Package ‘latrend’

April 14, 2021

Type Package

Version 1.1.2

Date 2021-04-14

Title A Framework for Clustering Longitudinal Data

Description A framework for clustering longitudinal datasets in a standardized way. Provides an interface to existing R packages for clustering longitudinal univariate trajectories, facilitating reproducible and transparent analyses. Additionally, standard tools are provided to support cluster analyses, including repeated estimation, model validation, and model assessment. The interface enables users to compare results between methods, and to implement and evaluate new methods with ease.

Maintainer Niek Den Teuling <niek.den.teuling@philips.com>

URL https://github.com/philips-software/latrend

BugReports https://github.com/philips-software/latrend/issues

License GPL (>= 2)

Encoding UTF-8

LazyData true

** Depends ** R (>= 3.6.0)

Imports stats, methods, Rdpack, R.utils, assertthat (>= 0.2.1), foreach, data.table (>= 1.12.0), longitudinalData, magrittr, plyr, ggplot2, matrixStats, stackoverflow (>= 0.3.0), clusterCrit, mclustcomp, scales, caret, lme4, mclust

Suggests testthat (>= 3.0.0), roxygen2 (>= 7.1.0), knitr (>= 1.24), rmarkdown (>= 1.18), kml, lcm, longclust, mixtools, flexmix, fda, funFEM, igraph, crimCV, akmedoids (>= 1.3.0), dtwclust, mixAK, psych, qqplotr, doParallel

RoxygenNote 7.1.1

RdMacros Rdpack

VignetteBuilder knitr
R topics documented:

- `assert.R`
- `compute.R`
- `data.R`
- `formula.R`
- `generics.R`
- `latrend.R`
- `make.R`
- `matrix.R`
- `method.R`
- `methodMatrix.R`
- `methodAKMedoids.R`
- `methodCrimCV.R`
- `methodCustom.R`
- `methodDtwclust.R`
- `plot.R`
- `model.R`
- `modelCustom.R`
- `methodFeature.R`
- `methodFlexmix.R`
- `methodFlexmixGBTM.R`
- `methodFunFEM.R`
- `methodGCKM.R`
- `methodKML.R`
- `methodLMKM.R`
- `methodLcmmGMM.R`
- `methodLcmmGBTM.R`
- `methodLongclust.R`
- `methodMclustLLPA.R`
- `methodMixAK_GLMM.R`
- `methodMixTVEM.R`
- `methodMixtoolsGMM.R`
- `methodMixtoolsNPRM.R`
- `methodRandom.R`
- `methodStratify.R`
- `methods.R`
- `metrics.R`
- `model-summary.R`
- `model-transform.R`
- `modelApprox.R`
- `modelCrimCV.R`
- `modelDtwclust.R`
- `modelFeature.R`
- `modelFlexmix.R`
- `modelFunFEM.R`
- `modelKML.R`
- `modelLMKM.R`
- `modelLcmmGMM.R`
- `modelLcmmGBTM.R`
- `modelLongclust.R`
- `modelMclustLLPA.R`
- `modelMixAK_GLMM.R`
- `modelMixAK_GLMMlist.R`
- `modelMixTVEM.R`
- `modelMixtoolsGMM.R`
- `modelMixtoolsRM.R`
- `modelPartition.R`
- `modelStratify.R`
- `modelWeightedPartition.R`
- `models.R`
- `random.R`
- `verbose.R`
- `zzz.R`

NeedsCompilation no

Author
Niek Den Teuling [aut, cre] (https://orcid.org/0000-0003-1026-5080),
Steffen Pauws [ctb],
Edwin van den Heuvel [ctb],
Copyright © 2021 Koninklijke Philips N.V. [cph]

Repository CRAN

Date/Publication 2021-04-14 13:50:10 UTC

R topics documented:

- `latrend-package` .. 5
- `as.data.frame.lcMethod` ... 6
- `as.data.frame.lcMethods` ... 6
- `as.data.frame.lcModels` ... 7
- `as.lcMethods` .. 8
- `as.lcModels` .. 8
- `as.list.lcMethod` .. 9
- `clusterNames` .. 10
- `clusterNames<-` .. 10
- `clusterProportions` ... 11
- `clusterSizes` .. 11
- `clusterTrajectories` ... 12
- `coef.lcModel` .. 13
- `converged` .. 14
- `createTestDataFold` ... 15
- `createTestDataFolds` ... 15
- `createTrainDataFolds` ... 16
R topics documented:

 dcastRepeatedMeasures .. 17
 defineExternalMetric .. 17
 defineInternalMetric ... 18
 deviance.lcModel ... 19
 df.residual.lcModel ... 19
 estimationTime .. 20
 evaluate.lcMethod ... 20
 externalMetric.lcModel.lcModel-method 21
 fitted.lcModel .. 23
 formula.lcMethod ... 23
 formula.lcModel ... 24
 generateLongData .. 25
 getExternalMetricDefinition 26
 getExternalMetricNames 26
 getInternalMetricDefinition 27
 getInternalMetricNames 27
 getLcMethod .. 28
 ids .. 28
 idVariable .. 29
 latrend .. 29
 latrend-parallel .. 31
 latrendBatch .. 32
 latrendBoot ... 33
 latrendCV .. 34
 latrendData .. 35
 latrendRep ... 36
 lcApproxModel-class ... 37
 lcMethod ... 38
 lcMethod-class .. 39
 lcMethod.call .. 41
 lcMethodAkmedoids ... 42
 lcMethodCrimCV ... 43
 lcMethodCustom ... 44
 lcMethodDtwclust ... 45
 lcMethodFeature ... 46
 lcMethodFlexmix .. 47
 lcMethodFlexmixGBTM ... 48
 lcMethodFunFEM ... 49
 lcMethodGCKM .. 50
 lcMethodKML ... 51
 lcMethodLcmmGBTM ... 52
 lcMethodLcmmGMM .. 53
 lcMethodLMKM .. 55
 lcMethodLongclust .. 56
 lcMethodMclustLLPA .. 57
 lcMethodMixAK_GLMM .. 58
 lcMethodMixtoolsGMM .. 59
 lcMethodMixtoolsNPRM ... 60
<table>
<thead>
<tr>
<th>R topics documented:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lcMethodMixTVEM</td>
<td>61</td>
</tr>
<tr>
<td>lcMethodRandom</td>
<td>62</td>
</tr>
<tr>
<td>lcMethods</td>
<td>63</td>
</tr>
<tr>
<td>lcMethodStratify</td>
<td>64</td>
</tr>
<tr>
<td>lcModel-class</td>
<td>66</td>
</tr>
<tr>
<td>lcModelCustom</td>
<td>67</td>
</tr>
<tr>
<td>lcModelPartition</td>
<td>68</td>
</tr>
<tr>
<td>lcModels</td>
<td>69</td>
</tr>
<tr>
<td>lcModelWeightedPartition</td>
<td>70</td>
</tr>
<tr>
<td>logLik.lcModel</td>
<td>71</td>
</tr>
<tr>
<td>max.lcModels</td>
<td>72</td>
</tr>
<tr>
<td>meltRepeatedMeasures</td>
<td>72</td>
</tr>
<tr>
<td>metric</td>
<td>73</td>
</tr>
<tr>
<td>min.lcModels</td>
<td>74</td>
</tr>
<tr>
<td>model.data.lcModel</td>
<td>75</td>
</tr>
<tr>
<td>model.frame.lcModel</td>
<td>76</td>
</tr>
<tr>
<td>nClusters</td>
<td>76</td>
</tr>
<tr>
<td>nIds</td>
<td>77</td>
</tr>
<tr>
<td>nobs.lcModel</td>
<td>77</td>
</tr>
<tr>
<td>plot.lcModel,ANY-method</td>
<td>78</td>
</tr>
<tr>
<td>plotClusterTrajectories</td>
<td>78</td>
</tr>
<tr>
<td>plotMetric</td>
<td>80</td>
</tr>
<tr>
<td>plotTrajectories</td>
<td>81</td>
</tr>
<tr>
<td>postprob</td>
<td>82</td>
</tr>
<tr>
<td>postprobFromAssignments</td>
<td>82</td>
</tr>
<tr>
<td>predict.lcModel</td>
<td>83</td>
</tr>
<tr>
<td>predictAssignments</td>
<td>84</td>
</tr>
<tr>
<td>predictForCluster</td>
<td>85</td>
</tr>
<tr>
<td>predictPostprob</td>
<td>86</td>
</tr>
<tr>
<td>print.lcMethod</td>
<td>86</td>
</tr>
<tr>
<td>print.lcModels</td>
<td>87</td>
</tr>
<tr>
<td>qqPlot</td>
<td>88</td>
</tr>
<tr>
<td>residuals.lcModel</td>
<td>88</td>
</tr>
<tr>
<td>responseVariable</td>
<td>89</td>
</tr>
<tr>
<td>sigma.lcModel</td>
<td>90</td>
</tr>
<tr>
<td>strip</td>
<td>90</td>
</tr>
<tr>
<td>subset.lcModels</td>
<td>91</td>
</tr>
<tr>
<td>summary.lcModel</td>
<td>92</td>
</tr>
<tr>
<td>time.lcModel</td>
<td>92</td>
</tr>
<tr>
<td>timeVariable</td>
<td>93</td>
</tr>
<tr>
<td>trajectories</td>
<td>93</td>
</tr>
<tr>
<td>trajectoryAssignments</td>
<td>95</td>
</tr>
<tr>
<td>transformFitted</td>
<td>95</td>
</tr>
<tr>
<td>transformLatrendData</td>
<td>96</td>
</tr>
<tr>
<td>transformPredict</td>
<td>97</td>
</tr>
<tr>
<td>update.lcMethod</td>
<td>98</td>
</tr>
<tr>
<td>update.lcModel</td>
<td>99</td>
</tr>
<tr>
<td>which.weight</td>
<td>99</td>
</tr>
</tbody>
</table>
latrend-package

Description

A framework for clustering longitudinal datasets in a standardized way. Provides an interface to existing R packages for clustering longitudinal univariate trajectories, facilitating reproducible and transparent analyses. Additionally, standard tools are provided to support cluster analyses, including repeated estimation, model validation, and model assessment. The interface enables users to compare results between methods, and to implement and evaluate new methods with ease.

Getting started

- See vignette("demo",package = "latrend") for an introduction to conducting a longitudinal cluster analysis on a example case study.
- See vignette("custom",package = "latrend") for examples on constructing your own cluster models.
- See vignette("validation",package = "latrend") for examples on applying internal cluster validation.

