alone = TRUE, caption = NULL, label = paste("tab", last(strsplit(file.name, "/")[[1]]), sep = " "), table.placement = "h!", add.clear.page.between.tables = FALSE, verbose = FALSE, ...)

mytex.begin(file.name, preamble = ")

mytex.end(file.name)

mywrite(x, ...)

mywrite.csv(x, file = "tmp", row.names = FALSE, digits = NULL, ...)

roundup (value, digits, na.to.empty=TRUE)

formatDouble(value, digits, na.to.empty=TRUE)

Arguments

include.colnames
 Boolean

col.headers
 string. Column headers

comment
 Boolean, whether to include the version and timestamp comment

hline.after
 vector

add.to.row
 a list

sanitize.text.function
 a function

stand.alone
 Boolean. If true, only one latex file that is stand alone file is made; otherwise both a file that is to be inputted and a standalone version are made

caption

label
 default to be the same as file.name stem

table.placement
Examples

roundup (3.1, 2) # 3.10

formatInt(3, 2) # 03

Not run:

demo of dimnames
tab=diag(1:4); rownames(tab)<-colnames(tab)<-1:4; names(dimnames(tab))=c("age","height")
for greek letter in the labels, we need sanitize.text.function=identity
rownames(tab)[1]="\alpha"
note that to use caption, floating needs to be TRUE
mytex (tab, file="tmp1", sanitize.text.function=identity,
 caption="This is a caption", caption.placement="top",
 floating=TRUE)
col.headers has to have the RIGHT number of columns
but align is more flexible, may not need to include the rownames col
tab=diag(1:4); rownames(tab)<-colnames(tab)<-1:4
mytex (tab, file="tmp", include.rownames = TRUE,
 align=c("c", "c", "c", "c"), col.headers=
 "\hline & \multicolumn{2}{c|}{Vaccine} & \multicolumn{2}{c}{Control} \ \n")
not include rownames
mytex (tab, file="tmp", include.rownames = FALSE,
 align=c("c", "c", "c", "c"), col.headers=
 "\hline \multicolumn{2}{c|}{Vaccine} & \multicolumn{2}{c}{Control} \ \n")
It should work even if some rownames are duplicated
tab=diag(1:4); rownames(tab)=rep(1,4); colnames(tab)<-1:4
mytex (tab, file="tmp", include.rownames = TRUE,
 align=c("c", "c", "c", "c"), col.headers=
 "\hline & \multicolumn{2}{c|}{Vaccine} & \multicolumn{2}{c}{Control} \ \n")

add.to.rows
tab=diag(1:4); rownames(tab)<-1:4; colnames(tab)<-c("a", "b", "c", "d")
mytex (tab, file="tmp",
 add.to.row=list(list(0,2),
 c("\multicolumn{5}{l}{Heading 1} \ \n",
 "\hline\multicolumn{5}{l}{Heading 2}\n"
)))

End(Not run)

random.functions Random Functions

Description

rbern generates Bernoulli random variables.

Usage

dbern(x, prob, log = FALSE)
dcorbern(x, p, a, log = FALSE)
dmixnorm(x, mix.p, sd1, sd2, log = FALSE)
dnorm.norm.gamma(x, p, same.distr = FALSE, log = FALSE)

rbern(n, prob, generalized = FALSE)

rbigamma(n, shape.1, shape.2, rate.1, rate.2, rho)

rbilogistic(n, loc.1, loc.2, scale.1, scale.2, rho)

rejective.sampling(N, n, pik)

rnorm.cor(n, mu, sd, alpha)

rnorm.norm.gamma(n, mu.0, lambda, alpha, beta)

rmixnorm(n, mix.p, mu1, mu2, sd1, sd2)

rdoublexp(n, location=0, scale=1)

ddoublexp(x, location=0, scale=1)

qdoublexp(p, location=0, scale=1)

pdoublexp(q, location=0, scale=1)

rbidoublexp(n, loc.1, loc.2, scale.1, scale.2, rho)

Arguments

q
location
scale
x
prob
log
p
a
mix.p
sd1
sd2
same.distr
n
generalized
N
pik
mu
mu1
Details

rbilogistic generates a bivariate logistic distribution for correlation coefficient 0.5, or [-0.271, 0.478]. In the former case it is generated by calling rbilogis, part of the VGAM package; in the latter case it is generated via the AMH copular.

