Package ‘lars’

October 13, 2022

Type Package
Version 1.3
Date 2022-04-12
Title Least Angle Regression, Lasso and Forward Stagewise
Author Trevor Hastie <hastie@stanford.edu> and Brad Efron
<brad@stat.stanford.edu>
Maintainer Trevor Hastie <hastie@stanford.edu>
Description Efficient procedures for fitting an entire lasso
sequence with the cost of a single least squares
fit. Least angle regression and infinitesimal forward
stagewise regression are related to the lasso, as
described in the paper below.
Depends R (>= 2.10)
License GPL-2
URL https://doi.org/10.1214/009053604000000067
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-04-13 21:42:29 UTC

R topics documented:

 cv.lars ... 2
diabetes ... 3
lars .. 4
plot.lars .. 5
predict.lars .. 7
summary.lars ... 9

Index 11
cv.lars

Computes K-fold cross-validated error curve for lars

Description

Computes the K-fold cross-validated mean squared prediction error for lars, lasso, or forward stage-wise.

Usage

```r
cv.lars(x, y, K = 10, index, trace = FALSE, plot.it = TRUE, se = TRUE,
        type = c("lasso", "lar", "forward.stagewise", "stepwise"),
        mode = c("fraction", "step"), ...)
```

Arguments

- **x**: Input to lars
- **y**: Input to lars
- **K**: Number of folds
- **index**: Abscissa values at which CV curve should be computed. If `mode="fraction"` this is the fraction of the saturated |beta|. The default value in this case is `index=seq(from = 0, to = 1, length =100)`. If `mode="step"`, this is the number of steps in lars procedure. The default is complex in this case, and depends on whether N>p or not. In principal it is `index=1:p`. Users can supply their own values of index (with care).
- **trace**: Show computations?
- **plot.it**: Plot it?
- **se**: Include standard error bands?
- **type**: type of lars fit, with default "lasso"
- **mode**: This refers to the index that is used for cross-validation. The default is "fraction" for type="lasso" or type="forward.stagewise". For type="lar" or type="stepwise" the default is "step"
- **...**: Additional arguments to lars

Value

Invisibly returns a list with components (which can be plotted using plotCVlars)

- **index**: As above
- **cv**: The CV curve at each value of index
- **cv.error**: The standard error of the CV curve
- **mode**: As above
diabetes

Author(s)
Trevor Hastie

References

Examples
```r
data(diabetes)
attach(diabetes)
cv.lars(x2,y,trace=TRUE,max.steps=80)
detach(diabetes)
```

diabetes | *Blood and other measurements in diabetics*

Description
The diabetes data frame has 442 rows and 3 columns. These are the data used in the Efron et al "Least Angle Regression" paper.

Format
This data frame contains the following columns:

- **x** a matrix with 10 columns
- **y** a numeric vector
- **x2** a matrix with 64 columns

Details
The x matrix has been standardized to have unit L2 norm in each column and zero mean. The matrix x2 consists of x plus certain interactions.

Source

References
Efron, Hastie, Johnstone and Tibshirani (2003) "Least Angle Regression" (with discussion) *Annals of Statistics*
lars

Fits Least Angle Regression, Lasso and Infinitesimal Forward Stage-wise regression models

Description

These are all variants of Lasso, and provide the entire sequence of coefficients and fits, starting from zero, to the least squares fit.

