Package ‘latentFactoR’

November 22, 2022

Title Data Simulation Based on Latent Factors
Version 0.0.4
Date 2022-11-22
Maintainer Alexander Christensen <alexpaulchristensen@gmail.com>
Description Generates data based on latent factor models. Data can be continuous, polytomous, dichotomous, or mixed. Skews, cross-loadings, wording effects, population errors, and local dependencies can be added. All parameters can be manipulated. Data categorization is based on Garrido, Abad, and Ponsoda (2011) <doi:10.1177/0013164410389489>.
Depends R (>= 3.6.0)
License GPL (>= 3.0)
Imports BBmisc, EGAnet, fspe, googledrive, ineq, Matrix, methods, mlr, mvtnorm, psych, qgraph, rstudioapi, xgboost
Encoding UTF-8
RoxygenNote 7.2.2
NeedsCompilation no
Author Alexander Christensen [aut, cre]
 (<https://orcid.org/0000-0002-9798-7037>),
 Maria Dolores Nieto Canaveras [aut],
 Hudson Golino [aut] (<https://orcid.org/0000-0002-1601-1447>),
 Luis Eduardo Garrido [aut] (<https://orcid.org/0000-0001-8932-6053>),
 Marcos Jimenez [aut],
 Francisco Abad [ctb],
 Eduardo Garcia-Garzon [ctb],
 Vithor Franco [aut]
Repository CRAN
Date/Publication 2022-11-22 16:00:02 UTC

R topics documented:

latentFactoR-package .. 2
add_cross_loadings .. 3
latentFactoR-package

Description

Generates data based on latent factor models. Data can be continuous, polytomous, dichotomous, or mixed. Skew, cross-loadings, and population error can be added. All parameters can be manipulated. Data categorization is based on Garrido, Abad, and Ponsoda (2011).

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Maria Dolores Nieto Canaveras <mni-etoca@nebrija.es>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

add_cross_loadings

Adds (Substantial) Cross-loadings to simulate_factors Data

Description

Intended to add substantial cross-loadings to simulated data from simulate_factors. See examples to get started

Usage

add_cross_loadings(
 lf_object,
 proportion_cross_loadings,
 proportion_cross_loadings_range = NULL,
 magnitude_cross_loadings,
 magnitude_cross_loadings_range = NULL,
 leave_cross_loadings = FALSE
)

Arguments

lf_object Data object from simulate_factors
proportion_cross_loadings
 Numeric (length = 1 or factors). Proportion of variables that should be cross-loaded randomly onto one other factor. Accepts number of variables to cross-load onto one other factor as well
proportion_cross_loadings_range
 Numeric (length = 2). Range of proportion of variables that should be cross-loaded randomly onto one other factor. Accepts number of variables to cross-load onto one other factor as well
magnitude_cross_loadings
 Numeric (length = 1, factors, or total number of variables to cross-load across all factors). The magnitude or size of the cross-loadings. Must range between -1 and 1.
magnitude_cross_loadings_range
 Numeric (length = 2). The range of the magnitude or size of the cross-loadings. Defaults to NULL
leave_cross_loadings
 Boolean. Should cross-loadings be kept? Defaults to FALSE. Convergence problems can arise if cross-loadings are kept, so setting them to zero is the default. Only set to TRUE with careful consideration of the structure. Make sure to perform additional checks that the data are adequate

Value

Returns a list containing the same parameters as the original lf_object but with updated data, population_correlation, and parameters (specifically, loadings matrix). Also returns original lf_object in original_results
Author(s)
Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Examples

Generate factor data
two_factor <- simulate_factors(
 factors = 2, # factors = 2
 variables = 6, # variables per factor = 6
 loadings = 0.55, # loadings between = 0.45 to 0.65
 cross_loadings = 0.05, # cross-loadings N(0, 0.05)
 correlations = 0.30, # correlation between factors = 0.30
 sample_size = 1000 # number of cases = 1000
)