Author(s)

Maintainer: Niek Den Teuling <niek.den.teuling@philips.com> (ORCID)

Other contributors:

- Steffen Pauws <s.c.pauws@tilburguniversity.edu> [contributor]
- Edwin van den Heuvel <e.r.v.d.heuvel@tue.nl> [contributor]
- Copyright © 2021 Koninklijke Philips N.V. [copyright holder]

See Also

Useful links:

- https://github.com/philips-software/latrend
- Report bugs at https://github.com/philips-software/latrend/issues
as.data.frame.lcMethod

Convert lcMethod arguments to a list of atomic types

Description

Converts the arguments of a lcMethod to a named list of atomic types.

Usage

```r
## S3 method for class 'lcMethod'
as.data.frame(x, ..., eval = FALSE, nullValue = NA, envir = NULL)
```

Arguments

- `x` lcMethod to be coerced to a character vector.
- `...` Additional arguments.
- `eval` Whether to evaluate the arguments in order to replace expression if the resulting value is of a class specified in evalClasses.
- `nullValue` Value to use to represent the NULL type. Must be of length 1.
- `envir` The environment in which to evaluate the arguments. If NULL, the environment associated with the object is used. If not available, the parent.frame() is used.

Value

A single-row data.frame where each columns represents an argument call or evaluation.

See Also

Other lcMethod functions: `[[,lcMethod-method, as.data.frame.lcMethods(), as.lcMethods(), as.list.lcMethod(), evaluate.lcMethod(), formula.lcMethod(), lcMethod-class, update.lcMethod()`

as.data.frame.lcMethods

Convert a list of lcMethod objects to a data.frame

Description

Converts a list of lcMethod objects to a data.frame.

Usage

```r
## S3 method for class 'lcMethods'
as.data.frame(x, ..., eval = FALSE, nullValue = NA, envir = NULL)
```
as.data.frame.lcModels

Generate a data.frame containing the argument values per method per row

Description

Generate a data.frame containing the argument values per method per row

Usage

```r
## S3 method for class 'lcModels'
as.data.frame(x, ..., excludeShared = FALSE, eval = TRUE)
```

Arguments

- **x**
 - lcModels or a list of lcModel

- **...**
 - Arguments passed to `as.data.frame.lcMethod`.

- **excludeShared**
 - Whether to exclude columns which have the same value across all methods.

- **eval**
 - Whether to evaluate the arguments in order to replace expression if the resulting value is of a class specified in `evalClasses`.

Value

A data.frame.
as.lcMethods

Convert a list of lcMethod objects to a lcMethods list

Description

Convert a list of lcMethod objects to a lcMethods list

Usage

as.lcMethods(x)

Arguments

x A list of lcMethod objects.

Value

A lcMethods object.

See Also

Other lcMethod functions: [, lcMethod-method, as.data.frame.lcMethods(), as.data.frame.lcMethod(), as.list.lcMethod(), evaluate.lcMethod(), formula.lcMethod(), lcMethod-class, update.lcMethod()
as.list.lcMethod

Extract the method arguments as a list

Description

Extract the method arguments as a list

Usage

```r
## S3 method for class 'lcMethod'
as.list(x, ..., args = names(x), eval = TRUE, expand = FALSE, envir = NULL)
```

Arguments

- `x` The `lcMethod` object.
- `...` Additional arguments.
- `args` A character vector of argument names to select. Only available arguments are returned. Alternatively, a function or list of functions, whose formal arguments will be selected from the method.
- `eval` Whether to evaluate the arguments.
- `expand` Whether to return all method arguments when `"..."` is present among the requested argument names.
- `envir` The environment in which to evaluate the arguments. If `NULL`, the environment associated with the object is used. If not available, the `parent.frame()` is used.

Value

A list with the argument calls or evaluated results depending on the value for `eval`.

See Also

Other `lcMethod` functions: `[[`, `lcMethod-method`, `as.data.frame.lcMethods()`, `as.data.frame.lcMethod()`, `as.lcMethods()`, `evaluate.lcMethod()`, `formula.lcMethod()`, `lcMethod-class`, `update.lcMethod()`

Examples

```r
data(latrendData)
method <- lcMethodKML("Y", id = "Id", time = "Time")
as.list(method)

as.list(method, args = c("id", "time"))

# select arguments used by kml()
as.list(method, args = kml::kml)

# select arguments used by either kml() or parALGO()
as.list(method, args = c(kml::kml, kml::parALGO))
```
clusterNames

Get the cluster names

Usage

`clusterNames(object, factor = FALSE)`

Arguments

- `object` The `lcModel` object.
- `factor` Whether to return the cluster names as a factor.

Value

A character of the cluster names.

Examples

```r
data(latrendData)
model <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
clusterNames(model) # A, B
```

clusterNames<-

Update the cluster names

Description

Update the cluster names

Usage

`clusterNames(object) <- value`

Arguments

- `object` The `lcModel` object to update.
- `value` The character with the new names.

Value

The updated `lcModel` object.
Examples

data(latrendData)
model <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
clusterNames(model) <- c("Group 1", "Group 2")

clusterProportions Proportional size of each cluster

Description
Proportional size of each cluster

Usage
S4 method for signature 'lcModel'
clusterProportions(object, ...)

Arguments

object The lcModel to obtain the proportions from.
...
 Not used.

Examples

data(latrendData)
model <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
clusterProportions(model)

clusterSizes Number of strata per cluster

Description
Number of strata per cluster

Usage
clusterSizes(object)

Arguments

object The lcModel object.

Examples
model <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
clusterSizes(model)
clusterTrajectories

Extract the cluster trajectories

Description

Extracts a data frame of all cluster trajectories.

Usage

```r
# S4 method for signature 'lcModel'
clusterTrajectories(object, at = time(object), what = "mu", ...)
```

Arguments

- `object`: The `lcModel` object.
- `at`: An optional vector, list or data frame of covariates at which to compute the cluster trajectory predictions. If a vector is specified, this is assumed to be the time covariate. Otherwise, a named list or data frame must be provided.
- `what`: The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying what = 'mb'.
- `...`: Additional arguments.

Value

A data frame of the estimated values at the given times. The first column should be named "Cluster". The second column should be time, with the name matching the `timeVariable(object)`. The third column should be the expected value of the observations, named after the `responseVariable(object)`.

See Also

Other model-specific methods: `coef.lcModel()`, `converged()`, `deviance.lcModel()`, `df.residual.lcModel()`, `fitted.lcModel()`, `lcModel-class`, `logLik.lcModel()`, `model.frame.lcModel()`, `nobs.lcModel()`, `postprob()`, `predict.lcModel()`, `predictAssignments()`, `predictForCluster()`, `predictPostprob()`, `residuals.lcModel()`, `sigma.lcModel()`, `time.lcModel()`, `trajectories()`

Examples

```r
model <- latrend(method = lcMethodLcmmGMM(fixed = Y ~ Time, mixture = fixed),
                 id = "Id", time = "Time", data = latrendData)
clusterTrajectories(model)

clusterTrajectories(model, at = c(0, .5, 1))
```
coef.lcModel

Coefficients of a lcModel

Description

Coefficients of a lcModel

Usage

```r
## S3 method for class 'lcModel'
coef(object, ...)  
```

Arguments

- `object`: The `lcModel` object.
- `...`: Additional arguments.

Value

A named numeric vector with all coefficients, or a matrix with each column containing the cluster-specific coefficients.

See Also

Other model-specific methods: `clusterTrajectories()`, `converged()`, `deviance.lcModel()`, `df.residual.lcModel()`, `fitted.lcModel()`, `lcModel-class`, `logLik.lcModel()`, `model.frame.lcModel()`, `nobs.lcModel()`, `postprob()`, `predict.lcModel()`, `predictAssignments()`, `predictForCluster()`, `predictPostprob()`, `residuals.lcModel()`, `sigma.lcModel()`, `time.lcModel()`, `trajectories()`

confusionMatrix

Compute the posterior confusion matrix

Description

Compute a nClusters x nClusters posterior confusion matrix (PCM). The entry (i,j) represents the probability of a trajectory belonging to class i is assigned to class j under a given assignment strategy.

Usage

```r
confusionMatrix(object, strategy = which.max, scale = TRUE)
```
Arguments

object The object.
strategy The trajectoryAssignments strategy to compute the PCM under. If strategy = NULL, weighted random assignment is assumed (analogous to a repeated [which.weight] strategy evaluation).
scale Whether to express the confusion in probabilities (scale = TRUE), or in the number of trajectories.

Examples

data(latrendData)
model = latrend(lcMethodLcmmGMM(
 fixed = Y ~ Time, mixture = ~ Time, random = ~ 1,
 id = "Id", time = "Time"),
data=latrendData)
confusionMatrix(model)

converged Check model convergence

Description

Check convergence of the fitted model.

Usage

S4 method for signature 'lcModel'
converged(object, ...)

Arguments

object The lcModel to check for convergence.
...

Value

Either logical indicating convergence, or a numeric status code.

See Also

Other model-specific methods: clusterTrajectories(), coef.lcModel(), deviance.lcModel(),
df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(),
nobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(),
predictPostprob(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()
createTestDataFold
Create the test fold data for validation

Description
Create the test fold data for validation

Usage
createTestDataFold(data, trainData, id = getOption("latrend.id"))

Arguments
- data: A data.frame representing the complete dataset.
- trainData: A data.frame representing the training data, which should be a subset of data.
- id: The trajectory identifier variable.

See Also
createTrainDataFolds
Other validation methods: createTestDataFolds(), createTrainDataFolds(), latrendBoot(), latrendCV(), lcModel-data-filters

Examples
```r
data(latrendData)
trainDataList <- createTrainDataFolds(latrendData, id = "Id", folds = 10)
testData1 <- createTestDataFold(latrendData, trainDataList[[1]], id = "Id")
```

createTestDataFolds
Create all k test folds from the training data

Description
Create all k test folds from the training data

Usage
createTestDataFolds(data, trainDataList, ...)

Arguments
- data: A data.frame representing the complete dataset.
- trainDataList: A list of data.frame representing each of the data training folds. These should be derived from data.
- ...: Arguments passed to createTestDataFold.
createTrainDataFolds

See Also

Other validation methods: createTestDataFold(), createTrainDataFolds(), latrendBoot(), latrendCV(), lcModel-data-filters

Examples

data(latrendData)
trainDataList <- createTrainDataFolds(latrendData, folds = 10, id = “Id”)
testDataList <- createTestDataFolds(latrendData, trainDataList)

createTrainDataFolds Create the training data for each of the k models in k-fold cross validation evaluation

Description

Create the training data for each of the k models in k-fold cross validation evaluation

Usage

createTrainDataFolds(
 data,
 folds = 10,
 id =getOption("latrend.id"),
 seed = NULL
)

Arguments

 data A data.frame representing the complete dataset.
 folds The number of folds. By default, a 10-fold scheme is used.
 id The trajectory identifier variable.
 seed The seed to use, in order to ensure reproducible fold generation at a later moment.