Usage

\[
\text{lars}(x, y, \text{type} = \text{c}("lasso", "lar", "forward.stagewise", "stepwise"),
\text{trace} = \text{FALSE}, \text{normalize} = \text{TRUE}, \text{intercept} = \text{TRUE}, \text{Gram}, \text{eps} = 1e-12,
\text{max.steps}, \text{use.Gram} = \text{TRUE})
\]

Arguments

- **x**: matrix of predictors
- **y**: response
- **type**: One of "lasso", "lar", "forward.stagewise" or "stepwise". The names can be abbreviated to any unique substring. Default is "lasso".
- **trace**: If TRUE, lars prints out its progress
- **normalize**: If TRUE, each variable is standardized to have unit L2 norm, otherwise it is left alone. Default is TRUE.
- **intercept**: if TRUE, an intercept is included in the model (and not penalized), otherwise no intercept is included. Default is TRUE.
- **Gram**: The X'X matrix; useful for repeated runs (bootstrap) where a large X'X stays the same.
- **eps**: An effective zero, with default 1e-12. If lars() stops and reports NAs, consider increasing this slightly.
- **max.steps**: Limit the number of steps taken; the default is 8 * \(\min(m, n - \text{intercept})\), with \(m\) the number of variables, and \(n\) the number of samples. For type="lar" or type="stepwise", the maximum number of steps is \(\min(m, n - \text{intercept})\). For type="lasso" and especially type="forward.stagewise", there can be many more terms, because although no more than \(\min(m, n - \text{intercept})\) variables can be active during any step, variables are frequently dropped and added as the algorithm proceeds. Although the default usually guarantees that the algorithm has proceeded to the saturated fit, users should check.
- **use.Gram**: When the number \(m\) of variables is very large, i.e. larger than \(N\), then you may not want LARS to precompute the Gram matrix. Default is use.Gram=TRUE.
Details
LARS is described in detail in Efron, Hastie, Johnstone and Tibshirani (2002). With the "lasso" option, it computes the complete lasso solution simultaneously for ALL values of the shrinkage parameter in the same computational cost as a least squares fit. A "stepwise" option has recently been added to LARS.

Value
A "lars" object is returned, for which print, plot, predict, coef and summary methods exist.

Author(s)
Brad Efron and Trevor Hastie

References

See Also
print, plot, summary and predict methods for lars, and cv.lars

Examples
```r
data(diabetes)
par(mfrow=c(2,2))
attach(diabetes)
object <- lars(x,y)
plot(object)
object2 <- lars(x,y,type="lar")
plot(object2)
object3 <- lars(x,y,type="for") # Can use abbreviations
plot(object3)
detach(diabetes)
```
Usage

S3 method for class 'lars'
plot(x, xvar = c("norm", "df", "arc.length", "step"), breaks = TRUE,
 plottype = c("coefficients", "Cp"), omit.zeros = TRUE, eps = 1e-10, ...)

Arguments

x lars object

xvar The type of x variable against which to plot. xvar=norm (default) plots against the L1 norm of the coefficient vector, as a fraction of the maximal L1 norm. xvar=step plots against the step number (which is essentially degrees of freedom for LAR; not for LASSO or Forward Stagewise). xvar=arc.length plots against the arc.length of the fitted vector; this is useful for a LAR object, because the L1 norm of its coefficient vector need not be monotone in the steps. xvar=df plots against the estimated df, which is the size of the active set at each step.

breaks If TRUE, then vertical lines are drawn at each break point in the piecewise linear coefficient paths

plottype Either coefficients (default) or Cp. The coefficient plot shows the path of each coefficient as a function of the norm fraction or Df. The Cp plot shows the Cp curve.

omit.zeros When the number of variables is much greater than the number of observations, many coefficients will never be nonzero; this logical (default TRUE) avoids plotting these zero coefficients

eps Definition of zero above, default is 1e-10

... Additional arguments for generic plot. Can be used to set xlims, change colors, line widths, etc

Details

The default plot uses the fraction of L1 norm as the xvar. For forward stagewise and LAR, coefficients can pass through zero during a step, which causes a change of slope of L1 norm vs arc-length. Since the coefficients are piecewise linear in arc-length between each step, this causes a change in slope of the coefficients.

Value

NULL

Author(s)

Trevor Hastie
References

Yann-Ael Le Borgne (private communication) pointed out the problems in plotting forward stage-wise and LAR coefficients against L1 norm, and the solution we have implemented.