Add substantial cross-loadings
two_factor_CL <- add_cross_loadings(
 lf_object = two_factor,
 proportion_cross_loadings = 0.25,
 magnitude_cross_loadings = 0.35
)

Randomly vary proportions
two_factor_CL <- add_cross_loadings(
 lf_object = two_factor,
 proportion_cross_loadings_range = c(0, 0.25),
 magnitude_cross_loadings = 0.35
)

Randomly vary magnitudes
two_factor_CL <- add_cross_loadings(
 lf_object = two_factor,
 proportion_cross_loadings = 0.25,
 magnitude_cross_loadings_range = c(0.35, 0.45)
)

Set number of cross-loadings per factor (rather than proportion)
two_factor_CL <- add_cross_loadings(
 lf_object = two_factor,
 proportion_cross_loadings = 2,
 magnitude_cross_loadings = 0.35
)
add_local_dependence

Description

Adds local dependence to simulated data from simulate_factors. See examples to get started.

Usage

add_local_dependence(
 lf_object,
 method = c("correlate_residuals", "minor_factors", "threshold_shifts"),
 proportion_LD,
 proportion_LD_range = NULL,
 add_residuals = NULL,
 add_residuals_range = NULL,
 allow_multiple = FALSE
)

Arguments

lf_object Data object from simulate_factors
method Character (length = 1). Method to generate local dependence between variables. Only "correlate_residuals" at the moment. Future developments will include minor factor and threshold-shift methods. Description of methods:
 • "correlate_residuals" Adds residuals directly to the population correlation matrix prior to data generation (uses population correlation matrix from simulate_factors)
 • "minor_factors" Coming soon...
 • "threshold_shifts" Coming soon...
proportion_LD Numeric (length = 1 or factors). Proportion of variables that should be locally dependent across all or each factor. Accepts number of locally dependent values as well
proportion_LD_range Numeric (length = 2). Range of proportion of variables that are randomly selected from a random uniform distribution. Accepts number of locally dependent values as well. Defaults to NULL
add_residuals Numeric (length = 1, factors, or total number of locally dependent variables). Amount of residual to add to the population correlation matrix between two variables. Only used when method = "correlate_residuals". Magnitudes are drawn from a random uniform distribution using +/- 0.05 of value input. Can also be specified directly (same length as total number of locally dependent variables). General effect sizes range from small (0.20), moderate (0.30), to large (0.40)
add_local_dependence

add_residuals_range
 Numeric (length = 2). Range of the residuals to add to the correlation matrix are
 randomly selected from a random uniform distribution. Defaults to NULL

allow_multiple
 Boolean. Whether a variable should be allowed to be locally dependent with
 more than one other variable. Defaults to FALSE. Set to TRUE for more complex
 locally dependence patterns

Value

Returns a list containing:

data
 Simulated data from the specified factor model

population_correlation
 Population correlation matrix with local dependence added

original_correlation
 Original population correlation matrix before local dependence was added

correlated_residuals
 A data frame with the first two columns specifying the variables that are locally
 dependent and the third column specifying the magnitude of the added residual
 for each locally dependent pair

original_results
 Original lf_object input into function

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>,
Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

psychometrics method to detect local dependence. PsyArXiv

Examples

Generate factor data
two_factor <- simulate_factors(
 factors = 2, # factors = 2
 variables = 6, # variables per factor = 6
 loadings = 0.55, # loadings between = 0.45 to 0.65
 cross_loadings = 0.05, # cross-loadings N(0, 0.05)
 correlations = 0.30, # correlation between factors = 0.30
 sample_size = 1000 # number of cases = 1000
)

Add local dependence
two_factor_LD <- add_local_dependence(
 lf_object = two_factor,
 proportion_LD = 0.25,
 add_residuals = 0.20,
Randomly vary proportions

two_factor_LD <- add_local_dependence(
 lf_object = two_factor,
 proportion_LD_range = c(0.10, 0.50),
 add_residuals = 0.20,
 allow_multiple = FALSE
)

Randomly vary residuals

two_factor_LD <- add_local_dependence(
 lf_object = two_factor,
 proportion_LD = 0.25,
 add_residuals_range = c(0.20, 0.40),
 allow_multiple = FALSE
)

Randomly vary proportions, residuals, and allow multiple

two_factor_LD <- add_local_dependence(
 lf_object = two_factor,
 proportion_LD_range = c(0.10, 0.50),
 add_residuals_range = c(0.20, 0.40),
 allow_multiple = TRUE
)

add_population_error

adds population error to simulated data from `simulate_factors` data.