Examples

```r
set.seed(1)
rbern(n=10, p=1/2)
rbern(n=2, p=c(.999,.001))
```

Description

getFormattedSummary prints a table of regression coefficient estimates and standard errors.
Usage

getFormattedSummary(fits, type = 2, est.digits = 2, se.digits = 2, robust,
random = FALSE, VE = FALSE, to.trim = FALSE, rows =
NULL, coef.direct = FALSE, trunc.large.est = TRUE,
scale.factor = 1, ...)

getVarComponent(object, ...)

getFixedEf(object, ...)

risk.cal(risk, binary.outcome, weights = NULL, ngroups = NULL,
cuts = NULL, main = "", add = FALSE, show.emp.risk = TRUE,
1col = 2, ylim = NULL, scale = c("logit", "risk")
interaction.table(fit, v1, v2, v1.type = "continuous", v2.type = "continuous",
logistic.regression = TRUE)

S3 method for class 'coxph'
getFixedEf(object, exp=FALSE, robust=FALSE, ...)

S3 method for class 'gam'
getFixedEf(object, ...)

S3 method for class 'gee'
getFixedEf(object, exp = FALSE, ...)

S3 method for class 'geese'
getFixedEf(object, ...)

S3 method for class 'tps'
getFixedEf(object, exp=FALSE, robust=TRUE, ...)

S3 method for class 'glm'
getFixedEf(object, exp = FALSE, robust = TRUE, ret.robcov = FALSE,
...)

S3 method for class 'inla'
getFixedEf(object, ...)

S3 method for class 'lm'
getFixedEf(object, ...)

S3 method for class 'lme'
getFixedEf(object, ...)

S3 method for class 'logistf'
getFixedEf(object, exp = FALSE, ...)

regression.model.functions
S3 method for class 'matrix'
getFixedEf(object, ...)

S3 method for class 'MIresult'
getFixedEf(object, ...)

S3 method for class 'hyperpar.inla'
getVarComponent(object, transformation = NULL, ...)

S3 method for class 'matrix'
getVarComponent(object, ...)

S3 method for class 'geese'
coef(object, ...)

S3 method for class 'tps'
coef(object, ...)

S3 method for class 'geese'
predict(object, x, ...)

S3 method for class 'tps'
predict(object, newdata = NULL, type = c("link", "response"), ...)

S3 method for class 'geese'
residuals(object, y, x, ...)

S3 method for class 'geese'
vcov(object, ...)

S3 method for class 'tps'
vcov(object, robust, ...)

S3 method for class 'logistf'
vcov(object, ...)

Arguments

...
object
fit
coef.direct
robust Boolean, whether to return robust variance estimate
exp
cuts
ret.robcov
fits
type
est.digits
se.digits
random
VE
transformation
weights
v1
v2
v1.type
v2.type
logistic.regression

ewndata
x
y
to.trim
rows
risk
binary.outcome
ngroups
main
add
show.emp.risk
lcol
ylim
scale
trunc.large.est
scale.factor

details

getFormattedSummary: from a list of fits, say lmer, inla fits, return formatted summary controlled by "type". For a matrix, return Monte Carlo variance random=TRUE returns variance components
type=1: est type=2: est (se) type=3: est (2.5 percent, 97.5 percent) type=4: est se
getFixedEf returns a matrix, first column coef, second column se,
getFixedEf.matrix used to get mean and sd from a jags or winbugs sample, getVarComponent.matrix
and getFixedEf.matrix do the same thing. Each column of samples is a variable
interaction.table expects coef and vcov to work with fit.
Examples

```r
## Annette Dobson (1990) "An Introduction to Generalized Linear Models".
## Page 9: Plant Weight Data.
ctl <- c(4.17, 5.58, 5.18, 6.11, 4.50, 4.61, 5.17, 4.53, 5.33, 5.14)
trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)
group <- gl(2, 10, 20, labels = c("Ctl","Trt"))
weight <- c(ctl, trt)
lm.D9 <- lm(weight ~ group)
glm.D9 <- glm(weight ~ group)
getFormattedSummary (list(lm.D9, glm.D9), robust=FALSE)
```

sim.dat.tvarying.three *Simulation Functions for Time-dependent Proportional Hazard Model*

Description

`sim.dat.tvarying.three` simulates from a model with time varying age group variable of three levels, `sim.dat.tvarying.two` two.

