Title An L1-Version of the Spectral Clustering
Version 0.99.6
License GPL-2
Imports Rcpp (>= 0.12.5), stats, dplyr, graphics, igraph, Matrix, aricode, grDevices, caret, glmnet, ggplot2, cvTools
LinkingTo Rcpp, RcppArmadillo
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
NeedsCompilation yes
Author Camille Champion [aut],
 Magali Champion [aut, cre]
Maintainer Magali Champion <magali.champion@u-paris.fr>
Repository CRAN
Date/Publication 2022-01-26 17:12:46 UTC

R topics documented:

 11spectral-package ... 2
 ComputePerformances .. 3
 CreateDataSet ... 4
 FindElement ... 5
 FindNbrClusters .. 6
 FindStructure ... 7
 l1_spectralclustering 8
 ToyData .. 10

Index 11
l1spectral-package

Description

Details

l1-spectral clustering is an l1-penalized version of the spectral clustering algorithm, which aims at robustly detecting cluster structure of perturbed graphs by promoting sparse eigenbases solutions of specific l1-minimization problems.

The DESCRIPTION file:

```
Package: l1spectral
Title: An L1-Version of the Spectral Clustering
Version: 0.99.6
Authors@R: c(person("Camille", "Champion", role = "aut"), person("Magali", "Champion", role = c("aut","cre"),email="magali.champion@u-paris.fr" ))
License: GPL-2
Imports: Rcpp (>= 0.12.5), stats, dplyr, graphics, igraph, Matrix, aricode, grDevices, caret, glmnet, ggplot2, cvTools
LinkingTo: Rcpp, RcppArmadillo
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.1.2
Author: Camille Champion [aut], Magali Champion [aut, cre]
Maintainer: Magali Champion <magali.champion@u-paris.fr>
```

Author(s)

NA

References

See Also

l1_spectralclustering
Examples

```r
# Performing the l1-spectral clustering on the graph
data(ToyData)

# if desired, the number of clusters and representative elements can be provided,
# otherwise remove
results2 <- l1_spectralclustering(A = ToyData$A_hat, pen = "lasso")
results2$comm

# when desired, the number of clusters and representative elements can also be provided
results2 <- l1_spectralclustering(A = ToyData$A_hat, pen = "lasso",
                                  k=2, elements = c(1,4))
```

Description

This function computes the performances of the l1-spectral clustering algorithm in terms of Normalized Mutualized Information (NMI).

Usage

```r
ComputePerformances(Results, A)
```

Arguments

- **Results**: Output of the function `l1_spectralclustering()`.
- **A**: The adjacency matrix of the graph to cluster.

Value

The Normalized Mutualized Information (NMI), Adjusted Mutualized Information (AMI) and Adjusted Rand Index (ARI) scores.

Author(s)

Camille Champion, Magali Champion

See Also

`l1_spectralclustering`, `l1spectral`.
CreateDataSet

Examples

```r
# Computing the performances

data(ToyData)

results <- l1_spectralclustering(A = ToyData$A_hat, pen = "lasso", 
k=2, elements = c(1,4))

ComputePerformances(Results=results, A=ToyData$A)
```

CreateDataSet

Create data set

Description

This function generates toy data that can be used to run the l1-spectral clustering algorithm: the adjacency matrix of a graph with \(n \) nodes and its perturbed version.

Usage

`CreateDataSet(k, n, p, print.plot = TRUE, ClustersLength = NULL)`

Arguments

- `k`: True number of clusters.
- `n`: Number of nodes.
- `p`: List of probabilities of perturbations (inside and outside clusters).
- `print.plot`: TRUE/FALSE indicated whether the graph should be plotted.
- `ClustersLength`: Length of the \(k \) clusters (not necessary needed). If not provided, randomly chosen in such a way that \(\text{sum(ClustersLength)} = n \).

Value

A list with the following elements:

- A Adjacency matrix of the generated graph.
- A_hat Adjacency matrix of the perturbed version of the generated graph.
- ClustersLength Length of the \(k \) clusters.

Author(s)

Camille Champion, Magali Champion
FindElement

See Also

l1_spectralclustering, l1spectral.

Examples

Generating toy data
Data <- CreateDataSet(k=3, n=20, p=list(p_inside=0.1, p_outside=0.1))

Data is a list of three objects:
- Data$A is an nxn matrix corresponding to the adjacency matrix of a graph
with n nodes and k clusters,
- Data$A_hat is a perturbed version of this graph with a probability
p_inside of removing an edge inside clusters and
p_outside of adding an edge between clusters,
- Data$ClustersLength is a vector indicating the length of the clusters.

Data <- CreateDataSet(k=3, n=20, p=list(p_inside=0.1, p_outside=0.1), print.plot=TRUE)

The same as above but the true graph and its perturbed version are both plotted.

FindElement

Find the representative elements of the clusters

Description

This internal function of the l1-spectral clustering algorithm finds representative elements of the clusters, that is nodes belonging to the clusters.

Usage

FindElement(A, structure, clusters, elements = NULL)

Arguments

A
structure
clusters
elements

The adjacency matrix
Output of the function FindStructure().
Output of the function FindNbrClusters().
The representative elements of the clusters (not necessary needed). If not provided, chosen using the betweenness centrality score.

Value

A list with the following elements:

• score The edge betweenness score of all nodes,
• Nodes Vector of the representative elements.
FindNbrClusters

Author(s)
Camille Champion, Magali Champion

See Also

l1_spectralclustering, l1spectral.

