Package ‘label.switching’

May 18, 2018

Type Package
Title Relabelling MCMC Outputs of Mixture Models
Version 1.7
Date 2018-05-18
Author Panagiotis Papastamoulis
Maintainer Panagiotis Papastamoulis <papast@yahoNgr>
Description The Bayesian estimation of mixture models (and more general hidden Markov models) suffers from the label switching phenomenon, making the MCMC output non-identifiable. This package can be used in order to deal with this problem using various relabelling algorithms.
Imports combinat, lpSolve
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2018-05-18 09:52:54 UTC

R topics documented:

label.switching-package .. 2
aic ... 4
compare.clust ... 5
dataBased .. 6
data_list ... 7
ecr ... 7
ecr.iterative.1 .. 9
ecr.iterative.2 .. 10
label.switching ... 12
lamb ... 16
permute.mcmc .. 17
pra ... 18
sjw ... 19
stephens ... 21
Algorithms for solving the label switching problem

Description

This package can be used to reorder MCMC outputs of parameters of mixture models (or more general ones, like hidden Markov). The label switching phenomenon is a fundamental problem to MCMC estimation of the parameters of such models. This package contains eight label switching solving algorithms: the default and iterative versions of ECR algorithm (Papastamoulis and Iliopoulos, 2010, 2013, Rodriguez and Walker, 2014, Papastamoulis, 2014), the data-based algorithm (Rodriguez and Walker, 2014), the Kullback-Leibler based algorithm of Stephens (2000), the probabilistic relabelling algorithm of Sperrin et al (2010), the artificial identifiability constraints method and the PRA algorithm (Marin et al, 2005, Marin and Robert, 2007). The user input depends on each method. Each algorithm returns a list of permutations. For comparison purposes, the user can also provide his/hers own set of permutations.

Details

This is NOT a package to simulate MCMC samples from the posterior distribution of mixture models. MCMC output and related information serves as input to the available methods. There are eight functions that can be used to post-process the MCMC output:

<table>
<thead>
<tr>
<th>Function</th>
<th>Method</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>aic</td>
<td>ordering constraints</td>
<td>mcmc, constraint</td>
</tr>
<tr>
<td>dataBased</td>
<td>data based</td>
<td>x,K,z</td>
</tr>
<tr>
<td>ecr</td>
<td>ECR (default)</td>
<td>zpivot, z, K</td>
</tr>
<tr>
<td>ecr.iterative.1</td>
<td>ECR (iterative vs. 1)</td>
<td>z, K</td>
</tr>
<tr>
<td>ecr.iterative.2</td>
<td>ECR (iterative vs. 2)</td>
<td>z, K, p</td>
</tr>
<tr>
<td>pra</td>
<td>PRA</td>
<td>mcmc, pivot</td>
</tr>
<tr>
<td>stephens</td>
<td>Stephens</td>
<td>p</td>
</tr>
<tr>
<td>sjw</td>
<td>Probabilistic</td>
<td>mcmc, z, complete, x</td>
</tr>
</tbody>
</table>

Each function returns an \(m \times K \) array of permutations, where \(m \) and \(K \) denote the MCMC sample size and number of mixture components, respectively. Next, these permutations can be applied to reorder the MCMC sample by applying the function `permute.mcmc`. The useR can call any of the
above functions simultaneously using the main function of the package: `label.switching`.

Note

The most common method is to impose an identifiability constraint aic, however this approach has been widely criticized in the literature. The methods ecr, ecr.iterative.1, ecr.iterative.2, stephens, dataBased are solving the label switching problem using the function lpAssign of the package lpSolve. This is an integer programming algorithm for the solution of the assignment problem. Hence, these functions are computationally efficient even in cases where the number of components is quite large. On the other hand, methods pra and sjw are not designed in this way, so they are not suggested for large K.

Author(s)

Panagiotis Papastamoulis

Maintainer: <papapast@yahoo.gr>

References

See Also

`label.switching`
Artificial Identifiability Constraints

Description
This function relabels the MCMC output by simply ordering a specific parameter. Let m, K and J denote the number of simulated MCMC samples, number of mixture components and different parameter types, respectively.

Usage
\[\text{aic}(\text{mcmc.pars}, \text{constraint}) \]

Arguments
- \textit{mcmc.pars} $m \times K \times J$ array of simulated MCMC parameters.
- \textit{constraint} An integer between 1 and J corresponding to the parameter that will be used to apply the Identifiability Constraint. In this case, the MCMC output is reordered according to the constraint
 \[\text{mcmc.pars}[i, 1, \text{constraint}] < \ldots < \text{mcmc.pars}[i, K, \text{constraint}], \]
 for all $i = 1, \ldots, m$. If \textit{constraint} = "ALL", all J Identifiability Constraints are applied.