Value

A list of data.frame of the folds training datasets.

See Also

Other validation methods: createTestDataFold(), createTestDataFolds(), latrendBoot(), latrendCV(), lcModel-data-filters
dcastRepeatedMeasures

Cast a longitudinal data.frame to a matrix

Description

Converts a longitudinal data.frame comprising trajectories with an equal number of observations, measured at identical moments in time, to a matrix. Each row of the matrix represents a trajectory.

Usage

```r
dcastRepeatedMeasures(
  data,
  response,
  id = getOption("latrend.id"),
  time = getOption("latrend.time")
)
```

Arguments

- **data**: The matrix containing a trajectory on each row.
- **response**: The response column name.
- **id**: The id column name.
- **time**: The time column name.

Value

A matrix with a trajectory per row.

defineExternalMetric

Define an external metric for lcModels

Description

Define an external metric for lcModels

Usage

```r
defineExternalMetric(name, fun, warnIfExists = TRUE)
```
defineInternalMetric

Arguments

- name: The name of the metric.
- fun: The function to compute the metric, accepting a lcModel object as input.
- warnIfExists: Whether to output a warning when the new metric is already defined.

See Also

Other metric functions: defineInternalMetric(), externalMetric, lcModel, lcModel-method, getExternalMetricDefinition(), getExternalMetricNames(), getInternalMetricDefinition(), getInternalMetricNames(), metric()

defineInternalMetric Define an internal metric for lcModels

Description

Define an internal metric for lcModels

Usage

defineInternalMetric(name, fun, warnIfExists = TRUE)

Arguments

- name: The name of the metric.
- fun: The function to compute the metric, accepting a lcModel object as input.
- warnIfExists: Whether to output a warning when the new metric is already defined.

See Also

Other metric functions: defineExternalMetric(), externalMetric, lcModel, lcModel-method, getExternalMetricDefinition(), getExternalMetricNames(), getInternalMetricDefinition(), getInternalMetricNames(), metric()
deviance.lcModel

S3 method for class 'lcModel'
deviance(object, ...)

Arguments

object The lcModel object.
...
Additional arguments.

See Also

Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), predictPostprob(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()

df.residual.lcModel

Extract the residual degrees of freedom from a lcModel

S3 method for class 'lcModel'
df.residual(object, ...)

Arguments

object The lcModel object.
...
Additional arguments.

See Also

Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), predictPostprob(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()
estimationTime
Get the model estimation time

Description

Get the model estimation time.

Usage

```r
estimationTime(object)
```

Arguments

- `object`: The `lcModel` object.

Value

The model estimation time in seconds.

evaluate.lcMethod
Substitute the call arguments for their evaluated values

Description

Substitutes the call arguments if they can be evaluated without error.

Usage

```r
## S3 method for class 'lcMethod'
evaluate(
  object,
  classes = "ANY",
  try = TRUE,
  exclude = character(),
  envir = NULL
)
```

Arguments

- `object`: The `lcMethod` object.
- `classes`: Substitute only arguments with specific class types. By default, all types are substituted.
- `try`: Whether to try to evaluate arguments and ignore errors (the default), or to fail on any argument evaluation error.
- `exclude`: Arguments to exclude from evaluation.
- `envir`: The environment in which to evaluate the arguments. If `NULL`, the environment associated with the object is used. If not available, the `parent.frame()` is used.
Value

A new lcMethod object with the substituted arguments.

See Also

Other lcMethod functions: [[,lcMethod-method, as.data.frame.lcMethods(), as.data.frame.lcMethod(), as.lcMethods(), as.list.lcMethod(), formula.lcMethod(), lcMethod-class, update.lcMethod()]

Description

Compute external model metric(s)

Usage

S4 method for signature 'lcModel,lcModel'
externalMetric(object, object2, name, ...)

S4 method for signature 'lcModels,missing'
externalMetric(object, object2, name = "adjustedRand")

S4 method for signature 'lcModels,character'
externalMetric(object, object2 = "adjustedRand")

S4 method for signature 'lcModels,lcModel'
externalMetric(object, object2, name, drop = TRUE)

S4 method for signature 'list,lcModel'
externalMetric(object, object2, name, drop = TRUE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>The lcModel, lcModels, or list of lcModel objects to compute the metrics for.</td>
</tr>
<tr>
<td>object2</td>
<td>The other lcModel to compare with.</td>
</tr>
<tr>
<td>name</td>
<td>The name(s) of the metric(s) to compute.</td>
</tr>
<tr>
<td>...</td>
<td>Additional arguments.</td>
</tr>
<tr>
<td>drop</td>
<td>Whether to return a numeric vector instead of a data.frame in case of a single metric.</td>
</tr>
</tbody>
</table>
Value

For `externalMetric(lcModel, lcModel)`: A numeric vector of the computed metrics.
A named numeric vector containing the computed model metrics.

For `externalMetric(lcModels)`: A distance matrix of class `dist` representing the pairwise comparisons.

For `externalMetric(lcModels, name)`: A distance matrix of class `dist` representing the pairwise comparisons.

For `externalMetric(lcModels, lcModel)`: A named numeric vector or `data.frame` containing the computed model metrics.

For `externalMetric(list, lcModel)`: A named numeric vector or `data.frame` containing the computed model metrics.

References

See Also

metric

Other metric functions: `defineExternalMetric()`, `defineInternalMetric()`, `getExternalMetricDefinition()`, `getExternalMetricNames()`, `getInternalMetricDefinition()`, `getInternalMetricNames()`, `metric()`

Examples

data(latrendData)
model1 <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
model2 <- latrend(lcMethodLcmmGMM(fixed = Y ~ Time, mixture = ~ Time,
 id = "Id", time = "Time"), latrendData)
ari <- externalMetric(model1, model2, 'adjustedRand')
fitted.lcModel

Extract lcModel fitted values

Description

Extract lcModel fitted values

Usage

```r
## S3 method for class 'lcModel'
fitted(object, ..., clusters = trajectoryAssignments(object))
```

Arguments

- `object`: The lcModel object.
- `...`: Additional arguments.
- `clusters`: Optional cluster assignments per id. If unspecified, a matrix is returned containing the cluster-specific predictions per column.

Value

A numeric vector of the fitted values for the respective class, or a matrix of fitted values for each cluster.

See Also

Other model-specific methods: `clusterTrajectories()`, `coef.lcModel()`, `converged()`, `deviance.lcModel()`, `df.residual.lcModel()`, `lcModel-class`, `logLik.lcModel()`, `model.frame.lcModel()`, `nobs.lcModel()`, `postprob()`, `predict.lcModel()`, `predictAssignments()`, `predictForCluster()`, `predictPostprob()`, `residuals.lcModel()`, `sigma.lcModel()`, `time.lcModel()`, `trajectories()`

formula.lcMethod

Extract formula

Description

Extracts the associated formula for the given distributional parameter.

Usage

```r
## S3 method for class 'lcMethod'
formula(x, what = "mu", envir = NULL, ...)
```
Arguments

- **x**: The `lcMethod` object.
- **what**: The distributional parameter to which this formula applies. By default, the formula specifies "mu".
- **envir**: The environment in which to evaluate the arguments. If `NULL`, the environment associated with the object is used. If not available, the `parent.frame()` is used.
- **...**: Additional arguments.

Value

The formula for the given distributional parameter.

See Also

Other `lcMethod` functions: `[[.lcMethod-method, as.data.frame.lcMethods(), as.data.frame.lcMethod(), as.lcMethods(), as.list.lcMethod(), evaluate.lcMethod(), lcMethod-class, update.lcMethod()]

Examples

```r
m <- lcMethodMixtoolsGMM(formula = Y ~ Time + (1 | Id))
formula(m) # Y ~ Time + (1 | Id)
```

formula.lcModel

Extract the formula of a `lcModel`

Description

Extract the formula of a `lcModel`

Usage

```r
## S3 method for class 'lcModel'
formula(x, what = "mu", ...)
```

Arguments

- **x**: The `lcModel` object.
- **what**: The distributional parameter
- **...**: Additional arguments.

Value

Returns the associated formula, or ~ 0 if not specified.
Description

Generate longitudinal test data

Usage

generateLongData(
 sizes = c(40, 60),
 fixed = Value ~ 1 + Time,
 cluster = ~1 + Time,
 random = ~1,
 id = getOption("latrend.id"),
 data = data.frame(Time = seq(0, 1, by = 0.1)),
 fixedCoefs = c(0, 0),
 clusterCoefs = cbind(c(-2, 1), c(2, -1)),
 randomScales = cbind(0.1, 0.1),
 rrandom = rnorm,
 noiseScales = c(0.1, 0.1),
 rnoise = rnorm,
 clusterNames = LETTERS[seq_along(sizes)],
 shuffle = FALSE
)

Arguments

sizes Number of strata per cluster.
fixed Fixed effects formula.
cluster Cluster effects formula.
random Random effects formula.
id Name of the strata.
data Data with covariates to use for generation. Stratified data may be specified by adding a grouping column.
fixedCoefs Coefficients matrix for the fixed effects.
clusterCoefs Coefficients matrix for the cluster effects.
randomScales Standard deviations matrix for the size of the variance components (random effects).
rrandom Random sampler for generating the variance components at location 0.
noiseScales Scale of the random noise passed to rnoise. Either scalar or defined per cluster.
rnoise Random sampler for generating noise at location 0 with the respective scale.
clusterNames A character vector denoting the names of the generated clusters.
shuffle Whether to randomly reorder the strata in which they appear in the data.frame.
getExternalMetricNames

Examples

```r
longdata <- generateLongData(sizes = c(40, 70), id = "Id",
    cluster = ~poly(Time, 2, raw = TRUE),
    clusterCoeffs = cbind(c(1, 2, 5), c(-3, 4, .2)))
plotTrajectories(longdata, response = "Value", id = "Id", time = "Time")
```

getExternalMetricDefinition

Get the external metric definition

Description

Get the external metric definition

Usage

```r
genericgetExternalMetricDefinition(name)
```

Arguments

- `name` The name of the metric.

Value

The metric function, or NULL if not defined.

See Also

Other metric functions: `defineExternalMetric()`, `defineInternalMetric()`, `externalMetric`, `lcModel`, `lcModel-method`, `getExternalMetricNames()`, `getInternalMetricDefinition()`, `getInternalMetricNames()`, `metric()`

genericgetExternalMetricNames

Get the names of the available external metrics

Description

Get the names of the available external metrics

Usage

```r
genericgetExternalMetricNames()
```
getInternalMetricDefinition

Get the internal metric definition

Description

Get the internal metric definition

Usage

getInternalMetricDefinition(name)

Arguments

name
The name of the metric.