Usage

```r
sim.dat.tvarying.three(n, followup.length, incidence.density,
  age.sim = c("tvaryinggroup", "baselinegroup", "continuous","bt"),
  random.censoring.rate = 0.05, seed)
```

```r
sim.dat.tvarying.two(n, followup.length, incidence.density,
  age.sim = c("tvaryinggroup", "baselinegroup", "continuous","bt"),
  random.censoring.rate = 0.05, seed)
```

Arguments

- `n` integer. Sample size.
- `followup.length` numeric. Length of followup, in years.
- `incidence.density` numeric. Incidence rate per year.
- `age.sim` string. Choose between one of three possibilities. `tvaryinggroup`: age group is time-varying covariate; `baselinegroup`: age group is a baseline covariate; `continuous`: age is a continuous covariate; `bt`: age group by treatment interaction uses baseline age group, while age group main effect uses time-dependent age group.
- `random.censoring.rate` numeric. Amount of random censoring.
- `seed` integer. Random number generator seed.
Details

In sim.dat.tvarying.three, baseline age is uniformly distributed between 2.0 and 16.0, and divided into three groups at 6 and 12. In sim.dat.tvarying.two, baseline age is uniformly distributed between 2.0 and 12.0, and divided into two groups at 6.

Value

Return a data frame with the following columns:

- **ptid**: subject identifier
- **trt**: treatment indicator 0/1
- **for.non.tvarying.ana**: Boolean, used to subset dataset for non-time dependent analysis
- **C**: censoring time
- **baseline.age**: age years at baseline
- **agegrp**: a factor with levels [0,6) [6,12) [12,100)
- **baseline.agegrp**: a factor with levels [0,6) [6,12) [12,100)
- **tstart**: left bound of time interval
- **tstop**: right bound of time interval
- **d**: event indicator
- **X**: followup time, in years

Author(s)

Youyi Fong

See Also

- `make.timedep.dataset`

Examples

```r
library(survival)

dat=sim.dat.tvarying.three(n=6000, followup.length=3, incidence.density=0.05,
                        age.sim="tvaryinggroup", seed=1)

f.tvarying = Surv(tstart, tstop, d) ~ trt*agegrp
f = Surv(X, d) ~ trt*baseline.agegrp
fits=list()
fits["tvarying"] = coxph(f.tvarying, dat)
fits["baseline"] = coxph(f, subset(dat, for.non.tvarying.ana))
fits
```


Description

H calculates entropy.

Usage

\[H(p, \text{logbase} = c("e", "2")) \]

\[\text{mutual.info(two.way.table, logbase = c("e", "2"))} \]

\[\text{cor.mixed(x, ...)} \]

Default S3 method:
\[\text{cor.mixed(x, na.fun, method=c("pearson","spearman"), ...)} \]

S3 method for class 'vector'
\[\text{cor.mixed(x, y, na.fun, method=c("pearson","spearman"), ...)} \]

S3 method for class 'formula'
\[\text{cor.mixed(formula, data, na.fun, method=c("pearson","spearman"), ...)} \]

\[\text{skew (x, na.rm = FALSE)} \]

\[\text{info.cor(two.way.table)} \]

\[\text{yule.y(two.by.two.matrix)} \]

\[\text{kappa.cor(two.by.two.matrix, weight = c(1, 1), maximum = FALSE)} \]

\[\text{l.measure(two.by.two.matrix)} \]

Arguments

- **p**: either a count vector or a probability vector, but can not be a vector of membership indicator
- **logbase**
- **na.rm**
- **two.way.table**
- **x**
- **...**
Examples

H(rep(1/5, 5))
H(rep(3, 5))

Description

`%+%` concatenates its arguments and returns a string.

Usage

```r
a %+% b
```

`contain(s1, s2)`
`trim(x, trim.trailing=TRUE, trim.leading=TRUE)`
`escapeUnderline(name)`
`fileStem(file.name)`
`firstIndex(s1, s2)`
`getExt(file.name)`
`getFileStem(file.name)`
`getStem(file.name)`
`lastIndex(s1, s2)`
myprint(object, ...)