Description

Adds population error to simulated data from `simulate_factors`. See examples to get started.

Usage

```r
add_population_error(
  lf_object,
  cfa_method = c("minres", "ml"),
  fit = c("cfi", "rmsea", "rmsr", "raw"),
  misfit = c("close", "acceptable"),
  error_method = c("cudeck", "yuan"),
  tolerance = 0.01,
  convergence_iterations = 10,
  leave_cross_loadings = FALSE
)
```
Arguments

lf_object Data object from `simulate_factors`
cfa_method Character (length = 1). Method to generate population error. Defaults to "minres". Available options:
 • "minres" Minimum residual
 • "ml" Maximum likelihood
fit Character (length = 1). Fit index to control population error. Defaults to "rmsr". Available options:
 • "cfi" Comparative fit index
 • "rmsea" Root mean square error of approximation
 • "rmsr" Root mean square residuals
 • "raw" Direct application of error
misfit Character or numeric (length = 1). Magnitude of error to add. Defaults to "close". Available options:
 • "close" Slight deviations from original population correlation matrix
 • "acceptable" Moderate deviations from original population correlation matrix

While numbers can be used, they are not recommended. They can be used to specify misfit but the level of misfit will vary depending on the factor structure
error_method Character (length = 1). Method to control population error. Defaults to "cudeck". Description of methods:
 • "cudeck" Description coming soon... see Cudeck & Browne, 1992 for more details
 • "yuan" Description coming soon...
tolerance Numeric (length = 1). Tolerance of SRMR difference between population error correlation matrix and the original population correlation matrix. Ensures that appropriate population error was added. Similarly, verifies that the MAE of the loadings are not greater than the specified amount, ensuring proper convergence. Defaults to 0.01
convergence_iterations Numeric (length = 1). Number of iterations to reach parameter convergence within the specified 'tolerance'. Defaults to 10
leave_cross_loadings Boolean. Should cross-loadings be kept? Defaults to FALSE. Convergence problems can arise if cross-loadings are kept, so setting them to zero is the default. Only set to TRUE with careful consideration of the structure. Make sure to perform additional checks that the data are adequate

Value

Returns a list containing:

data Simulated data from the specified factor model
population_correlation
Population correlation matrix with local dependence added

population_error
A list containing the parameters used to generate population error:
- error_correlation Correlation matrix with population error added (same as population_correlation)
- fit Fit measure used to control population error
- delta Minimum of the objective function corresponding to the misfit value
- misfit Specified misfit value
- loadings Estimated CFA loadings after error has been added

original_results
Original lf_object input into function

Author(s)
bifactor authors
Marcos Jimenez, Francisco J. Abad, Eduardo Garcia-Garzon, Vithor R. Franco, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

latentFactor authors
Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>, Marcos Jimenez, Francisco J. Abad, Eduardo Garcia-Garzon, Vithor R. Franco

References

Examples

Generate factor data
two_factor <- simulate_factors(
 factors = 2, # factors = 2
 variables = 6, # variables per factor = 6
 loadings = 0.55, # loadings between = 0.45 to 0.65
 cross_loadings = 0.05, # cross-loadings N(0, 0.05)
 correlations = 0.30, # correlation between factors = 0.30
 sample_size = 1000 # number of cases = 1000
)

Add small population error using Cudeck method
two_factor_Cudeck <- add_population_error(
 lf_object = two_factor,
categorize = cfa_method = "minres",
 fit = "rmsr", misfit = "close",
 error_method = "cudeck"
)