Value
- \textit{permutations} an $m \times K$ array of permutations.

Author(s)
Panagiotis Papastamoulis

See Also
- \texttt{permute.mcmc.label.switching}

Examples
load a toy example: MCMC output consists of the random beta model
applied to a normal mixture of \code{k=2} components. The number of
observations is equal to \code{n=5}. The number of MCMC samples is
equal to \code{m=300}. The 1000 generated MCMC samples are stored
to array \code{mcmc.pars}.
data("mcmc_output")
mcmc.pars<-data_list$mcmc.pars"

mcmc parameters are stored to array \code{mcmc.pars}
mcmc.pars[,1]: simulated means of the two components
(compare.clust)

mcmc.pars[,2]: simulated variances of the two components
mcmc.pars[,3]: simulated weights of the two components
We will apply AIC by ordering the means
which corresponds to value \code{constraint=1}
run<-aic(mcmc = mcmc.pars, constraint=1)
apply the permutations returned by typing:
reordered.mcmc<-permute.mcmc(mcmc.pars,run$permutations)
reordered.mcmc[,1]: reordered means of the two components
reordered.mcmc[,2]: reordered variances of the components
reordered.mcmc[,3]: reordered weights

Description

Given a pivot allocation vector, a set of simulated allocations and a set of permutations from different relabelling algorithms, this function relabels the permutations so that all methods maximize their similarity with the pivot. This is helpful when comparing different label switching algorithms.

Usage

```r
compare.clust(pivot.clust, perms, z, K)
```

Arguments

- `pivot.clust` a pivot allocation vector of the `n` observations among the `K` clusters.
- `perms` a list containing `f` permutation arrays, as returned by `label.switching` function.
- `z` a set of simulated allocation arrays.
- `K` number of mixture components

Value

- `similarity` `(f + 1)K \times (f + 1)` matrix containing the similarity coefficient of the resulting clusters.
- `clusters` `f \times n` array of single best clusterings, relabelled in order to maximize their similarity with `pivot.clust`.
- `permutations` releaballed permutations.

Author(s)

Panagiotis Papastamoulis

See Also

`label.switching`
Data-based labelling

Description

This function reorders the MCMC output according the data-based relabelling algorithm of Rodriguez and Walker (2014). The idea is to define a loss function which resembles a k-means type diving measure of cluster centers. After the cluster centers have been estimated, the algorithm finds the optimal permutations that switch every simulated MCMC sample to them.

Usage

dataBased(x, K, z)

Arguments

- **x**
 - n-dimensional data vector/array.
- **K**
 - the number of mixture components.
- **z**
 - $m \times n$ integer array of the latent allocation vectors generated from an MCMC algorithm.

Value

- **permutations**
 - $m \times K$ dimensional array of permutations

Author(s)

Panagiotis Papastamoulis

References

See Also

- `permute.mcmc.label.switching`

Examples

```r
# load a toy example: MCMC output consists of the random beta model
# applied to a normal mixture of K=2 components. The number of
# observations is equal to n=5. The number of MCMC samples is
# equal to m=300. The 1000 generated MCMC samples are stored
# to array mcmc.pars.
data("mcmc_output")
z<-data_list$"z"
K<-data_list$"K"
```
data_list

x<-data_list$x
mcmc.pars<-data_list$mcmc.pars
mcmc parameters are stored to array \code{mcmc.pars}
mcmc.pars[,1]: simulated means of the two components
mcmc.pars[,2]: simulated variances of the two components
mcmc.pars[,3]: simulated weights of the two components
Apply dataBased relabelling
run<-dataBased(x = x, K = K, z = z)
apply the permutations returned by typing:
reordered.mcmc<-permute.mcmc(mcmc.pars,run$permutations)
reordered.mcmc[,1]: reordered means of the two components
reordered.mcmc[,2]: reordered variances of the components
reordered.mcmc[,3]: reordered weights

data_list

<table>
<thead>
<tr>
<th>Simulated MCMC sample and related information</th>
</tr>
</thead>
</table>

Description

This is a (very) small MCMC sample corresponding to data of 5 observations from a mixture 2 normal distributions. The MCMC sample consists of 300 iterations. It is stored to \code{data_list$mcmc.pars}. \code{data_list$mcmc.pars[,1]} corresponds to means, \code{data_list$mcmc.pars[,2]} corresponds to variances and \code{data_list$mcmc.pars[,3]} corresponds to weights.