Value

The metric function, or NULL if not defined.

See Also

Other metric functions: defineExternalMetric(), defineInternalMetric(), externalMetric, lcModel, lcModel-method, getExternalMetricDefinition(), getInternalMetricDefinition(), getInternalMetricNames(), metric()

getInternalMetricNames

Get the names of the available internal metrics

Description

Get the names of the available internal metrics

Usage

getInternalMetricNames()

See Also

Other metric functions: defineExternalMetric(), defineInternalMetric(), externalMetric, lcModel, lcModel-method, getExternalMetricDefinition(), getExternalMetricNames(), getInternalMetricDefinition(), metric()
getLcMethod
Get the method specification of a lcModel

Description
Get the method specification of a lcModel

Usage
getLcMethod(object)

Arguments
object The lcModel object.

Examples
model = latrend(method=lcMethodKML("Y", id = "Id", time = "Time"), data=latrendData)
getLcMethod(model)

ids
Get the unique ids included in this model

Description
Get the unique ids included in this model

Usage
ids(object)

Arguments
object The lcModel object.

Details
The order returned by ids(lcModel) determines the id order for any output involving id-specific values, such as in trajectoryAssignments() or postprob()

Examples
model = latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
ids(model) # S1, S2, ..., S500
Extract the trajectory identifier variable

Description

Extracts the trajectory identifier variable (i.e., column name) from the given object.

Usage

```r
## S4 method for signature 'lcMethod'
idVariable(object, ...)
```

```r
## S4 method for signature 'lcModel'
idVariable(object)
```

Arguments

- `object`: The object to extract the variable from.
- `...`: Not used.

Value

The trajectory identifier name, as character.

See Also

Other lcModel variables: `responseVariable()`, `timeVariable()`

Examples

```r
method <- lcMethodKML(id = "Traj")
idVariable(method) # "Traj"

model <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
idVariable(model) # "Id"
```

Cluster longitudinal data

Description

Cluster longitudinal data
Usage

latrend(
 method,
 data,
 ...,
 envir = NULL,
 verbose = getOption("latrend.verbose")
)

Arguments

 method The lcMethod object specifying the longitudinal cluster method to apply.
 data The data.frame or matrix to which to apply the method.
 ... Any other arguments to update the lcMethod definition with.
 envir The environment in which to evaluate the method arguments. Note that this only applies to data when data is a call.
 verbose The level of verbosity. Either an object of class Verbose (see R.utils::Verbose for details), a logical indicating whether to show basic computation information, a numeric indicating the verbosity level (see Verbose), or one of c('info','fine','finest').

Details

If a seed value is specified in the lcMethod object or arguments to latrend, this seed is set using set.seed prior to the cluster preparation step.

Value

A lcModel object representing the fitted model.

See Also

Other longitudinal cluster fit functions: latrendBatch(), latrendBoot(), latrendCV(), latrendRep()

Examples

data(latrendData)
model <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), data = latrendData)

method <- lcMethodKML("Y", id = "Id", time = "Time")
model <- latrend(method, data = latrendData, nClusters = 3)

model <- latrend(method, data = latrendData, nClusters = 3, seed = 1)
Description

The model estimation functions support parallel computation through the use of the `foreach` mechanism. In order to make use of parallel execution, a parallel back-end must be registered.

Windows

On Windows, the `parallel-package` can be used to define parallel socket workers.

```r
nCores = parallel::detectCores(logical = FALSE)
cl = parallel::makeCluster(nCores - 1)
parallel::clusterEvalQ(cl, expr=library(latrend))
```

Then, register the cluster as the parallel back-end using the `doParallel` package:

```r
doParallel::registerDoParallel(cl)
```

If you defined your own `lcMethod` or `lcModel` extension classes, make sure to load them on the workers as well. This can be done, for example, using:

```r
parallel::clusterEvalQ(cl,
 expr = setClass('lcMethodMyImpl', contains = "lcMethod")
```

Unix

On Unix systems, it is easier to setup parallelization as the R process is forked. In this example we use the `doMC` package:

```r
nCores = parallel::detectCores(logical = FALSE)
doMC::registerDoMC(nCores - 1)
```

See Also

`latrendRep`, `latrendBatch`, `latrendBoot`, `latrendCV`
latrendBatch

Cluster longitudinal data for a list of model specifications

Description

Fit a list of longitudinal cluster methods.

Usage

latrendBatch(
 methods,
 data,
 cartesian = TRUE,
 parallel = FALSE,
 errorHandling = "stop",
 envir = NULL,
 verbose = getOption("latrend.verbose")
)

Arguments

methods A list of lcMethod objects.
data A data.frame, matrix, or a list thereof to which to apply to the respective lcMethod. Multiple datasets can be supplied by encapsulating the datasets using data=.(df1,df2,...,dfN).
cartesian Whether to fit the provided methods on each of the datasets. If cartesian=FALSE, only a single dataset may be provided or a list of data matching the length of methods.
parallel Whether to enable parallel evaluation. See latrend-parallel.
errorHandling Whether to "stop" on an error, or to 'remove' evaluations that raised an error.
envir The environment in which to evaluate the lcMethod arguments.
verbose The level of verbosity. Either an object of class Verbose (see R.utils::Verbose for details), a logical indicating whether to show basic computation information, a numeric indicating the verbosity level (see Verbose), or one of c('info','fine','finest').

Value

A lcModels object.

See Also

lcMethods

Other longitudinal cluster fit functions: latrendBoot(), latrendCV(), latrendRep(), latrend()
Examples

data(latrendData)
methods <- lcMethods(lcMethodKML("Y", id = "Id", time = "Time"), nClusters = 1:3)
models <- latrendBatch(methods, data = latrendData)

models <- latrendBatch(lcMethods(lcMethodKML("Y", id = "Id", time = "Time"), nClusters = 1:2),
 data = .(subset(latrendData, Time > .5),
 subset(latrendData, Time < .5))) # different data per method

latrendBoot

Cluster longitudinal data using bootstrapping

Description

Performs bootstrapping, generating samples from the given data at the id level, fitting a lcModel to each sample.

Usage

latrendBoot(
 method,
 data,
 samples = 50,
 seed = NULL,
 parallel = FALSE,
 errorHandling = "stop",
 envir = NULL,
 verbose =getOption("latrend.verbose")
)

Arguments

method The lcMethod object specifying the longitudinal cluster method to apply.
data A data.frame.
samples The number of bootstrap samples to evaluate.
seed The seed to use. Optional.
parallel Whether to enable parallel evaluation. See latrend-parallel.
errorHandling Whether to "stop" on an error, or to "remove' evaluations that raised an error.
envir The environment in which to evaluate the method arguments. Note that this only applies to data when data is a call.
verbose The level of verbosity. Either an object of class Verbose (see R.utils::Verbose for details), a logical indicating whether to show basic computation information, a numeric indicating the verbosity level (see Verbose), or one of c('info','fine','finest').
latrendCV

Value

A \texttt{lcModels} object of length \texttt{samples}.

See Also

Other longitudinal cluster fit functions: \texttt{latrendBatch()}, \texttt{latrendCV()}, \texttt{latrendRep()}, \texttt{latrend()}

Other validation methods: \texttt{createTestDataFolds()}, \texttt{createTestDataFold()}, \texttt{createTrainDataFolds()}, \texttt{latrendCV()}, \texttt{lcModel-data-filters}

Examples

\begin{verbatim}
data(latrendData)
method <- lcMethodKML("Y", id = "Id", time = "Time")
model <- latrendBoot(method, latrendData, samples = 10)
\end{verbatim}

\begin{verbatim}
latrendCV
\end{verbatim}

Cluster longitudinal data over \textit{k} folds

Description

Apply \textit{k}-fold cross validation for internal cluster validation. Creates \textit{k} random subsets ("folds") from the data, estimating a model for each of the \textit{k}-1 combined folds.

Usage

\begin{verbatim}
latrendCV(
 method,
 data,
 folds = 10,
 seed = NULL,
 parallel = FALSE,
 errorHandling = "stop",
 envir = NULL,
 verbose = getOption("latrend.verbose")
)
\end{verbatim}

Arguments

\begin{verbatim}
method \quad \text{The \texttt{lcMethod} object specifying the longitudinal cluster method to apply.}
data \quad \text{A \texttt{data.frame}.}
folds \quad \text{The number of folds. Ten folds by default.}
seed \quad \text{The seed to use. Optional.}
parallel \quad \text{Whether to enable parallel evaluation. See \texttt{latrend-parallel}.}
errorHandling \quad \text{Whether to "stop" on an error, or to 'remove' evaluations that raised an error.}
\end{verbatim}
envir The environment in which to evaluate the method arguments. Note that this only applies to data when data is a call.

verbose The level of verbosity. Either an object of class Verbose (see R.utils::Verbose for details), a logical indicating whether to show basic computation information, a numeric indicating the verbosity level (see Verbose), or one of c('info', 'fine', 'finest').

Value
A lcModels object of containing the folds training models.

See Also
Other longitudinal cluster fit functions: latrendBatch(), latrendBoot(), latrendRep(), latrend()
Other validation methods: createTestDataFolds(), createTestDataFold(), createTrainDataFolds(), latrendBoot(), lcModel-data-filters

Examples
```r
data(latrendData)
method <- lcMethodKML("Y", id = "Id", time = "Time")
model <- latrendCV(method, latrendData, folds = 5)
model <- latrendCV(method, subset(latrendData, Time < .5), folds = 5, seed = 1)
```

latrendData

Synthetic longitudinal dataset comprising three classes

Description
Synthetic longitudinal dataset comprising three classes

Usage
latrendData

Format
A data.frame describing 200 trajectories originating from one of three classes, each with a different cluster trajectory. Trajectories randomly deviate in intercept and slope from the reference cluster.

Id trajectory identifier, integer.
Time measurement time, numeric between 0 and 2.
Y observed variable, numeric.
Class the reference class, factor.
Source
This dataset was generated using `generateLongData`.

See Also
`generateLongData`

```r
latrendRep
Cluster longitudinal data repeatedly
```

Description
Performs a repeated fit of the specified latrend model on the given data.

Usage
```r
latrendRep(
  method,
  data,
  .rep = 10,
  ..., 
  .errorHandling = "stop", 
  .seed = NULL, 
  .parallel = FALSE, 
  envir = NULL, 
  verbose = getOption("latrend.verbose")
)
```

Arguments
- **method**: The lcMethod object specifying the longitudinal cluster method to apply.
- **data**: The data.frame or matrix to which to apply the method.
- **.rep**: The number of repeated fits.
- **...**: Any other arguments to update the lcMethod definition with.
- **.errorHandling**: Whether to "stop" on an error, or to "remove' evaluations that raised an error.
- **.seed**: Set the seed for generating the respective seed for each of the repeated fits.
- **.parallel**: Whether to use parallel evaluation. See `latrend-parallel`.
- **envir**: The environment in which to evaluate the method arguments. Note that this only applies to data when data is a call.
- **verbose**: The level of verbosity. Either an object of class Verbose (see R.utils::Verbose for details), a logical indicating whether to show basic computation information, a numeric indicating the verbosity level (see Verbose), or one of c('info', 'fine', 'finest').
Details

This method is faster than repeatedly calling `latrend` as it only prepares the data via `prepareData()` once.