Add small population error using Yuan method
two_factor_Yuan <- add_population_error(
 lf_object = two_factor,
 cfa_method = "minres",
 fit = "rmsr", misfit = "close",
 error_method = "yuan"
)

categorize Categorize Continuous Data

Description
Categorizes continuous data based on Garrido, Abad and Ponsoda (2011; see references). Categorical data with 2 to 6 categories can include skew between -2 to 2 in increments of 0.05

Usage
categorize(data, categories, skew_value = 0)

Arguments
data Numeric (length = n). A vector of continuous data with n values. For matrices, use apply
categories Numeric (length = 1). Number of categories to create. Between 2 and 6 categories can be used with skew
skew_value Numeric (length = 1). Value of skew. Ranges between -2 to 2 in increments of 0.05. Skews not in this sequence will be converted to the nearest value in this sequence. Defaults to 0 or no skew

Value
Returns a numeric vector of the categorize data

Author(s)
Maria Dolores Nieto Canaveras <mnietoca@nebrija.es>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>, Hudson Golino <hfg9s@virginia.edu>, Alexander P. Christensen <alexpaulchristensen@gmail.com>
References

Examples

```r
# Dichotomous data (no skew)
dichotomous <- categorize(
  data = rnorm(1000),
  categories = 2
)

# Dichotomous data (with positive skew)
dichotomous_skew <- categorize(
  data = rnorm(1000),
  categories = 2,
  skew_value = 1.25
)

# 5-point Likert scale (no skew)
five_likert <- categorize(
  data = rnorm(1000),
  categories = 5
)

# 5-point Likert scale (negative skew)
five_likert <- categorize(
  data = rnorm(1000),
  categories = 5,
  skew_value = -0.45
)
```

Description

Zipf’s distribution is commonly found for text data. Closely related to the Pareto and power-law distributions, the Zipf’s distribution produces highly skewed data. This transformation is intended to mirror the data generating process of Zipf’s law seen in semantic network and topic modeling data.
Usage

data_to_zipfs(lf_object, beta = 2.7, alpha = 1, dichotomous = FALSE)

Arguments

lf_object Data object from `simulate_factors`
beta Numeric (length = 1). Sets the shift in rank. Defaults to 2.7
alpha Numeric (length = 1). Sets the power of the rank. Defaults to 1
dichotomous Boolean (length = 1). Whether data should be dichotomized rather than frequencies (e.g., semantic network analysis). Defaults to FALSE

Details

The formula used to transform data is (Piantadosi, 2014):

\[f(r) \propto \frac{1}{(r + \beta)^\alpha} \]

where \(f(r) \) is the \(r \)th most frequency, \(r \) is the rank-order of the data, \(\beta \) is a shift in the rank (following Mandelbrot, 1953, 1962), and \(\alpha \) is the power of the rank with greater values suggesting greater differences between the largest frequency to the next, and so forth.

The function will transform continuous data output from `simulate_factors`. See examples to get started.

Value

Returns a list containing:

- data Simulated data that has been transform to follow Zipf’s distribution
- RMSE A vector of root mean square errors for transformed data and data assumed to follow theoretical Zipf’s distribution and Spearman’s correlation matrix of the transformed data compared to the original population correlation matrix
- spearman_correlation Spearman’s correlation matrix of the transformed data
- original_correlation Original population correlation matrix before the data were transformed
- original_results Original lf_object input into function

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>
References

Examples

```r
# Generate factor data
two_factor <- simulate_factors(
  factors = 2, # factors = 2
  variables = 6, # variables per factor = 6
  loadings = 0.55, # loadings between = 0.45 to 0.65
  cross_loadings = 0.05, # cross-loadings N(0, 0.05)
  correlations = 0.30, # correlation between factors = 0.30
  sample_size = 1000 # number of cases = 1000
)

# Transform data to Mandelbrot's Zipf's
two_factor_zipfs <- data_to_zipfs(
  lf_object = two_factor,
  beta = 2.7,
  alpha = 1
)

# Transform data to Mandelbrot's Zipf's (dichotomous)
two_factor_zipfs_binary <- data_to_zipfs(
  lf_object = two_factor,
  beta = 2.7,
  alpha = 1,
  dichotomous = TRUE
)
```