Usage

data_list

Format

A list containing simulated MCMC sample and all information required for the relabelling algorithms.

ecr

<table>
<thead>
<tr>
<th>ECR algorithm (default version)</th>
</tr>
</thead>
</table>

Description

This function applies the standard version of Equivalence Classes Representatives (ECR) algorithm (Papastamoulis and Iliopoulos, 2010). The set of all allocation variables is partitioned into equivalence classes and exactly one representative is chosen from each class. The practical implementation of this idea is to reorder the output so that all simulated allocation vectors (\(z\)) are as similar as possible with a pivot allocation vector (\(z_{pivot}\)).

Usage

ecr(zpivot, z, K)
Arguments

- `zpivot`
 \(n \)-dimensional integer vector \((z_1,\ldots,z_n)\) with \(z_i \in \{1,\ldots,K\}, i = 1,\ldots,n.\)

- `z`
 \(m \times n \) integer array of the latent allocation vectors generated from an MCMC algorithm.

- `K`
 the number of mixture components (at least equal to 2).

Details

`zpivot` should be chosen as an allocation vector that corresponds to a high-posterior density area, or in general as an allocation that is considered as a good allocation of the observations among the \(K \) components. The user has to specify this pivot allocation vector as a good allocation of the observations among the mixture components. Some typical choices are the allocations that correspond to the complete or non-complete MAP/ML estimates.

Value

- `permutations`
 \(m \times K \) dimensional array of permutations

Author(s)

Panagiotis Papastamoulis

References

See Also

- permute.mcmc
- label.switching
- ecr.iterative.1
- ecr.iterative.2

Examples

```r
# load a toy example: MCMC output consists of the random beta model
# applied to a normal mixture of \( K=2 \) components. The
# number of observations is equal to \( n=5 \). The number
# of MCMC samples is equal to \( m=300 \). The 300
# simulated allocations are stored to array \( z \). The
# complete MAP estimate corresponds to iteration \( \text{mapindex} \).

data("mcmc_output")
z<-data_list$"z"
K<-data_list$"K"
mapindex<-data_list$"mapindex"

# mcmc parameters are stored to array \( \text{mcmc.pars} \)
mcmc.pars<-data_list$"mcmc.pars"
# mcmc.pars[,1]: simulated means of the two components
# mcmc.pars[,2]: simulated variances
# mcmc.pars[,3]: simulated weights
```
Description

This function applies the first iterative version of Equivalence Classes Representatives (ECR) algorithm (Papastamoulis and Iliopoulos, 2010, Rodriguez and Walker, 2012). The set of all allocation variables is partitioned into equivalence classes and exactly one representative is chosen from each class. The difference with the default version of ECR algorithm is that no pivot is required and the method is iterative, until a fixed pivot has been found.

Usage

ecr.iterative.1(z, K, opt_init, threshold, maxiter)

Arguments

z \(m \times n \) integer array of the latent allocation vectors generated from an MCMC algorithm.

K the number of mixture components (at least equal to 2).

opt_init An (optional) \(m \times K \) array of permutations to initialize the algorithm. The identity permutation is used if it is not specified.

threshold An (optional) positive number controlling the convergence criterion. Default value: 1e-6.

maxiter An (optional) integer controlling the max number of iterations. Default value: 100.

Value

permutations \(m \times K \) dimensional array of permutations

iterations integer denoting the number of iterations until convergence

status returns the exit status

Author(s)

Panagiotis Papastamoulis
References

See Also

permute.mcmc.label.switching.ecr, ecr.iterative.2

Examples

load a toy example: MCMC output consists of the random beta model
applied to a normal mixture of \code{K=2} components. The number of
observations is equal to \code{n=5}. The number of MCMC samples is
equal to \code{m=1000}. The 300 simulated allocations are stored to
array \code{z}.

data("mcmc_output")
mcmc parameters are stored to array \code{mcmc.pars}
mcmc.pars<-data_list$mcmc.pars"z"
K<-data_list"K"
mcmc.pars[,1]: simulated means of the two components
mcmc.pars[,2]: simulated variances
mcmc.pars[,3]: simulated weights
the relabelling algorithm will run with the default initialization
(no opt_init is specified)
run<-ecr.iterative.1(z = z, K = K)
apply the permutations returned by typing:
reordered.mcmc<-permute.mcmc(mcmc.pars,run$permutations)
reordered.mcmc[,1]: reordered means of the two components
reordered.mcmc[,2]: reordered variances
reordered.mcmc[,3]: reordered weights

ecr.iterative.2

ECR algorithm (iterative version 2)

Description

This function applies the second iterative version of Equivalence Classes Representatives (ECR) algorithm (Papastamoulis and Iliopoulos, 2010, Rodriguez and Walker, 2012). The set of all allocation variables is partitioned into equivalence classes and exactly one representative is chosen from each class. In this version the $m \times n \times K$ of allocation probabilities should be given as input as well.