Examples

```r
data(diabetes)
attach(diabetes)
object <- lars(x,y)
plot(object)
detach(diabetes)
```

predict.lars

Make predictions or extract coefficients from a fitted lars model

Description

While lars() produces the entire path of solutions, predict.lars allows one to extract a prediction at a particular point along the path.

Usage

```r
## S3 method for class 'lars'
predict(object, newx, s, type = c("fit", "coefficients"), mode = c("step", "fraction", "norm", "lambda"), ...)
## S3 method for class 'lars'
coef(object, ...)
```

Arguments

- `object`: A fitted lars object
- `newx`: If type="fit", then newx should be the x values at which the fit is required. If type="coefficients", then newx can be omitted.
- `s`: a value, or vector of values, indexing the path. Its values depends on the mode= argument. By default (mode="step"), s should take on values between 0 and p (e.g., a step of 1.3 means .3 of the way between step 1 and 2.)
- `type`: If type="fit", predict returns the fitted values. If type="coefficients", predict returns the coefficients. Abbreviations allowed.
- `mode`: Mode="step" means the s= argument indexes the lars step number, and the coefficients will be returned corresponding to the values corresponding to step s. If mode="fraction", then s should be a number between 0 and 1, and it refers to the ratio of the L1 norm of the coefficient vector, relative to the norm at the full LS solution. Mode="norm" means s refers to the L1 norm of the coefficient vector. Mode="lambda" uses the lasso regularization parameter for s; for other models
it is the maximal correlation (does not make sense for lars/stepwise models). Abbreviations allowed.

... Any arguments for `predict.lars` should work for `coef.lars`

Details

LARS is described in detail in Efron, Hastie, Johnstone and Tibshirani (2002). With the "lasso" option, it computes the complete lasso solution simultaneously for ALL values of the shrinkage parameter in the same computational cost as a least squares fit.

Value

Either a vector/matrix of fitted values, or a vector/matrix of coefficients.

Author(s)

Trevor Hastie

References

See Also

`print`, `plot`, `lars`, `cv.lars`

Examples

data(diabetes)
attach(diabetes)
object <- lars(x,y,type="lasso")
make predictions at the values in x, at each of the
steps produced in object
fits <- predict.lars(object, x, type="fit")
extract the coefficient vector with L1 norm=4.1
coef4.1 <- coef(object, s=4.1, mode="norm") # or
coef4.1 <- predict(object, s=4.1, type="coef", mode="norm")
detach(diabetes)
summary.lars

Summary method for lars objects

Description

Produce an anova-type summary for a lars object.

Usage

S3 method for class 'lars'
summary(object, sigma2=NULL, ...)

Arguments

object lars object
sigma2 optional variance measure (for p>n)
... Additional arguments for summary generic

Details

An anova summary is produced, with Df, RSS and Cp for each step. Df is tricky for some models, such as forward stagewise and stepwise, and is not likely to be accurate. When p>n, the user is responsible for supplying sigma2.

Value

An anova object is returned, with rownames the step number, and with components:

Df Estimated degree of freedom
Rss The Residual sum of Squares
Cp The Cp statistic

Author(s)

Brad Efron and Trevor Hastie

References

See Also

lars, and print, plot, and predict methods for lars, and cv.lars
Examples

```r
data(diabetes)
attach(diabetes)
object <- lars(x,y)
summary(object)
detach(diabetes)
```
Index

* **datasets**
 diabetes, 3

* **hplot**
 plot.lars, 5

* **methods**
 plot.lars, 5
 predict.lars, 7

* **regression**
 cv.lars, 2
 lars, 4
 predict.lars, 7
 summary.lars, 9

 coef.lars (predict.lars), 7
 cv.lars, 2

 diabetes, 3

 lars, 4

 plot.lars, 5
 predict.lars, 7

 summary.lars, 9