EKC

Estimate Number of Dimensions using Empirical Kaiser Criterion

Description

Estimates the number of dimensions in data using Empirical Kaiser Criterion (Braeken & Van Assen, 2017). See examples to get started.
Usage

EKC(data, sample_size)

Arguments

data Matrix or data frame. Either a dataset with all numeric values (rows = cases, columns = variables) or a symmetric correlation matrix

sample_size Numeric (length = 1). If input into data is a correlation matrix, then specifying the sample size is required

Value

Returns a list containing:

dimensions Number of dimensions identified
eigenvalues Eigenvalues
reference Reference values compared against eigenvalues

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Examples

Generate factor data
two_factor <- simulate_factors(
 factors = 2, # factors = 2
 variables = 6, # variables per factor = 6
 loadings = 0.55, # loadings between = 0.45 to 0.65
 cross_loadings = 0.05, # cross-loadings N(0, 0.05)
 correlations = 0.30, # correlation between factors = 0.30
 sample_size = 1000 # number of cases = 1000
)

Perform Empirical Kaiser Criterion
EKC(two_factor$data)
estimate_dimensions Estimates Dimensions using Several State-of-the-art Methods

Description

Estimates dimensions using Exploratory Graph Analysis (EGA), Empirical Kaiser Criterion (EKC), Factor Forest (factor_forest), Exploratory Factor Analysis with out-of-sample prediction (fspe), Next Eigenvalue Sufficiency Test (NEST), and parallel analysis (fa.parallel)

Usage

```r
estimate_dimensions(
  data,
  sample_size,
  EGA_args = list(corr = "cor_auto", uni.method = "louvain", model = "glasso",
                  consensus.method = "most_common", plot.EGA = FALSE),
  FF_args = list(maximum_factors = 8),
  FSPE_args = list(maxX = 8, rep = 1, method = "PE", pbar = FALSE),
  NEST_args = list(iterations = 1000, maximum_iterations = 500, alpha = 0.05, convergence
                  = 1e-05),
  PA_args = list(fm = "minres", fa = "both", cor = "cor", n.iter = 20, sim = FALSE, plot
              = FALSE)
)
```

Arguments

- **data**: Matrix or data frame. Either a dataset with all numeric values (rows = cases, columns = variables) or a symmetric correlation matrix
- **sample_size**: Numeric (length = 1). If input into `data` is a correlation matrix, then specifying the sample size is required
- **EGA_args**: List. List of arguments to be passed along to `EGA`. Defaults are listed
- **FF_args**: List. List of arguments to be passed along to `factor_forest`. Defaults are listed
- **FSPE_args**: List. List of arguments to be passed along to `fspe`. Defaults are listed
- **NEST_args**: List. List of arguments to be passed along to `NEST`. Defaults are listed
- **PA_args**: List. List of arguments to be passed along to `fa.parallel`. Defaults are listed

Value

Returns a list containing:

- **dimensions**: Dimensions estimated from each method

A list of each methods output (see their respective functions for their outputs)
Author(s)

Maria Dolores Nieto Canaveras <mnietoca@nebrija.es>, Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

Examples

```r
# Generate factor data
two_factor <- simulate_factors(
  factors = 2, # factors = 2
  variables = 6, # variables per factor = 6
  loadings = 0.55, # loadings between = 0.45 to 0.65
  cross_loadings = 0.05, # cross-loadings N(0, 0.05)
  correlations = 0.30, # correlation between factors = 0.30
  sample_size = 1000 # number of cases = 1000
)

## Not run:
# Estimate dimensions
estimate_dimensions(two_factor$data)
## End(Not run)
```

factor_forest

Estimate Number of Dimensions using Factor Forest

Description

Estimates the number of dimensions in data using the pre-trained Random Forest model from Goretzko and Buhner (2020, 2022). See examples to get started