Usage

ecr.iterative.2(z, K, p, threshold, maxiter)
Arguments

\(z \) \(m \times n \) integer array of the latent allocation vectors generated from an MCMC algorithm.

\(K \) the number of mixture components (at least equal to 2).

\(p \) \(m \times n \times K \) dimensional array of allocation probabilities of the \(n \) observations among the \(K \) mixture components, for each iteration \(t = 1, \ldots, m \) of the MCMC algorithm.

threshold An (optional) positive number controlling the convergence criterion. Default value: 1e-6.

maxiter An (optional) integer controlling the max number of iterations. Default value: 100.

Details

For a given MCMC iteration \(t = 1, \ldots, m \), let \(w(t)_k \) and \(\theta(t)_k \), \(k = 1, \ldots, K \) denote the simulated mixture weights and component specific parameters respectively. Then, the \((t, i, k) \) element of \(p \) corresponds to the conditional probability that observation \(i = 1, \ldots, n \) belongs to component \(k \) and is proportional to \(p_{tik} \propto w(t)_k f(x_i|\theta(t)_k) \), \(k = 1, \ldots, K \), where \(f(x_i|\theta_k) \) denotes the density of component \(k \). This means that:

\[p_{tik} = \frac{w^{(t)}_k f(x_i|\theta^{(t)}_k)}{w^{(t)}_1 f(x_i|\theta^{(t)}_1) + \ldots + w^{(t)}_K f(x_i|\theta^{(t)}_K)}. \]

In case of hidden Markov models, the probabilities \(w_k \) should be replaced with the proper left (normalized) eigenvector of the state-transition matrix.

Value

\(\text{permutations} \) \(m \times K \) dimensional array of permutations

\(\text{iterations} \) integer denoting the number of iterations until convergence

\(\text{status} \) returns the exit status

Author(s)

Panagiotis Papastamoulis

References

See Also

\texttt{permute.mcmc, label.switching, ecr, ecr.iterative.1, stephens}
Examples

load a toy example: MCMC output consists of the random beta model
applied to a normal mixture of code(K=2) components. The number of
observations is equal to code(n=5). The number of MCMC samples is
equal to code(m=1000). The 300 simulated allocations are stored to
array code(z). The matrix of allocation probabilities is stored to
array code(p).

data("mcmc_output")
z<-data_list$"z"
K<-data_list$"K"
p<-data_list$"p"

mcmc parameters are stored to array code(mcmc.pars)
mcmc.pars<-data_list$"mcmc.pars"
mcmc.pars[,1]: simulated means of the two components
mcmc.pars[,2]: simulated variances
mcmc.pars[,3]: simulated weights
the relabelling algorithm will run with the default initialization
(no opt_init is specified)
run<-ecr.iterative.Z(z = z, K = K, p = p)
apply the permutations returned by typing:
reordered_mcmc<-permute.mcmc(mcmc.pars, run$permutations)
reordered.mcmc[,1]: reordered means of the two mixture components
reordered.mcmc[,2]: reordered variances of the two components
reordered.mcmc[,3]: reordered weights of the two components

label.switching $\text{Main calling function}$

Description

This is the main function of the package. It is used to reorder a simulated MCMC sample of the parameters of a mixture (or more general a hidden Markov model) according to eight label switching solving methods: ECR algorithm (default version), ECR algorithm (two iterative versions), PRA algorithm, Stephens’ algorithm, Artificial Identifiability Constraint (AIC), Data-Based relabelling and a probabilistic relabelling algorithm (SJW). The input depends on the type of the label switching method. The output contains a list with the permutation returned by each method, the corresponding single best clusterings and the CPU time demanded for each method. In what follows: m denotes the number of MCMC iterations, n denotes the sample size of the observed data, K denotes the number of mixture components and J the number of different types of parameters of the model.

Usage

label.switching(method, zpivot, z, K, prapivot, p, complete,
mcmc, sjwinit, data, constraint,
groundTruth, thrECR, thrSTE, thrSJW,
maxECR, maxSTE, maxSJW, userPerm)
Arguments

method any non-empty subset of c("ECR","ECR-ITERATIVE-1","PRA","ECR-ITERATIVE-2","STEPHENS","SJW","AIC","DATA-BASED") indicating the desired label-switching solving method. Also available is the option "USER-PERM" which corresponds to a user-defined set of permutations userPerm.

zpivot \(d \times n \)-dimensional array of pivot allocation vectors, where \(d \) denotes the number of pivots. This is demanded by the ecr method. The method will be applied \(d \) times.

z \(m \times n \) integer array of the latent allocation vectors generated from an MCMC algorithm.