Default S3 method:
myprint(..., newline = TRUE, digits = 3)

remove.prefix(s, sep = "_")

Arguments

a
b
s1
s2
name
file.name
object
...
newline
digits
s
sep
x
trim.leading
trim.trailing

Examples

x=1
x %.% "b" %.% "c"

Testing Functions

Testing functions.
testing.functions

Usage

hosmerlem(y, yhat, g = 10)
quick.t.test(x, y, var.equal = FALSE)
signtest(x)
tukey.mtest(mu, ms, n)
vector.t.test(mean.x, mean.y, var.x, var.y, n)
myfisher.test(x, y, ...)
mycor.test(x, method = c("pearson", "kendall", "spearman"), idx = NULL)

Arguments

...
y
yhat
g
x
var.equal
method
mu
ms
n
mean.x
mean.y
var.x
var.y
idx

Examples

signtest(runif(10))
VEplot

Vaccine Efficacy Plots

Description

Vaccine efficacy plots.

Usage

VEplot (object, ...)

S3 method for class 'cox.zph'
VEplot(object, resid = TRUE, se = TRUE, df = 4, nsmo = 40,
 var, ylab="VE", xlab="Time", xaxt="s", cex.axis=1, ...)

S3 method for class 'cox.zph'
myplot(object, resid = TRUE, se = TRUE, df = 4, nsmo = 40, var,
 coef.transform=NULL,
 ylab=NULL,
 xlab="Time", xaxt="s", cex.axis=1,
 ...)

Arguments

object An object
resid Boolean, whether to plot residuals
se Boolean, whether to plot confidence band
df degrees of freedom
nsmo number of points used to plot the fitted spline
var estimated variance matrix from the Cox model fit
xlab x label
xaxt x axis
cex.axis cex for axis
ylab y label
coef.transform a function to transform Cox hazard ratio estimate
... additional parameters

Details

VEplot and myplot.cox.zph are extensions of survival::plot.cox.zph to plot VE curve and other transformations.

myplot.cox.zph adds the following parameters to the original list of parameters in plot.cox.zph:
coef.transform: a function to transform the coefficients ylab: y axis label xlab: x axis label
Author(s)
Youyi Fong, Dennis Chao

References

Examples

library(survival)
vfit <- coxph(Surv(time,status) ~ trt + factor(celltype) +
 karno + age, data=veteran, x=TRUE)
temp <- cox.zph(vfit)

par(mfrow=c(2,2))
for (v in c("trt","age")) {
 VEplot(temp, var=v, resid=FALSE, main=v, ylab="VE", cex.axis=1.5)
 plot(temp, var=v, resid=FALSE, main=v)
}
Index