Value

A `lcModels` object containing the resulting models.

See Also

Other longitudinal cluster fit functions: `latrendBatch()`, `latrendBoot()`, `latrendCV()`, `latrend()`

Examples

```r
data(latrendData)
method <- lcMethodKML("Y", id = "Id", time = "Time")
models <- latrendRep(method, data = latrendData, .rep = 5) # 5 repeated runs

models <- latrendRep(method, data = latrendData, .seed = 1, .rep = 3)
```

Description

approx models have defined cluster trajectories at fixed moments in time, which should be interpolated. For a correct implementation, `lcApproxModel` requires the extending class to implement `clusterTrajectories(at=NULL)` to return the fixed cluster trajectories.

Usage

```r
## S3 method for class 'lcApproxModel'
fitted(object, ..., clusters = trajectoryAssignments(object))

## S4 method for signature 'lcApproxModel'
predictForCluster(
    object, 
    newdata, 
    cluster, 
    what = "mu", 
    approxFun = approx, 
    ...
)
```
Arguments

- **object**: The `lcModel` object.
- **...**: Additional arguments.
- **clusters**: Optional cluster assignments per id. If unspecified, a matrix is returned containing the cluster-specific predictions per column.
- **newdata**: Optional `data.frame` for which to compute the model predictions. If omitted, the model training data is used. Cluster trajectory predictions are made when ids are not specified.
- **cluster**: The cluster name (as character) to predict for.
- **what**: The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying what = 'mb'.
- **approxFun**: Function to interpolate between measurement moments, `approx()` by default.

`lcMethod`
Create a lcMethod object of the specified type and arguments

Description

Provides a mechanism for creating `lcMethod` objects for an arbitrary class. Note that it is advisable to use the class-specific constructors instead.

Usage

```r
lcMethod(.class, ..., .defaults = list(), .excludeArgs = c())
```

Arguments

- **.class**: The type of `lcMethod-class` class
- **...**: Any arguments to assign to the method object.
- **.defaults**: See defaults of `lcMethod.call`.
- **.excludeArgs**: See excludeArgs of `lcMethod.call`.

See Also

`lcMethod.call`
Description

Base class used to define a longitudinal cluster method. It is implemented as a wrapper around a call.

Model estimation is handled through a series of calls implement by the lcMethod object. The calls are made by latrend, in the following order:

- compose
- validate
- prepareData
- preFit
- fit
- postFit

Extracts the assigned label.
Extracts the name of the given object.

Usage

```r
## S4 method for signature 'lcMethod'
compose(method, envir = NULL)

## S4 method for signature 'lcMethod'
fit(method, data, envir, verbose)

## S4 method for signature 'lcMethod'
getLabel(object, ...)

## S4 method for signature 'lcMethod'
getName(object)

## S4 method for signature 'lcMethod'
getShortName(object, ...)

## S4 method for signature 'lcMethod'
length(x)

## S4 method for signature 'lcMethod'
names(x)

## S4 method for signature 'lcMethod'
preFit(method, data, envir, verbose)
```
S4 method for signature 'lcMethod'
prepareData(method, data, verbose)

S4 method for signature 'lcMethod'
postFit(method, data, model, envir, verbose)

S4 method for signature 'lcMethod'
validate(method, data, envir = NULL, ...)

Arguments

- `method` The `lcMethod` object.
- `envir` The environment in which the `lcMethod` should be evaluated.
- `data` The data, as a `data.frame`, on which the model will be trained.
- `verbose` A `R.utils::Verbose` object indicating the level of verbosity.
- `object` The object to extract the label from.
- `...` Additional arguments.
- `x` The `lcMethod` object.
- `model` The `lcModel` object returned by `fit()`.

Details

Because the `lcMethod` arguments may be unevaluated, evaluation functions such as `[[` accept an `envir` argument. A default environment can be assigned or obtained from a `lcMethod` object using the `environment()` function.

Value

- The updated `lcMethod` object.
- An `lcModel` object.
- The extracted label, as character.
- A character vector of argument names.
- An environment that will be passed to `fit()`.
- A `data.frame` with the post-processed data.
- The updated `lcModel` object.
- Either `TRUE` if all validation checks passed, or a character containing a description of the failed validation checks.

Slots

- `arguments` A list representing the arguments of the `lcMethod` object. Arguments are not evaluated upon creation of the method object. Instead, arguments are stored similar to a `call` object. Do not modify or access.
- `sourceCalls` A list of calls for tracking the original call after substitution. Used for printing objects which require too many characters (e.g., function definitions, matrices).
\texttt{lcMethod.call}

\section*{See Also}

\texttt{environment}

Other \texttt{lcMethod} functions: \texttt{[[], lcMethod_method, as_data_frame.lcMethods(), as_data_frame.lcMethod(), as.lcMethods(), as.list.lcMethod(), evaluate.lcMethod(), formula.lcMethod(), update.lcMethod()}

\section*{Examples}

\begin{verbatim}
getName(lcMethodKML("Y")) # "longitudinal k-means"
getShortName(lcMethodKML("Y")) # "KML"
m = lcMethodKML("Y")
names(m)
\end{verbatim}

\section*{Description}

Creates a \texttt{lcMethod} class of the specified type \texttt{Class} for the given arguments given in a call, along with any default arguments from reference functions. This function is intended to be used by classes extending \texttt{lcMethod} to provide an easy way to construct the appropriate call object.

\section*{Usage}

\begin{verbatim}
lcMethod.call(Class, call, defaults = list(), excludeArgs = c())
\end{verbatim}

\section*{Arguments}

\begin{verbatim}
Class | The type of \texttt{lcMethod} class
call | The arguments to create the \texttt{lcMethod} from.
defaults | List of function to obtain defaults from for arguments not defined in call.
excludeArgs | The names of the arguments to exclude from the defaults, provided as a character vector.
\end{verbatim}

\section*{Value}

An object of class \texttt{Class} that extends \texttt{lcMethod}.

\section*{See Also}

\texttt{lcMethod}
lcMethodAkmedoids

Specify AKMedoids method

Usage

```r
lcMethodAkmedoids(
    response,
    time = getOption("latrend.time"),
    id = getOption("latrend.id"),
    nClusters = 3,
    clusterCenter = median,
    crit = "Calinski_Harabasz",
    ...
)
```

Arguments

- `response`: The name of the response variable.
- `time`: The name of the time variable.
- `id`: The name of the trajectory identification variable.
- `nClusters`: The number of clusters to estimate.
- `clusterCenter`: A function for computing the cluster center representation.
- `crit`: Criterion to apply for internal model selection. Not applicable.
- `...`: Arguments passed to `akmedoids::akclustr`. The following external arguments are ignored: traj, id_field, k

References

lcMethodCrimCV

See Also

Examples

library(akmedoids)
data(latrendData)
method <- lcMethodAkmedoids(response = "Y", time = "Time", id = "Id", nClusters = 3)
model <- latrend(method, data = latrendData)

lcMethodCrimCV

Specify a zero-inflated repeated-measures GBTM method

Description

Specify a zero-inflated repeated-measures GBTM method

Usage

lcMethodCrimCV(
 response,
 time = getOption("latrend.time"),
 id = getOption("latrend.id"),
 nClusters = 2,
 ...
)

Arguments

response The name of the response variable.
time The name of the time variable.
id The name of the trajectory identifier variable.
nClusters The number of clusters to estimate.
... Arguments passed to crimCV::crimCV. The following external arguments are ignored: Dat, ng.

References

lcMethodCustom

See Also

Examples

```r
library(crimCV)
data(latrendData)
method <- lcMethodCrimCV("Y", id = "Id", time = "Time", nClusters = 3, dpolyp = 1, init = 2)
model <- latrend(method, data = subset(latrendData, Time > .5))
plot(model)

data(TO1adj)
method <- lcMethodCrimCV(response = "Offenses", time = "Offense", id = "Subject",
                         nClusters = 2, dpolyp = 1, init = 2)
model <- latrend(method, data = TO1adj[1:100, ])
```

lcMethodCustom

Specify a custom method based on a model function

Description

Specify a custom method based on a model function

Usage

```r
lcMethodCustom(
  response,
  fun,
  center = meanNA,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  name = "custom"
)
```

Arguments

- **response**: The name of the response variable.
- **fun**: The cluster function with signature (method, data).
- **center**: Optional function for computing the longitudinal cluster centers, with signature (x).
- **time**: The name of the time variable.
- **id**: The name of the trajectory identification variable.
- **name**: The name of the method.
See Also

Examples

data(latrendData)
Stratification based on the mean response level
clusfun <- function(data, response, id, time, ...) {
 clusters <- data.table::as.data.table(data)[, mean(Y) > 0, by = Id]$V1
 lcModelCustom(data = data,
 trajectoryAssignments = factor(clusters, levels = c(FALSE, TRUE), labels = c("Low", "High")),
 response = response,
 time = time,
 id = id)
}
method <- lcMethodCustom(response = "Y", fun = clusfun, id = "Id", time = "Time")
model <- latrend(method, data = latrendData)

lcMethodDtwclust Specify time series clustering via dtwclust

Description

Specify time series clustering via dtwclust

Usage

lcMethodDtwclust(
 response,
 time = getOption("latrend.time"),
 id = getOption("latrend.id"),
 nClusters = 2,
 ...
)

Arguments

response The name of the response variable.
time The name of the time variable.
id The name of the trajectory identifier variable.
nClusters Number of clusters.
... Arguments passed to dtwclust::tsclust. The following arguments are ignored: series, k, trace.
lcMethodFeature

Features

Description

Feature-based clustering.

Usage

```r
lcMethodFeature(
  response,
  representationStep,
  clusterStep,
  standardize = scale,
  center = meanNA,
  time =getOption("latrend.time"),
  id = getOption("latrend.id"),
  ...)
```

Arguments

- `response`: The name of the response variable.
- `representationStep`: A function with signature function(method, data) that computes the representation per strata, returned as a matrix. Alternatively, `representationStep` is a pre-computed representation matrix.
- `clusterStep`: A function with signature function(repdata) that outputs a lcModel.