K the number of mixture components. This is demanded by the ecr, ecr.iterative.1 and ecr.iterative.2 methods.

prapivot \(K \times J \) array containing the parameter that will be used as a pivot by the pra method.

p \(m \times n \times K \) dimensional array of allocation probabilities of the \(n \) observations among the \(K \) mixture components, for each iteration \(t = 1, \ldots, m \) of the MCMC algorithm. This is demanded by the ecr.iterative.2 and stephens methods.

complete function that returns the complete log-likelihood of the mixture model. Demanded by sjw method.

mcmc \(m \times K \times J \) array of simulated MCMC parameters. Needed by sjw and pra methods.

sjwininit An index pointing at the MCMC iteration whose parameters will initialize the sjw algorithm (optional).

data \(n \)-dimensional data vector/array. Needed by the sjw and dataBased algorithms.

constraint An (optional) integer between 1 and \(J \) corresponding to the parameter that will be used to apply the Identifiability Constraint. In this case the mcmc output is reordered according to the constraint \(mcmc[i,1,\text{constraint}] < \ldots < mcmc[i,K,\text{constraint}] \). If constraint = "ALL", all \(J \) Identifiability Constraints are applied. Default value: 1.

groundTruth Optional integer vector of \(n \) allocations, which are considered as the 'ground truth' allocations of the \(n \) observations among the \(K \) mixture components. The output of all methods will be relabelled in a way that the resulting single best clusterings maximize their similarity with the ground truth. This option is very useful in simulation studies or in any other case that the cluster labels are known in order to perform comparisons between methods.

thrECR An (optional) positive number controlling the convergence criterion for ecr.iterative.1 and ecr.iterative.2. Default value: 1e-6.

thrSTE An (optional) positive number controlling the convergence criterion for stephens. Default value: 1e-6.

thrSJW An (optional) positive number controlling the convergence criterion for sjw. Default value: 1e-6.

maxECR An (optional) integer controlling the max number of iterations for ecr.iterative.1 and ecr.iterative.2. Default value: 100.
maxSTEn An (optional) integer controlling the max number of iterations for stephens. Default value: 100.
maxSJuan An (optional) integer controlling the max number of iterations for sjw. Default value: 100.
userPerm An (optional) list with user-defined permutations. It is required only if "USER-PERM" has been chosen in method. In this case, userPerm[[1]] is an \(m \times K \) array of permutations for all \(i = 1, \ldots, S \), where \(S \) denotes the number of permutation arrays. This is useful in case that the user wants to compare his/hers own relabelling method with the available ones.

Value

permutations an \(m \times K \) array of permutations per method.
clusters an \(n \) dimensional vector of best clustering of the the observations for each method.
timings CPU time needed for each relabelling method.
similarity correlation matrix between the label switching solving methods in terms of their matching best-clustering allocations.

Note

If the ground truth is not given, all methods are reordered using the estimated single best clustering of the first provided method. The methods sjw and pra are not suggested for large number of components. Also note that sjw might be quite slow even for small number of components. In this case try adjusting thrSJW or maxSJW to smaller values the default ones.

Author(s)

Panagiotis Papastamoulis

References

See Also
ecr, ecr.iterative.1, ecr.iterative.2, stephens, pra, sjw, dataBased, aic

Examples

We will apply four methods:
ECR, ECR-ITERATIVE-1, PRA, AIC, STEPHENS and DATA-BASED.
default ECR will use two different pivots.

#load a toy example: MCMC output consists of the random beta model
applied to a normal mixture of \(\text{code}{K=2} \) components. The number of
observations is equal to \(\text{code}{n=5} \). The number of MCMC samples is
equal to \(\text{code}{m=300} \). simulated allocations are stored to array \(\text{code}{z} \).
The script provided is a demonstration of how to handle label switching in Bayesian inference, particularly in the context of Markov Chain Monte Carlo (MCMC) methods. It includes code snippets for generating MCMC output and plotting the means of the mixture components for different algorithms. The script outlines the steps to apply the ECR (Expectation Conditional Maximization), ECR-ITERATIVE-1, PRAM, STEPHENS, AIC, and DATA-BASED methods to reorder the MCMC chains.

```r
# MCMC parameters are stored to array mcmc.pars
# mcmc.pars[,1]: simulated means of the two components
# mcmc.pars[,2]: simulated variances
# mcmc.pars[,3]: simulated weights

# We will use two pivots for default ECR algorithm:
# the first one corresponds to iteration mapindex (complete MAP)
# the second one corresponds to iteration mapindex.non (observed MAP)
# The array p corresponds to the allocation probabilities

ls<-label.switching()

# Plot the raw and reordered means of the K=2 normal mixture components for each method
par(mfrow = c(2,4))
matplot(mcmc.pars[,1], type="l",
       xlab="iteration", main="Raw MCMC output", ylab = "means")

matplot(permute.mcmc(mcmc.pars, ls$permutations$"ECR-1")$output[,1], type="l",
       xlab="iteration", main="ECR (1st pivot)", ylab = "means")
matplot(permute.mcmc(mcmc.pars, ls$permutations$"ECR-2")$output[,1], type="l",
       xlab="iteration", main="ECR (2nd pivot)", ylab = "means")

# if the user wants to apply the SJW algorithm as well:
# The SJW method needs to define the complete log-likelihood of the
# model. For the univariate normal mixture, this is done as follows:

complete.normal.loglikelihood<-function(x, z, pars){
  # x: denotes the n data points
}
```