Usage

```r
factor_forest(data, sample_size, maximum_factors = 8)
```

Arguments

- **data**: Matrix or data frame. Either a dataset with all numeric values (rows = cases, columns = variables) or a symmetric correlation matrix
- **sample_size**: Numeric (length = 1). If input into data is a correlation matrix, then specifying the sample size is required
- **maximum_factors**: Numeric (length = 1). Maximum number of factors to search over. Defaults to 8

Value

Returns a list containing:

- **dimensions**: Number of dimensions identified
- **probabilities**: Probability that the number of dimensions is most likely
NEST

Author(s)

Authors of Factor Forest
David Goretzko and Markus Buhner

Authors of latentFactoR
Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>,
Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Examples

```r
# Generate factor data
two_factor <- simulate_factors(
  factors = 2, # factors = 2
  variables = 6, # variables per factor = 6
  loadings = 0.55, # loadings between = 0.45 to 0.65
  cross_loadings = 0.05, # cross-loadings N(0, 0.05)
  correlations = 0.30, # correlation between factors = 0.30
  sample_size = 1000 # number of cases = 1000
)

## Not run:
# Perform Factor Forest
factor_forest(two_factor$data)
## End(Not run)
```

NEST

Estimate Number of Dimensions using Next Eigenvalue Sufficiency Test

Description

Estimates the number of dimensions in data using NEST (Achim, 2017). See examples to get started

Usage

```r
NEST(
  data,
  sample_size,
  iterations = 1000,
  maximum_iterations = 500,
```
alpha = 0.05,
 convergence = 1e-05
)

Arguments

data Matrix or data frame. Either a dataset with all numeric values (rows = cases, columns = variables) or a symmetric correlation matrix
sample_size Numeric (length = 1). If input into data is a correlation matrix, then specifying the sample size is required
iterations Numeric (length = 1). Number of iterations to estimate rank. Defaults to 1000
maximum_iterations
 Numeric (length = 1). Maximum number of iterations to obtain convergence of eigenvalues. Defaults to 500
alpha Numeric (length = 1). Significance level for determine sufficient eigenvalues. Defaults to 0.05
convergence Numeric (length = 1). Value necessary to be less than or equal to when establishing convergence of eigenvalues

Value

Returns a list containing:

dimensions Number of dimensions identified
loadings Loading matrix
converged Whether estimation converged. If FALSE, then results are reported from last convergence point. Interpret results with caution.

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Examples

Generate factor data
two_factor <- simulate_factors(
 factors = 2, # factors = 2
 variables = 6, # variables per factor = 6
 loadings = 0.55, # loadings between = 0.45 to 0.65
)
obtain_zipfs_parameters

Obtain Zipf’s Distribution Parameters from Data

Description

Zipf’s distribution is commonly found for text data. Closely related to the Pareto and power-law distributions, the Zipf’s distribution produces highly skewed data. This function obtains the best fitting parameters to Zipf’s distribution

Usage

obtain_zipfs_parameters(data)

Arguments

data Numeric vector, matrix, or data frame. Numeric data to determine Zipf’s distribution parameters

Details

The best parameters are optimized by minimizing the absolute difference between the original frequencies and the frequencies obtained by the beta and alpha parameters in the following formula (Piantadosi, 2014):

\[f(r) \propto 1 / (r + \beta)^\alpha \]

where \(f(r) \) is the \(r \)th most frequency, \(r \) is the rank-order of the data, \(\beta \) is a shift in the rank (following Mandelbrot, 1953, 1962), and \(\alpha \) is the power of the rank with greater values suggesting greater differences between the largest frequency to the next, and so forth.