Examples

```r
library(dtwclust)
data(latrendData)
method <- lcMethodDtwclust("Y", id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)
```
lcMethodFlexmix

standardize A function to standardize the output matrix of the representation step. By default, the output is shifted and rescaled to ensure zero mean and unit variance.

center Optional function for computing the longitudinal cluster centers, with signature \(\mu \).

time The name of the time variable.

id The name of the trajectory identification variable.

... Additional arguments.

See Also

Description

Wrapper to the flexmix() method from the flexmix package.

Usage

lcMethodFlexmix(
 formula,
 formula.mb = ~1,
 time =getOption("latrend.time"),
 id =getOption("latrend.id"),
 nClusters = 2,
 ...
)

Arguments

formula A formula specifying the model.

formula.mb A formula specifying the class membership model. By default, an intercept-only model is used.

time The name of the time variable.

id The name of the trajectory identifier variable.

nClusters The number of clusters to estimate.

... Arguments passed to flexmix::flexmix. The following arguments are ignored: data, concomitant, k.
References

See Also

Other lcMethod package interfaces: lcMethodFlexmixGBTM

Examples

```r
library(flexmix)
data(latrendData)
method <- lcMethodFlexmix(Y ~ Time, id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)
```

Description

Fits a GBTM based on the *flexmix::FLXMRglm* driver.

Usage

```r
lcMethodFlexmixGBTM(
  formula,
  formula.mb = ~1,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  ...
)
```

Arguments

- `formula`: A formula specifying the model.
- `formula.mb`: A formula specifying the class membership model. By default, an intercept-only model is used.
- `time`: The name of the time variable.
- `id`: The name of the trajectory identifier variable.
- `nClusters`: The number of clusters to estimate.
- `...`: Arguments passed to *flexmix::flexmix* or *flexmix::FLXMRglm*. The following arguments are ignored: data, k, trace.
Specify a FunFEM method

Usage

```r
lcMethodFunFEM(
  response,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  basis = function(time) fda::create.bspline.basis(time, nbasis = 10, norder = 4),
  ...
)
```

Arguments

- `response` The name of the response variable.
- `time` The name of the time variable.
- `id` The name of the trajectory identifier variable.
- `nClusters` The number of clusters to estimate.
- `basis` The basis function. By default, a 3rd-order B-spline with 10 breaks is used.
- `...` Arguments passed to `funFEM::funFEM`. The following external arguments are ignored: `fd, K, disp, graph`.

References

lcMethodGCKM

References

See Also

Examples

```r
library(funFEM)
library(fda)
data(latrendData)
method <- lcMethodFunFEM("Y", id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)

method <- lcMethodFunFEM("Y",
  basis = function(time) {
    create.bspline.basis(time,
      nbasis = 10, norder = 4)
  })
```

lcMethodGCKM

Two-step clustering through linear mixed modeling and k-means

Description
Two-step clustering through linear mixed modeling and k-means.

Usage

```r
lcMethodGCKM(
  formula,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  center = meanNA,
  ...
)
```

Arguments

- `formula`
 Formula, including a random effects component for the trajectory. See `lme4::lmer` formula syntax.

- `time`
 The name of the time variable.
lcMethodKML

id

The name of the trajectory identifier variable.

nClusters

The number of clusters.

center

Optional function for computing the longitudinal cluster centers, with signature \(\langle x \rangle \).

...

Arguments passed to \texttt{lme4::lmer}. The following external arguments are ignored: data, centers, trace.

See Also

Other \texttt{lcMethod} implementations: \texttt{lcMethod-class, lcMethodAkmedoids, lcMethodCrimCV, lcMethodCustom, lcMethodDtwclust, lcMethodFeature, lcMethodFunFEM, lcMethodKML, lcMethodLMKM, lcMethodLcmdGBTM, lcMethodLcmdGMM, lcMethodLongclust, lcMethodMclustLPA, lcMethodMixAK_GLM, lcMethodMixtoolsGMM, lcMethodMixtoolsNPRM, lcMethodRandom, lcMethodStratify}

Examples

```r
library(lme4)
data(latrendData)
method <- lcMethodGCKM(Y ~ (Time | Id), id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)
```

Description

Specify a longitudinal k-means (KML) method

Usage

```r
lcMethodKML(
  response,
  time =getOption("latrend.time"),
  id =getOption("latrend.id"),
  nClusters = 2,
  ...
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>response</td>
<td>The name of the response variable.</td>
</tr>
<tr>
<td>time</td>
<td>The name of the time variable.</td>
</tr>
<tr>
<td>id</td>
<td>The name of the trajectory identifier variable.</td>
</tr>
<tr>
<td>nClusters</td>
<td>The number of clusters to estimate.</td>
</tr>
<tr>
<td>...</td>
<td>Arguments passed to \texttt{kml::parALGO} and \texttt{kml::kml}. The following external arguments are ignored: object, nbClusters, parAlgo, toPlot, saveFreq</td>
</tr>
</tbody>
</table>
References

See Also

Examples
library(kml)
data(latrendData)
method <- lcMethodKML("y", id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)

lcMethodLcmmGBTM

Specify GBTM method

Description
Group-based trajectory modeling through fixed-effects modeling.

Usage
lcMethodLcmmGBTM(
fixed,
mixture = ~1,
classmb = ~1,
time = getOption("latrend.time"),
id = getOption("latrend.id"),
nClusters = 2,
...
)

Arguments

fixed The fixed effects formula.
mixture The mixture-specific effects formula. See lcmm::hlme for details.
classmb The cluster membership formula for the multinomial logistic model. See lcmm::hlme for details.
time The name of the time variable.
id The name of the trajectory identifier variable. This replaces the subject argument of \texttt{lcmm::hlme}.

nClusters The number of clusters to fit. This replaces the \texttt{ng} argument of \texttt{lcmm::hlme}.

... Arguments passed to \texttt{lcmm::hlme}. The following arguments are ignored: data, fixed, random, mixture, subject, classmb, returndata, ng, verbose, subset.

References

See Also

Examples

data(latrendData)
method <- lcMethodLcmmGBTM(fixed = Y ~ Time, mixture = ~ 1, id = "Id", time = "Time", nClusters = 3)
gbtm <- latrend(method, data = latrendData)
summary(gbtm)

method <- lcMethodLcmmGBTM(fixed = Y ~ Time, mixture = ~ Time, id = "Id", time = "Time", nClusters = 3)

\begin{verbatim}
lcMethodLcmmGMM Specify GMM method using \texttt{lcmm}
\end{verbatim}

Description

Growth mixture modeling through latent-class linear mixed modeling.

Usage

\begin{verbatim}
lcMethodLcmmGMM(
 fixed,
 mixture = ~1,
 random = ~1,
 classmb = ~1,
\end{verbatim}
time = getOption("latrend.time"),
id = getOption("latrend.id"),
nClusters = 2,
...
)

Arguments

fixed The fixed effects formula.
mixture The mixture-specific effects formula. See lcmm::hlme for details.
random The random effects formula. See lcmm::hlme for details.
classmb The cluster membership formula for the multinomial logistic model. See lcmm::hlme for details.
time The name of the time variable.
id The name of the trajectory identifier variable. This replaces the subject argument of lcmm::hlme.
nClusters The number of clusters to fit. This replaces the ng argument of lcmm::hlme.
... Arguments passed to lcmm::hlme. The following arguments are ignored: data, fixed, random, mixture, subject, classmb, returndata, ng, verbose, subset.

References

See Also

Examples
data(latrendData)
method <- lcMethodLcmmGMM(fixed = Y ~ Time,
mixture = ~ Time, random = ~ 1,
id = "Id", time = "time", nClusters = 3)
gmm <- latrend(method, data = latrendData)
summary(gmm)

method <- lcMethodLcmmGMM(fixed = Y ~ Time,
mixture = ~ Time, random = ~ Time,
id = "Id", time = "Time", nClusters = 3)
lcMethodLMKM

Two-step clustering through linear regression modeling and k-means

Description

Two-step clustering through linear regression modeling and k-means

Usage

lcMethodLMKM(
 formula,
 time = getOption("latrend.time"),
 id = getOption("latrend.id"),
 nClusters = 2,
 standardize = scale,

)

Arguments

formula A formula specifying the linear trajectory model.
time The name of the time variable.
id The name of the trajectory identification variable.
nClusters The number of clusters to estimate.
standardize A function to standardize the output matrix of the representation step. By default, the output is shifted and rescaled to ensure zero mean and unit variance.

... Arguments passed to stats::lm. The following external arguments are ignored: x, data, control, centers, trace.

See Also

Examples

data(latrendData)
method <- lcMethodLMKM(Y ~ Time, id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)
lcMethodLongclust Specify Longclust method

Description

Specify Longclust method

Usage

```
lcMethodLongclust(
  response,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  ...
)
```

Arguments

- `response` The name of the response variable.
- `time` The name of the time variable.
- `id` The name of the trajectory identifier variable.
- `nClusters` The number of clusters to estimate.
- `...` Arguments passed to `longclust::longclustEM`. The following external arguments are ignored: data, x, Gmin, Gmax, userseed.

References

See Also

Examples

```
library(longclust)
data(latrendData)
method <- lcMethodLongclust("Y", id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)
```
Description

Latent profile analysis or finite Gaussian mixture modeling.

Usage

```r
lcMethodMclustLLPA(
  response,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  ...
)
```

Arguments

- `response`: The name of the response variable.
- `time`: The name of the time variable.
- `id`: The name of the trajectory identifier variable.
- `nClusters`: The number of clusters to estimate.
- `...`: Arguments passed to `mclust::Mclust`. The following external arguments are ignored: data, G, verbose.

References

See Also

Examples

```r
library(mclust)
data(latrendData)
method <- lcMethodMclustLLPA("Y", id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)
```
lcMethodMixAK_GLMM

Specify a GLMM with a normal mixture in the random effects

Description

Specify a GLMM with a normal mixture in the random effects

Usage

lcMethodMixAK_GLMM(
 fixed,
 random,
 time = getOption("latrend.time"),
 id = getOption("latrend.id"),
 nClusters = 2,
 ...
)

Arguments

fixed A formula specifying the fixed effects of the model, including the response. Creates the y and x arguments for the call to mixAK::GLMM_MCMC.
random A formula specifying the random effects of the model, including the random intercept. Creates the z and random.intercept arguments for the call to mixAK::GLMM_MCMC.
time The name of the time variable.
id The name of the trajectory identifier variable. This is used to generate the id vector argument for the call to mixAK::GLMM_MCMC.
nClusters The number of clusters.
... Arguments passed to mixAK::GLMM_MCMC. The following external arguments are ignored: y, x, z, random.intercept, silent.

References

See Also

Examples

data(latrendData)
this example only runs when the mixAK package is installed
try{
 method <- lcMethodMixAK_GLMM(fixed = Y ~ 1, random = ~ Time,
 id = "Id", time = "Time", nClusters = 3)
 model <- latrend(method, latrendData)
 summary(model)
})

lcMethodMixtoolsGMM Specify mixed mixture regression model using mixtools

Description

Specify mixed mixture regression model using mixtools

Usage

lcMethodMixtoolsGMM(
 formula,
 time = getOption("latrend.time"),
 id = getOption("latrend.id"),
 nClusters = 2,
 ...
)

Arguments

- **formula**: Formula, including a random effects component for the trajectory. See **lme4::lmer** formula syntax.
- **time**: The name of the time variable.
- **id**: The name of the trajectory identifier variable.
- **nClusters**: The number of clusters.
- **...**: Arguments passed to **mixtools::regmixEM.mixed**. The following arguments are ignored: data, y, x, w, k, add intercept, fixed, verb.

References

lcMethodMixtoolsNPRM

See Also

Examples