The script includes the necessary code to handle the label switching problem, which is a common issue in Bayesian inference when using MCMC methods. It demonstrates how to correctly order the MCMC chains for different methods, ensuring that the results are interpretable and meaningful.
#z: denotes an allocation vector (size=n)
#pars: \(K \times 3 \) vector of means, variance, weights
pars[k,1]: corresponds to the mean of component k
pars[k,2]: corresponds to the variance of component k
pars[k,3]: corresponds to the weight of component k

\[
g \leftarrow \text{dim(pars)}[1]
n \leftarrow \text{length(x)}
\]

\[
\logl \leftarrow \text{rep}(0, n)
\]

\[
\logpi \leftarrow \text{log(pars[,3])}
\]

\[
\text{mean} \leftarrow \text{pars[,1]}
\]

\[
\text{sigma} \leftarrow \text{sqrt(pars[,2])}
\]

\[
\logl \leftarrow \text{logpi[z] + dnorm(x,mean = mean[z], sd = sigma[z], log = T)}
\]

return(sum(logl))

and then run (after removing all #):
#ls<-label.switching(method=c("ECR","ECR-ITERATIVE-1","ECR-ITERATIVE-2",
#"PRA","STEPHENS","SJW","AIC","DATA-BASED"),
#zpivot=z[c(mapindex,mapindex.non),],z = z,
#K = K,papivot = mcmc.pars[mapindex,,],p=p,
#complete = complete.normal.loglikelihood,mcmc.pars,
#data = x)

lamb

Fetal lamb dataset

Description

240 body movement measurements of a fetal lamb at consecutive 5 second intervals.

Usage

lamb

Format

Count data.

References

Description

This function applies the permutation returned by any relabelling algorithm to a simulated MCMC output.

Usage

permute.mcmc(mcmc, permutations)

Arguments

mcmc $m \times K \times J$ array of simulated MCMC parameters.
permutations $m \times K$ dimensional array of permutations.

Value

output $m \times K \times J$ array of reordered MCMC parameters.

Author(s)

Panagiotis Papastamoulis

See Also

label.switching, ecr, ecr.iterative.1, ecr.iterative.2, stephens.pra, sjw.aic.dataBased

Examples

load MCMC simulated data
data("mcmc_output")
mcmc.pars<-data_list$"mcmc.pars"
z<-data_list$"z"
K<-data_list$"K"

apply \texttt{ecr.iterative.1} algorithm
run<-ecr.iterative.1(z = z, K = 2)
reorder the MCMC output according to this method:
reordered.mcmc<-permute.mcmc(mcmc.pars,run$permutations)
reordered.mcmc[,1]: reordered means of the two components
reordered.mcmc[,2]: reordered variances of the components
reordered.mcmc[,3]: reordered weights of the two components
PRA algorithm

Description
This function reorders the MCMC output using the geometrically-based Pivotal Reordering Algorithm (PRA) (Marin et al, 2005, Marin and Robert, 2007). The method requires as input the generated MCMC sample and a pivot parameter vector. The user should be careful in order the pivot elements have the same parameters with the generated MCMC output. The simulated MCMC sample should be provided by the user as a $m \times K \times J$ dimensional array, where m denotes the number of MCMC samples, K denotes the number of mixture components and J corresponds to the number of different parameter types of the model. The pivot should correspond to a high-posterior density point.

Usage
pra(mcmc.pars, pivot)

Arguments
mcmc.pars $m \times K \times J$ array of simulated MCMC parameters.
pivot $K \times J$ array containing the parameter that will be used as a pivot.

Details
The positive integer J denotes the number of different parameter types of the model. For example, in a univariate normal mixture model there are $J = 3$ different types: means, variances and weights. In a Poisson mixture there are $J = 2$ types: means and weights.