Value

Returns a vector containing the estimated beta and alpha parameters. Also contains \texttt{zipfs_sse} which corresponds to the sum of square error between frequencies based on the parameter values estimated and the original data frequencies.
Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Examples

```r
# Generate factor data
two_factor <- simulate_factors(
  factors = 2,  # factors = 2
  variables = 6, # variables per factor = 6
  loadings = 0.55, # loadings between = 0.45 to 0.65
  cross_loadings = 0.05, # cross-loadings N(0, 0.05)
  correlations = 0.30, # correlation between factors = 0.30
  sample_size = 1000 # number of cases = 1000
)

# Transform data to Mandelbrot's Zipf's
two_factor_zipfs <- data_to_zipfs(
  lf_object = two_factor,
  beta = 2.7,
  alpha = 1
)

# Obtain Zipf's distribution parameters
obtain_zipfs_parameters(two_factor_zipfs$data)
```

simulate_factors

Simulates Latent Factor Data

Description

Simulates data from a latent factor model based on many manipulable parameters. Parameters do not have default values and must each be set. See examples to get started.
Usage

```r
simulate_factors(
  factors,
  variables,
  variables_range = NULL,
  loadings,
  loadings_range = NULL,
  cross_loadings,
  cross_loadings_range = NULL,
  correlations,
  correlations_range = NULL,
  sample_size,
  variable_categories = Inf,
  categorical_limit = 6,
  skew = 0,
  skew_range = NULL
)
```

Arguments

- **factors**: Numeric (length = 1). Number of factors
- **variables**: Numeric (length = 1 or factors). Number of variables per factor. Can be a single value or as many values as there are factors. Minimum three variables per factor
- **variables_range**: Numeric (length = 2). Range of variables to randomly select from a random uniform distribution. Minimum three variables per factor
- **loadings**: Numeric or matrix (length = 1, factors, total number of variables (factors x variables), or factors x total number of variables. Loadings drawn from a random uniform distribution using +/- 0.10 of value input. Can be a single value or as many values as there are factors (corresponding to the factors). Can also be a loading matrix. Columns must match factors and rows must match total variables (factors x variables) General effect sizes range from small (0.40), moderate (0.55), to large (0.70)
- **loadings_range**: Numeric (length = 2). Range of loadings to randomly select from a random uniform distribution. General effect sizes range from small (0.40), moderate (0.55), to large (0.70)
- **cross_loadings**: Numeric or matrix(length = 1, factors, or factors x total number of variables. Cross-loadings drawn from a random normal distribution with a mean of 0 and standard deviation of value input. Can be a single value or as many values as there are factors (corresponding to the factors). Can also be a loading matrix. Columns must match factors and rows must match total variables (factors x variables)
- **cross_loadings_range**: Numeric (length = 2). Range of cross-loadings to randomly select from a random uniform distribution

- **correlations**: Required when using `cross_loadings` argument. Controls the correlation between factors
- **correlations_range**: Numeric (length = 2). Range of correlations to randomly select from a random uniform distribution

- **sample_size**: Required when using `factors` argument. Sample size
- **variable_categories**: Inf. Number of categories for variables
- **categorical_limit**: 6. Number of categories limit for variables
- **skew**: 0. Skewness of variables
- **skew_range**: NULL. Range of skewness to randomly select from a random uniform distribution
correlations Numeric (length = 1 or factors x factors). Can be a single value that will be used for all correlations between factors. Can also be a square matrix (factors x factors). General effect sizes range from orthogonal (0.00), small (0.30), moderate (0.50), to large (0.70)

correlations_range Numeric (length = 2). Range of correlations to randomly select from a random uniform distribution. General effect sizes range from orthogonal (0.00), small (0.30), moderate (0.50), to large (0.70)

sample_size Numeric (length = 1). Number of cases to generate from a random multivariate normal distribution using \texttt{rmvnorm}

variable_categories Numeric (length = 1 or total variables (factors x variables)). Number of categories for each variable. \texttt{Inf} is used for continuous variables; otherwise, values reflect number of categories

categorical_limit Numeric (length = 1). Values greater than input value are considered continuous. Defaults to 6 meaning that 7 or more categories are considered continuous (i.e., variables are not categorized from continuous to categorical)

skew Numeric (length = 1 or categorical variables). Skew to be included in categorical variables. It is randomly sampled from provided values. Can be a single value or as many values as there are (total) variables. Current skew implementation is between -2 and 2 in increments of 0.05. Skews that are not in this sequence will be converted to their nearest value in the sequence. Not recommended to use with \texttt{variables_range}. Future versions will incorporate finer skews

skew_range Numeric (length = 2). Randomly selects skews within in the range. Somewhat redundant with skew but more flexible. Compatible with \texttt{variables_range}