```r
library(mixtools)
data(latrendData)
method <- lcMethodMixtoolsNPRM(
  response = Y ~ Time + (1 | Id),
  id = "Id", time = "Time",
  nClusters = 3,
  arb.R = FALSE)
```

lcMethodMixtoolsNPRM

Specify non-parametric estimation for independent repeated measures

Description

Specify non-parametric estimation for independent repeated measures

Usage

```r
lcMethodMixtoolsNPRM(response,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  blockid = NULL,
  bw = NULL,
  h = NULL,
  ...
)
```

Arguments

- `response`
The name of the response variable.
- `time`
The name of the time variable.
- `id`
The name of the trajectory identifier variable.
- `nClusters`
The number of clusters to estimate.
- `blockid`
See mixtools::npEM.
- `bw`
See mixtools::npEM.
Specify a MixTVEM

lcMethodMixTVEM(formula, formula.mb = ~1, time = getOption("latrend.time"), id = getOption("latrend.id"), nClusters = 2, ...
)

Arguments

formula A formula excluding the time component. Time-invariant covariates are detected automatically as these are a special case in MixTVEM.

formula.mb A formula for cluster-membership prediction. Covariates must be time-invariant. Furthermore, the formula must contain an intercept.
lcMethodRandom

Specify a random-partitioning method

Description

Creates a model with random cluster assignments according to the random cluster proportions drawn from a Dirichlet distribution.

Usage

```r
lcMethodRandom(
  response,
  alpha = 10,
  center = meanNA,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  name = "random"
)
```
Arguments

response The name of the response variable.
alpha The Dirichlet parameters. Either scalar or of length nClusters. The higher alpha, the more uniform the clusters will be.
center Optional function for computing the longitudinal cluster centers, with signature (x).
time The name of the time variable.
id The name of the trajectory identification variable.
nClusters The number of clusters.
name The name of the method.

References

See Also

Examples

data(latrendData)
method <- lcMethodRandom(response = "Y", id = "Id", time = "Time")
model <- latrend(method, latrendData)

uniform clusters
method <- lcMethodRandom(alpha = 1e3, nClusters = 3, response = "Y", id = "Id", time = "Time")

single large cluster
method <- lcMethodRandom(alpha = c(100, 1, 1, 1), nClusters = 4, response = "Y", id = "Id", time = "Time")

lcMethods

Generate a list of lcMethod objects

Description

Generates a list of lcMethod objects for all combinations of the provided argument values.

Usage

lcMethods(method, ..., envir = NULL)
lcMethodStratify

Specify a stratification method

Description

Specify a stratification method

Usage

lcMethodStratify(
 response,
 stratify,
 center = meanNA,
 nClusters = NaN,
 ...,
 envir = NULL
)

Arguments

- **method**: The lcMethod to use as the template, which will be updated for each of the other arguments.
- **...**: Any other arguments to update the lcMethod definition with. Values must be scalar, vector, list, or encapsulated in a .() call. Arguments wrapped in .() are passed as-is to the model call, ensuring a readable method. Arguments comprising a single symbol (e.g., a variable name) are interpreted as a constant. To force evaluation, specify arg=(var) or arg=force(var). Arguments of type vector or list are split across a series of method fit calls. Arguments of type scalar are constant across the method fits. If a list is intended to be passed as a constant argument, then specifying arg=.(listObject) results in it being treated as such.
- **envir**: The environment in which to evaluate the method arguments.

Value

A list of lcMethod objects.

Examples

data(latrendData)
baseMethod <- lcMethodKML("Y", id = "Id", time = "Time")
methods <- lcMethods(baseMethod, nClusters = 1:6)
nclus <- 1:6
methods <- lcMethods(baseMethod, nClusters = nclus)

methods <- lcMethods(baseMethod, nClusters = 3, center = .(mean, mean, median))
length(methods) # 3

methods <- lcMethods(baseMethod, nClusters = 1:3, center = .(mean, mean, median))
length(methods) # 9
clusterNames = NULL,
 time = getOption("latrend.time"),
 id = getOption("latrend.id"),
 name = "stratify"
)

Arguments

response The name of the response variable.
stratify An expression returning a number or factor value per trajectory, representing
 the cluster assignment. Alternatively, a function can be provided that takes
 separate trajectory data.frame as input.
center The function for computing the longitudinal cluster centers, used for representing
 the cluster trajectories.
nClusters The number of clusters. This is optional, as this can be derived from the largest
 assignment number by default, or the number of factor levels.
clusterNames The names of the clusters. If a factor assignment is returned, the levels are
 used as the cluster names.
time The name of the time variable.
id The name of the trajectory identification variable.
name The name of the method.

See Also

Other lcMethod implementations: lcMethod-class, lcMethodAkmedoids, lcMethodCrimCV, lcMethodCustom,
lcMethodDtwclust, lcMethodFeature, lcMethodFunFEM, lcMethodGCKM, lcMethodKML, lcMethodLMKM,
lcMethodLcmmGBTM, lcMethodLcmmGMM, lcMethodLongclust, lcMethodMclustLLPA, lcMethodMixAK_GLMM,
lcMethodMixtoolsGMM, lcMethodMixtoolsNPRM, lcMethodRandom

Examples

data(latrendData)
 # Stratification based on the mean response level
 method <- lcMethodStratify("Y", mean(Y) > 0,
 clusterNames = c("Low", "High"), id = "Id", time = "Time")
 model <- latrend(method, latrendData)
 summary(model)

 # Stratification function
 stratfun <- function(trajdata) {
 trajmean <- mean(trajdata$Y)
 factor(trajmean > 1.7,
 levels = c(FALSE, TRUE),
 labels = c("Low", "High"))
 }
 method <- lcMethodStratify("Y", stratfun, id = "Id", time = "Time")

 # Multiple clusters
 stratfun3 <- function(trajdata) {
trajmean <- mean(trajdata$Y)
cut(trajmean,
 c(-Inf, .5, 2, Inf),
 labels = c("Low", "Medium", "High"))
method <- lcMethodStratify("Y", stratfun3, id = "Id", time = "Time")

lcModel-class

Abstract class for defining estimated longitudinal cluster models.

Extracts the name of the lcModel object. The name is comprised of the underlying lcMethod name, and the assigned label (if any).

Usage

```r
## S4 method for signature 'lcModel'
getLabel(object, ...)
```

```r
## S4 method for signature 'lcModel'
getName(object)
```

```r
## S4 method for signature 'lcModel'
getShortName(object)
```

Arguments

- `object`
 The lcModel object.

- `...`
 Any additional arguments.

Details

An extending class must implement the following methods to ensure basic functionality:

- `predict.lcModelExt`: Used to obtain the fitted cluster trajectories and trajectories.
- `postprob(lcModelExt)`: The posterior probability matrix is used to determine the cluster assignments of the trajectories.

For predicting the posterior probability for unseen data, the `predictPostprob()` should be implemented.
Slots

method The lcMethod-class object specifying the arguments under which the model was fitted.
call The call that was used to create this lcModel object. Typically, this is the call to latrend() or any of the other fitting functions.
model An arbitrary underlying model representation.
data A data.frame object, or an expression to resolves to the data.frame object.
date The date-time when the model estimation was initiated.
id The name of the trajectory identifier column.
time The name of the time variable.
response The name of the response variable.
label The label assigned to this model.
ids The possible trajectory identifier values the model was fitted on.
clusterNames The names of the clusters.
estimationTime The time, in seconds, that it took to fit the model.
tag An arbitrary user-specified data structure. This slot may be accessed and updated directly.

See Also

Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(), df.residual.lcModel(), fitted.lcModel(), logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), predictPostprob(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()

lcModelCustom Specify a model based on a pre-computed result.

Description

Specify a model based on a pre-computed result.

Usage

lcModelCustom(
 data,
 response,
 trajectoryAssignments = NULL,
 clusterTrajectories = mean,
 trajectories = data,
 time = getOption("latrend.time"),
 id = getOption("latrend.id"),
 clusterNames = NULL,
 converged = TRUE,
 postprob = NULL,
model = NULL,
name = "custom",
predict = NULL,
predictPostprob = NULL,
method = new("lcMethod")
)

Arguments

data
 The data on which the cluster result is based, a data.frame.
response
 The response variable.
trajectoryAssignments
 A vector indicating cluster membership per strata. Either a numeric vector with range 1:numClus, or a factor.
clusterTrajectories
 The cluster trajectories as a data.frame, or a function computing the center trajectory based on the strata of the respective cluster.
trajectories
 The fitted trajectories.
time
 The time variable.
id
 The id variable.
clusterNames
 The names of the clusters. Optional.
converged
 Convergence state of the model. TRUE by default.
postprob
 Optional posterior probability matrix.
model
 An optional object representing the internal model.
name
 The name of the model.
predict
 Predict function for the response.
predictPostprob
 Predict function for the posterior probability.
method
 The method used to create this lcModelCustom instance. Optional.

lcModelPartition

Create a lcModel with pre-defined partitioning

Description

Represents an arbitrary partitioning of a set of trajectories. As such, this model has no predictive capabilities. The cluster trajectories are represented by the specified center function (mean by default).
Usage

lcModelPartition(
 data,
 response,
 trajectoryAssignments,
 nClusters = NA,
 center = meanNA,
 clusterNames = NULL,
 time =getOption("latrend.time"),
 id =getOption("latrend.id"),
 name = "part",
 envir = parent.frame()
)

Arguments

data A data.frame representing the trajectory data.
response The name of the response variable.
trajectoryAssignments A vector of cluster membership per trajectory, either factor, or integer (1 to nClusters).
nClusters The number of clusters. Optional for factor assignments.
center The function for computing the longitudinal cluster centers, used for representing the cluster trajectories.
clusterNames The names of the clusters, or a function with input n outputting a character vector of names.
time The name of the time variable.
id The name of the trajectory identification variable.
name The name of the method.
envir The environment associated with the model. Used for evaluating the assigned data object by model.data.lcModel.

lcModels Construct a flat (named) list of lcModel objects

Description

Takes the inputs and generates a named lcModels object containing a list of the input models. Duplicates are preserved.

Usage

lcModels(...)
lcModelWeightedPartition

Arguments

... lcModel, lcModels, or a recursive list of lcModel objects. Arguments may be named.

Value

A lcModels object containing all specified lcModel objects.

See Also

Other lcModel list functions: as.lcModels(), print.lcModels(), subset.lcModels()

Examples

data(latrendData)
kml <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
gmm <- latrend(lcMethodLcmmGMM(fixed = Y ~ Time, mixture = ~ Time, id = "Id", time = "Time"), latrendData)
lcModels(kml, gmm)
lcModels(defaults = c(kml, gmm))
Arguments

- **data**: The data on which the cluster result is based, a data.frame.
- **response**: The name of the response variable.
- **weights**: A `numIds` x `numClusters` matrix of partition probabilities.
- **center**: The function for computing the longitudinal cluster centers, used for representing the cluster trajectories.
- **clusterNames**: The names of the clusters, or a function with input `n` outputting a character vector of names.
- **time**: The name of the time variable.
- **id**: The name of the trajectory identification variable.
- **name**: The name of the method.

logLik.lcModel

Extract the log-likelihood of a lcModel

Description

Extract the log-likelihood of a lcModel

Usage