Examples

Finding the representative elements of the clusters

1st: create data (not perturbed graph)
Data <- CreateDataSet(k=3, n=20, p=list(p_inside=0, p_outside=0))

2nd: find the structure of the graph
Structure <- FindStructure(Data$A_hat)

3rd: find the optimal number of clusters (here, 3 clusters)
Clusters <- FindNbrClusters(A = Data$A_hat, structure = Structure, k=3)

4th: find the representative elements of the clusters
Elements <- FindElement(A = Data$A_hat, structure = Structure, clusters = Clusters)
 # if elements is not provided, the representative elements of each component are chosen
 # by maximizing the edge betweenness score

Elements <- FindElement(A = Data$A_hat, structure = Structure, clusters = Clusters, elements = c(1,5,12))

FindNbrClusters

Find the optimal number of clusters

Description

This internal function of the l1-spectral algorithm finds the optimal number of clusters to build.

Usage

FindNbrClusters(A, structure, k = NULL, k_max = NULL)

Arguments

A The adjacency matrix
structure Output of the function FindStructure().
k True number of clusters (not necessarily needed). If not provided, k is chosen by spectral eigengap.
k_max Maximal number of clusters to form (not necessarily needed). If not provided, k_max is set to the number of nodes.
FindStructure

Value

A list with the following elements:

- `nbr_clusters` Optimal number of clusters by component,
- `nbr_clusters_total` Optimal total number of clusters.

Author(s)

Camille Champion, Magali Champion

See Also

`l1_spectralclustering`, `l1spectral`.

Examples

```
#########################################
# Finding the optimal number of clusters
#########################################

# 1st example: non-perturbed graph
Data <- CreateDataSet(k=3, n=20, p=list(p_inside=0, p_outside=0))

Structure <- FindStructure(Data$A_hat)

Clusters <- FindNbrClusters(A = Data$A_hat, structure = Structure, k=3)
# The number of clusters is provided (3): each of the 3 components will be divided into 1 cluster

Clusters <- FindNbrClusters(A = Data$A_hat, structure = Structure, k=5)
# The number of clusters is provided (5) and larger than the number of components (3),
# the spectral eigengap method is used to find the optimal number of clusters of each component.

# 2nd example: perturbed graph
Data <- CreateDataSet(k=3, n=20, p=list(p_inside=0.1, p_outside=0.1))

Structure <- FindStructure(Data$A_hat) # there are less than 3 components

Clusters <- FindNbrClusters(A = Data$A_hat, structure = Structure)
# The number of clusters is optimized using the spectral eigengap method
```

FindStructure

Find the structure of the graph from the adjacency matrix

Description

This internal function of the spectral clustering algorithm finds the structure of the graph to cluster (number of nodes and connected components).
Usage
FindStructure(A)

Arguments
A The adjacency matrix

Value
A list with the following elements:

• graph igraph object derived from A,
• groups List of connected components and corresponding nodes.

Author(s)
Camille Champion, Magali Champion

See Also
l1_spectralclustering, l1spectral.

Examples

Finding the structure of the graph from the adjacency matrix
1st example: non-perturbed graph
Data <- CreateDataSet(k=3, n=20, p=list(p_inside=0, p_outside=0))
Structure <- FindStructure(Data$A_hat)
Structure$groups # the graph is not perturbed, there are 3 connected components

2nd example: highly-perturbed graph
Data <- CreateDataSet(k=3, n=20, p=list(p_inside=0.5, p_outside=0.5))
Structure <- FindStructure(Data$A_hat)
Structure$groups # the graph is highly perturbed, there are less than 3 connected components
Usage

l1_spectralclustering(
 A,
 k = NULL,
 k_max = NULL,
 elements = NULL,
 pen,
 stab = TRUE
)

Arguments

A The adjacency matrix of the graph to cluster.
k True number of clusters (not necessarily needed). If not provided, k is chosen by spectral eigengap.
k_max Maximal number of clusters to form (not necessarily needed). If not provided, k_max is set to the number of nodes.
elements The representative elements of the clusters (not necessary needed). If not provided, index are chosen using the betweeness centrality score.
pen The penalty (to be chosen among "lasso" or "thresholdedLS").
stab TRUE/FALSE indicated whether the indices should be stabilized (TRUE by default)

Value

A list with the following elements:

• comm The community matrix,
• structure The structure of the graph to cluster,
• clusters The number of clusters,
• elements The chosen representative elements of the clusters.

Author(s)
Camille Champion, Magali Champion

See Also

ComputePerformances, l1spectral.

Examples

###
Performing the l1-spectral clustering on the graph
###

data(ToyData)
if desired, the number of clusters and representative elements can be provided, otherwise, remove results2 <- l1_spectralclustering(A = ToyData$A_hat, pen = "lasso") results2$comm

when desired, the number of clusters and representative elements can also be provided results2 <- l1_spectralclustering(A = ToyData$A_hat, pen = "lasso", k=2, elements = c(1,4))

ToyData

Toy data for running the l1-spectral clustering algorithm

Description

An example of data for running the l1-spectral clustering algorithm.

Usage

ToyData

Format

A list of three variables containing the adjacency matrix A of a 5-nodes graph, the adjacency matrix A_hat of a perturbed version of the same graph and the length of the two inherent clusters.

Value

No value returned, as this is a dataset.

Examples

```r
data(ToyData)
A <- ToyData$A
A_hat <- ToyData$A_hat
clusters <- ToyData$clusters
```
Index

* Unsupervised learning - Spectral clustering
 - L1-penalty - Biological networks
 l1spectral-package, 2

ComputePerformances, 3, 9
CreateDataSet, 4

FindElement, 5
FindNbrClusters, 6
FindStructure, 7

l1_spectralclustering, 2, 3, 5–8, 8
l1spectral, 3, 5–9
l1spectral (l1spectral-package), 2
l1spectral-package, 2

ToyData, 10