Value

Returns a list containing:

data Simulated data from the specified factor model

population_correlation Population correlation matrix

parameters A list containing the parameters used to generate the data:

- factors Number of factors
- variables Variables on each factor
- loadings Loading matrix
- factor_correlations Correlations between factors
- categories Categories for each variable
- skew Skew for each variable

Author(s)

Maria Dolores Nieto Canaveras <mnietoca@nebrija.es>, Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>
References

Examples

```r
# Generate factor data
two_factor <- simulate_factors(
  factors = 2, # factors = 2
  variables = 6, # variables per factor = 6
  loadings = 0.55, # loadings between = 0.45 to 0.65
  cross_loadings = 0.05, # cross-loadings N(0, 0.05)
  correlations = 0.30, # correlation between factors = 0.30
  sample_size = 1000 # number of cases = 1000
)

# Randomly vary loadings
two_factor_loadings <- simulate_factors(
  factors = 2, # factors = 2
  variables = 6, # variables per factor = 6
  loadings_range = c(0.30, 0.80), # loadings between = 0.30 to 0.80
  cross_loadings = 0.05, # cross-loadings N(0, 0.05)
  correlations = 0.30, # correlation between factors = 0.30
  sample_size = 1000 # number of cases = 1000
)

# Generate dichotomous data
two_factor_dichotomous <- simulate_factors(
  factors = 2, # factors = 2
  variables = 6, # variables per factor = 6
  loadings = 0.55, # loadings between = 0.45 to 0.65
  cross_loadings = 0.05, # cross-loadings N(0, 0.05)
  correlations = 0.30, # correlation between factors = 0.30
  sample_size = 1000, # number of cases = 1000
  variable_categories = 2 # dichotomous data
)

# Generate dichotomous data with skew
two_factor_dichotomous_skew <- simulate_factors(
  factors = 2, # factors = 2
  variables = 6, # variables per factor = 6
  loadings = 0.55, # loadings between = 0.45 to 0.65
  cross_loadings = 0.05, # cross-loadings N(0, 0.05)
  correlations = 0.30, # correlation between factors = 0.30
  sample_size = 1000, # number of cases = 1000
)`
variable_categories = 2, # dichotomous data
skew = 1 # all variables with have a skew of 1
)

# Generate dichotomous data with variable skew
two_factor_dichotomous_skew <- simulate_factors(
  factors = 2, # factors = 2
  variables = 6, # variables per factor = 6
  loadings = 0.55, # loadings between = 0.45 to 0.65
  cross_loadings = 0.05, # cross-loadings N(0, 0.05)
  correlations = 0.30, # correlation between factors = 0.30
  sample_size = 1000, # number of cases = 1000
  variable_categories = 2, # dichotomous data
  skew_range = c(-2, 2) # skew = -2 to 2 (increments of 0.05)
)

skew_tables

Skew Tables

Description
Tables for skew based on the number of categories (2, 3, 4, 5, or 6) in the data

Usage
data(skew_tables)

Format
A list (length = 5)

Examples
data("skew_tables")
Index

* datasets
  skew_tables, 24

add_cross_loadings, 3
add_local_dependence, 5
add_population_error, 7

bifactor, 9

categorize, 10

data_to_zipfs, 11

EGA, 15
EKC, 13, 15
estimate_dimensions, 15

fa.parallel, 15
factor_forest, 15, 16
fspe, 15

latentFactoR, 9
latentFactoR (latentFactoR-package), 2
latentFactoR-package, 2

NEST, 15, 17

obtain_zipfs_parameters, 19

rmvnorm, 22

simulate_factors, 3, 5, 7, 8, 11, 12, 20
skew_tables, 24