*Topic time varying

make.timedep.dataset, 13
.as.double (matrix2), 18
.%.% (string.functions), 38
abline.pt.slope (plotting), 20
abline.pts (plotting), 20
abline.shade (plotting), 20
add.mtext.label (plotting), 20
age_calc, 2
AR1 (matrix.array.functions), 16
array.functions
 (matrix.array.functions), 16
as.binary (math.functions), 15
base.functions, 3
binary (base.functions), 3
binary2 (base.functions), 3
binom.coef (math.functions), 15
butterfly.plot (plotting), 20
cbinduneven (base.functions), 3
coeff.Deming (Deming), 7
coeff.geese
 (regression.model.functions), 31
coeff.tps (regression.model.functions), 31
concatList (matrix.array.functions), 16
contain (string.functions), 38
cor.mixed (stat.functions), 37
corplot (plotting), 20
cox.zph, 7
cox.zph.2, 6
dbern (random.functions), 29
dcorbern (random.functions), 29
ddoublexp (random.functions), 29
Deming, 7
DMHeatMap, 8
dmixnorm (random.functions), 29
dnorm.norm.gamma (random.functions), 29
DXD (matrix2), 18
empty.plot (plotting), 20
empty2na (misc), 19
escapeUnderline (string.functions), 38
EXCH (matrix.array.functions), 16
expit (math.functions), 15
f2c (base.functions), 3
fileStem (string.functions), 38
fill.jagged.array
 (matrix.array.functions), 16
firstIndex (string.functions), 38
formatDouble (print.functions), 26
formatInt (print.functions), 26
ftoi (base.functions), 3
get.sim.res, 10
getExt (string.functions), 38
getFileStem (string.functions), 38
getFixedEf
 (regression.model.functions), 31
getFixedEf.Deming (Deming), 7
getFixedEf2
 (regression.model.functions), 31
getFormattedMCSummary (get.sim.res), 10
getFormattedSummary
 (regression.model.functions), 31
getK, 11
getMfrow (plotting), 20
getMidPoints (matrix.array.functions), 16
getStem (string.functions), 38
getUpperRight (matrix.array.functions), 16
getIndex
getVarComponent
 (regression.model.functions), 31
H (stat.functions), 37
hosmerlem (testing.functions), 39
info.cor (stat.functions), 37
interaction.table
 (regression.model.functions), 31
interpolate (math.functions), 15
kappa.cor (stat.functions), 37
keepWarnings (base.functions), 3
kyotil, 13
l.measure (base.functions), 37
last (matrix.array.functions), 16
lastIndex (string.functions), 38
logDiffExp (math.functions), 15
logit (math.functions), 15
logMeanExp (math.functions), 15
logSumExp (math.functions), 15
logSumExpFor2 (math.functions), 15
make.latex.coef.table
 (print.functions), 26
make.timedep.dataset, 13, 36
math.functions, 15
matrix.array.functions, 16
matrix.functions
 (matrix.array.functions), 16
matrix2, 18
MCsummary (get.sim.res), 10
meanmed (base.functions), 3
methods4 (base.functions), 3
misc, 19
mix (matrix.array.functions), 16
multi.outer (base.functions), 3
mutual.info (stat.functions), 37
my.interaction.plot (plotting), 20
myaggregate (base.functions), 3
myboxplot (plotting), 20
mycor (base.functions), 3
mycor.test (testing.functions), 39
mydev.off (plotting), 20
myfigure (plotting), 20
myfisher.test (testing.functions), 39
myforestplot (plotting), 20
myhist (plotting), 20
mylegend (plotting), 20
mylines (plotting), 20
mymatplot (plotting), 20
mypairs (plotting), 20
mypdf (plotting), 20
myplot (plotting), 20
myplot.cox.zph (VEplot), 41
mypng (plotting), 20
mypostscript (plotting), 20
myprint (string.functions), 38
myreshape (base.functions), 3
myreshape2 (base.functions), 3
mysapply (base.functions), 3
myscale (base.functions), 3
mysystem (base.functions), 3
mytapply (base.functions), 3
mytex (print.functions), 26
mytiff (plotting), 20
mywrite (print.functions), 26
panel.cor (plotting), 20
panel.hist (plotting), 20
panel.nothing (plotting), 20
pava (misc), 19
pdoublexp (random.functions), 29
 permn (math.functions), 15
predict.Deming (Deming), 7
predict.geese
 (regression.model.functions), 31
predict.pcc (misc), 19
predict.tps
 (regression.model.functions), 31
print.functions, 26
qdoublexp (random.functions), 29
quick.t.test (testing.functions), 39
random.functions, 29
rbern (random.functions), 29
rdoublexp (random.functions), 29
rbigamma (random.functions), 29
rbilogistic (random.functions), 29
rdoublexp (random.functions), 29
read.sv (base.functions), 3
read.tsv (base.functions), 3
regression.model.functions, 31
rejective.sampling (random.functions), 29
remove.prefix (string.functions), 38
rep.data.frame (matrix.array.functions), 16
rep.matrix (matrix.array.functions), 16
residuals.geese (regression.model.functions), 31
risk.cal (regression.model.functions), 31
rmixnorm (random.functions), 29
rnorm.cor (random.functions), 29
rnorm.norm.gamma (random.functions), 29
roundup (print.functions), 26
sample.for.cv (misc), 19
shift.left (matrix.array.functions), 16
shift.right (matrix.array.functions), 16
signtest (testing.functions), 39
sim.dat.tvarying.three (sim.dat.tvarying.two), 35
sim.dat.tvarying.two, 35
skew (stat.functions), 37
stat.functions, 37
Stirling2 (math.functions), 15
string.functions, 38
summ (misc), 19
summary.Deming (Deming), 7
symprod (matrix2), 18
table_cases (base.functions), 3
table_prop (base.functions), 3
testing.functions, 39
thin.rows (matrix.array.functions), 16
ThinRows (matrix.array.functions), 16
tr (matrix.array.functions), 16
trim (string.functions), 38
tukey.mtest (testing.functions), 39
tXDX (matrix2), 18
txSy (matrix2), 18
unix (base.functions), 3
vcov.Deming (Deming), 7
vcov.geese (regression.model.functions), 31
vcov.logistf (regression.model.functions), 31
vcov.tps (regression.model.functions), 31
vector.t.test (testing.functions), 39
VEplot, 41
VEplot.glm (plotting), 20
whiskers (plotting), 20
wtd.hist (plotting), 20
yule.y (stat.functions), 37