Value
permutations $m \times K$ dimensional array of permutations

Author(s)
Panagiotis Papastamoulis

References

See Also
permute.mcmc, label.switching
Examples

```r
#load a toy example: MCMC output consists of the random beta model
# applied to a normal mixture of K=2 components. The number of
# observations is equal to n=5. The number of MCMC samples is
# equal to m=300. The 1000 generated MCMC samples are stored
to array mcmc.pars.
data("mcmc_output")
mcmc.pars<-data_list$mcmc.pars
mapindex<-data_list$mapindex

# mcmc parameters are stored to array mcmc.pars
# mcmc.pars[,1]: simulated means of the two components
# mcmc.pars[,2]: simulated variances of the two components
# mcmc.pars[,3]: simulated weights of the two components
# We will apply PRA using as pivot the complete MAP estimate
# which corresponds to mcmc.pars[mapindex,]
run<-pra(mcmc = mcmc.pars, pivot = mcmc.pars[mapindex,])
# apply the permutations returned by typing:
reordered.mcmc<-permute.mcmc(mcmc.pars,run$permutations)
# reordered.mcmc[,1]: reordered means of the two components
# reordered.mcmc[,2]: reordered variances of the components
# reordered.mcmc[,3]: reordered weights
```

sjw

Probabilistic relabelling algorithm

Description

Function to apply the probabilistic relabelling strategy of Sperrin et al (2010). The concept here is to treat the MCMC output as observed data, while the unknown permutations need to be applied to each mcmc data point is treated as unobserved data with associated uncertainty. Then, an EM-type algorithm estimates the weights for each permutation per MCMC data point.

Usage

```
sjw(mcmc.pars, z, complete, x, init, threshold, maxiter)
```

Arguments

- `mcmc.pars` \(m \times K \times J \) array of simulated MCMC parameters.
- `z` \(m \times n \) integer array of the latent allocation vectors generated from an MCMC algorithm.
- `complete` function that returns the complete log-likelihood of the mixture model.
- `x` \(n \)-dimensional data vector/array.
- `init` An (optional) index pointing at the MCMC iteration whose parameters will initialize the algorithm. If it is less or equal to zero, the overall MCMC mean will be used for initialization.
threshold An (optional) positive number controlling the convergence criterion. Default value: 1e-6.

maxiter An (optional) integer controlling the max number of iterations. Default value: 100.

Details
Let \(x = (x_1, \ldots, x_n) \) denote the observed data and \(w, \theta \) denote the mixture weights and component specific parameters, respectively. Assume that \(K \) is the the number of components. Then,

\[
L(w, \theta|x) = \prod_{i=1}^{n} \sum_{k=1}^{K} w_k f_k(x_i|\theta_k),
\]

\(i = 1, \ldots, n \) is the observed likelihood of the mixture model. Given the latent allocation variables \(z = (z_1, \ldots, z_n) \), the complete likelihood of the model is defined as:

\[
L_c(w, \theta|x, z) = \prod_{i=1}^{n} w_{z_i} f_{z_i}(x_i|\theta_{z_i}).
\]

Then, complete corresponds to the log of \(L_c \) and should take as input the following: a vector of \(n \) allocations, the observed data and the parameters of the model as a \(K \times J \) array where \(J \) corresponds to the different parameter types of the model. See the example for an implementation at a univariate normal mixture.

Value

- permutations: \(m \times K \) dimensional array of permutations
- iterations: integer denoting the number of iterations until convergence
- status: returns the exit status

Note
This algorithm is not suggested for large number of components due to the computational overload: \(K! \) permutation probabilities are computed at each MCMC iteration. Moreover, the user should carefully provide the complete log-likelihood function of the model as input to the algorithm and this makes its use quite complicated.

Author(s)

Panagiotis Papastamoulis

References

See Also
permute.mcmc, label.switching
Examples

load a toy example: MCMC output consists of the random beta model
applied to a normal mixture of \(K = 2 \) components. The number of
observations is equal to \(n = 5 \). The number of MCMC samples is
equal to \(m = 300 \).
data("mcmc_output")
mcmc.pars<-data_list$mcmc.pars"z"K<-data_list"K"x<-data_list"x"

mcmc parameters are stored to array \(\text{mcmc.pars} \)
mcmc.pars[,1]: simulated means of the two components
mcmc.pars[,2]: simulated variances
mcmc.pars[,3]: simulated weights
The number of different parameters for the univariate
normal mixture is equal to \(J = 3 \): means, variances
and weights. The generated allocations variables are
stored to \(z \). The observed data is stored to \(x \).
The complete data log-likelihood is defined as follows:
complete.normal.loglikelihood<-function(x,z,pars){
 # x: data (size = n)
 # z: allocation vector (size = n)
 # pars: K\times J vector of normal mixture parameters:
 # pars[k,1] = mean of the k-normal component
 # pars[k,2] = variance of the k-normal component
 # pars[k,3] = weight of the k-normal component
 # k = 1,...,K
 g <- dim(pars)[1] #K (number of mixture components)
 n <- length(x) #this denotes the sample size
 logl <- rep(0, n)
 logpi <- log(pars[,3])
 mean <- pars[,1]
 sigma <- sqrt(pars[,2])
 logl<-logpi[z] + dnorm(x,mean[,z],sd = sigma[z],log = TRUE)
 return(sum(logl))
}

run the algorithm:
run<-sjw(mcmc = mcmc.pars,z = z,
complete = complete.normal.loglikelihood,x = x, init=0,threshold = 1e-4)
apply the permutations returned by typing:
reordered.mcmc<-permute.mcmc(mcmc.pars,run$permutations)
reordered.mcmc[,1]: reordered means of the two components
reordered.mcmc[,2]: reordered variances
reordered.mcmc[,3]: reordered weights

Stephens' algorithm
Stephens (2000) developed a relabelling algorithm that makes the permuted sample points to agree as much as possible on the $n \times K$ matrix of classification probabilities, using the Kullback-Leibler divergence. The algorithm’s input is the matrix of allocation probabilities for each MCMC iteration.

Usage

```r
stephens(p, threshold, maxiter)
```

Arguments

- `p`: $m \times n \times K$ dimensional array of allocation probabilities of the n observations among the K mixture components, for each iteration $t = 1, \ldots, m$ of the MCMC algorithm.
- `threshold`: An (optional) positive number controlling the convergence criterion. Default value: $1e-6$.
- `maxiter`: An (optional) integer controlling the max number of iterations. Default value: 100.

Details

For a given MCMC iteration $t = 1, \ldots, m$, let $w_k^{(t)}$ and $\theta_k^{(t)}, k = 1, \ldots, K$ denote the simulated mixture weights and component specific parameters respectively. Then, the (t, i, k) element of p corresponds to the conditional probability that observation $i = 1, \ldots, n$ belongs to component k and is proportional to $p_{tik} \propto w_k^{(t)} f(x_i|\theta_k^{(t)}), k = 1, \ldots, K$, where $f(x_i|\theta_k)$ denotes the density of component k. This means that:

$$p_{tik} = \frac{w_k^{(t)} f(x_i|\theta_k^{(t)})}{w_1^{(t)} f(x_i|\theta_1^{(t)}) + \cdots + w_K^{(t)} f(x_i|\theta_K^{(t)})}.$$

In case of hidden Markov models, the probabilities w_k should be replaced with the proper left (normalized) eigenvector of the state-transition matrix.

Value

- `permutations`: $m \times K$ dimensional array of permutations
- `iterations`: integer denoting the number of iterations until convergence
- `status`: returns the exit status

Author(s)

Panagiotis Papastamoulis

References

See Also

permute.mcmc, label.switching

Examples

Load a toy example: MCMC output consists of the random beta model
applied to a normal mixture of \texttt{K=2} components. The number
of observations is equal to \texttt{n=5}. The number of MCMC samples
is equal to \texttt{m=300}. The matrix of allocation probabilities
is stored to matrix \texttt{p}.

data("mcmc_output")
mcmc parameters are stored to array \texttt{mcmc.pars}
mcmc.pars<-data_list$mcmc.pars
mcmc.pars[,1]: simulated means of the two components
mcmc.pars[,2]: simulated variances
mcmc.pars[,3]: simulated weights
the computed allocation matrix is \texttt{p}
p<-data_list$p
run<-stephens(p)
apply the permutations returned by typing:
reordered.mcmc<-permute.mcmc(mcmc.pars,run$permutations)
reordered.mcmc[,1]: reordered means of the components
reordered.mcmc[,2]: reordered variances
reordered.mcmc[,3]: reordered weights
Index

*Topic compare.clust, 5

*Topic compare.clust2, 5

*Topic datasets
data_list, 7
 lamb, 16

*Topic package
 label.switching-package, 2

aic, 4, 14, 17

compare.clust, 5

data_list, 7
dataBased, 6, 13, 14, 17

ecr, 7, 10, 11, 13, 14, 17
ecr.iterative.1, 8, 9, 11, 13, 14, 17
ecr.iterative.2, 8, 10, 10, 13, 14, 17

label.switching, 3–6, 8, 10, 11, 12, 17, 18, 20, 23
label.switching-package, 2
lamb, 16

permute.mcmc, 4, 6, 8, 10, 11, 17, 18, 20, 23
pra, 13, 14, 17, 18

sjw, 13, 14, 17, 19
stephens, 11, 13, 14, 17, 21