```r
## S3 method for class 'lcModel'
logLik(object, ...)
```

Arguments

- **object**: The lcModel object.
- **...**: Additional arguments.

See Also

Other model-specific methods: `clusterTrajectories()`, `coef.lcModel()`, `converged()`, `deviance.lcModel()`, `df.residual.lcModel()`, `fitted.lcModel()`, `lcModel-class`, `model.frame.lcModel()`, `nobs.lcModel()`, `postprob()`, `predict.lcModel()`, `predictAssignments()`, `predictForCluster()`, `predictPostprob()`, `residuals.lcModel()`, `sigma.lcModel()`, `time.lcModel()`, `trajectories()`
max.lcModels
Select the lcModel with the highest metric value

Description
Select the lcModel with the highest metric value

Usage
S3 method for class 'lcModels'
max(x, name, ...)

Arguments
- x: The lcModels object.
- name: The name of the internal metric.
- ...: Additional arguments.

Value
The lcModel with the highest metric value

See Also
- min.lcModels
- externalMetric

Examples
```r
data(latrendData)
baseMethod <- lcMethodKML(response = "y", id = "Id", time = "Time")
kml1 <- latrend(baseMethod, nClusters = 1, latrendData)
kml2 <- latrend(baseMethod, nClusters = 2, latrendData)
kml3 <- latrend(baseMethod, nClusters = 3, latrendData)
models <- lcModels(kml1, kml2, kml3)
max(models, 'WRSS')
```

meltRepeatedMeasures
Convert a repeated measures data matrix to a data.frame

Description
Convert a repeated measures data matrix to a data.frame
Usage

meltRepeatedMeasures(
 data,
 response,
 id = getOption("latrend.id"),
 time = getOption("latrend.time"),
 ids = rownames(data),
 times = colnames(data),
 as.data.table = FALSE
)

Arguments

data The matrix containing a trajectory on each row.
response The response column name.
id The id column name.
time The time column name.
ids A vector specifying the id names. Should match the number of rows of data.
times A numeric vector specifying the times of the measurements. Should match the number of columns of data.
as.data.table Whether to return the result as a data.table, or a data.frame otherwise.

Value

A data.table or data.frame containing the repeated measures.

metric

Compute internal model metric(s)

Description

Compute internal model metric(s)

Usage

```r
## S4 method for signature 'lcModel'
metric(object, name = c("AIC", "BIC", "WRSS", "APPA"), ...)

## S4 method for signature 'list'
metric(object, name, drop = TRUE)

## S4 method for signature 'lcModels'
metric(object, name, drop = TRUE)
```
Arguments

- **object**: The `lcModel`, `lcModels`, or list of `lcModel` objects to compute the metrics for.
- **name**: The name(s) of the metric(s) to compute.
- **drop**: Whether to return a numeric vector instead of a `data.frame` in case of a single metric.

Value

For `metric(lcModel)`: A named numeric vector with the computed model metrics.
For `metric(list)`: A `data.frame` with a metric per column.
For `metric(lcModels)`: A `data.frame` with a metric per column.

See Also

- `externalMetric`
- `min.lcModels`
- `max.lcModels`

Other metric functions: `defineExternalMetric()`, `defineInternalMetric()`, `externalMetric`, `lcModel`, `lcModel-method`, `getExternalMetricDefinition()`, `getExternalMetricNames()`, `getInternalMetricDefinition()`, `getInternalMetricNames()`

Examples

```r
data(latrendData)
model <- latrend(lcMethodLcmmGMM(fixed = Y ~ Time, mixture = ~ Time, id = "Id", time = "Time"), latrendData)
bic <- metric(model, "BIC")
ic <- metric(model, c("AIC", "BIC"))
```

min.lcModels

Select the `lcModel` with the lowest metric value

Description

Select the `lcModel` with the lowest metric value

Usage

```r
## S3 method for class 'lcModels'
min(x, name, ...)
```

Arguments

- **x**: The `lcModels` object
- **name**: The name of the internal metric.
- **drop**: Whether to return a numeric vector instead of a `data.frame` in case of a single metric.
Value

The lcModel with the lowest metric value

See Also

max.lcModels externalMetric

Examples

data(latrendData)
baseMethod <- lcMethodKML(response = "Y", id = "Id", time = "Time")
kml1 <- latrend(baseMethod, nClusters = 1, latrendData)
kml2 <- latrend(baseMethod, nClusters = 2, latrendData)
kml3 <- latrend(baseMethod, nClusters = 3, latrendData)
models <- lcModels(kml1, kml2, kml3)
min(models, `WRSS`

model.data.lcModel

Extract the model data that was used for fitting

Description

Evaluates the data call in the environment that the model was trained in.

Usage

S3 method for class 'lcModel'
model.data(object, ...)

Arguments

object The lcModel object.
...

Additional arguments.

Value

The data.frame that was used for fitting the lcModel.
model.frame.lcModel

Extract model training data

Description

Extract model training data

Usage

```r
## S3 method for class 'lcModel'
model.frame(formula, ...)
```

Arguments

- `formula`
The lcModel object.
- `...`
Additional arguments.

See Also

Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(),

 df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), nobs.lcModel(),

 postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), predictPostprob(),

 residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()

nClusters

Number of clusters

Description

Number of clusters

Usage

```r
nClusters(object)
```

Arguments

- `object`
The lcModel object.
\textit{nIds} \hspace{3cm} \textit{Number of strata}

\textbf{Description}
Number of strata

\textbf{Usage}
\texttt{nIds(object)}

\textbf{Arguments}
- \texttt{object} \hspace{1cm} The \texttt{lcModel} object.

\textit{nobs.lcModel} \hspace{3cm} \textit{Extract the number of observations from a lcModel}

\textbf{Description}
Extract the number of observations from a \texttt{lcModel}

\textbf{Usage}
\texttt{## S3 method for class 'lcModel'
 nobs(object, ...)}

\textbf{Arguments}
- \texttt{object} \hspace{1cm} The \texttt{lcModel} object.
- \texttt{...} \hspace{1cm} Additional arguments.

\textbf{See Also}
Other model-specific methods: \texttt{clusterTrajectories()}, \texttt{coef.lcModel()}, \texttt{converged()}, \texttt{deviance.lcModel()}, \texttt{df.residual.lcModel()}, \texttt{fitted.lcModel()}, \texttt{lcModel-class}, \texttt{logLik.lcModel()}, \texttt{model.frame.lcModel()}, \texttt{postprob()}, \texttt{predict.lcModel()}, \texttt{predictAssignments()}, \texttt{predictForCluster()}, \texttt{predictPostprob()}, \texttt{residuals.lcModel()}, \texttt{sigma.lcModel()}, \texttt{time.lcModel()}, \texttt{trajectories()}
plotClusterTrajectories

Description

Plot the cluster trajectories of a lcModel.

Usage

```r
## S4 method for signature 'data.frame'
plotClusterTrajectories(
  object,
  response,
  cluster = "Cluster",
  time = getOption("latrend.time"),
  center = meanNA,
  trajectories = FALSE,
  facet = isTRUE(trajectories),
  id = getOption("latrend.id"),
)```

**Arguments**

- `object`: The lcModel object.
- `response`: Not used.
- `cluster`: The cluster to plot.
- `time`: Time points.
- `center`: Centering option.
- `trajectories`: Whether to plot trajectories.
- `facet`: Whether to facet by trajectories.
- `id`: Identification option.

**Value**

A ggplot object.
## S4 method for signature 'lcModel'

plotClusterTrajectories(
  object,
  what = "mu",
  at = time(object),
  clusterLabels = sprintf("%s (%s)", clusterNames(object),
    percent(clusterProportions(object)),
  trajectories = FALSE,
  facet = isTRUE(trajectories),
  trajAssignments = trajectoryAssignments(object),
  ...
)

### Arguments

- **object** The (cluster) trajectory data.
- **response** The name of the response variable.
- **cluster** The cluster assignment column
- **time** The name of the time variable.
- **center** A function for aggregating multiple points at the same point in time
- **trajectories** Whether to plot the original data in addition to the cluster (i.e., center) trajectories
- **facet** Whether to facet by cluster. This is done by default when trajectories is enabled.
- **id** Id column. Only needed when trajectories = TRUE.
- **...** Arguments passed to `clusterTrajectories`, or `ggplot2::geom_line` for plotting the cluster trajectory lines.
- **what** The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying what = 'mb'.
- **at** An optional vector, list or data frame of covariates at which to compute the cluster trajectory predictions. If a vector is specified, this is assumed to be the time covariate. Otherwise, a named list or data frame must be provided.
- **clusterLabels** Cluster display names. By default it's the cluster name with its proportion enclosed in parentheses.
- **trajAssignments** The cluster assignments for the fitted trajectories. Only used when trajectories = TRUE and facet = TRUE. See `trajectoryAssignments`.

### Details

Instead of passing the plotting arguments through `...`, consider modifying the `ggplot2` defaults. For example, changing the default line size: `update_geom_defaults("line", list(size = 1.5))`
plotMetric

Plot one or more internal metrics for all lcModels

Description
Plot one or more internal metrics for all lcModels

Usage
plotMetric(models, name, by = "nClusters", subset, group = character())

Arguments
- models: A lcModels or list of lcModel objects to compute and plot the metrics of.
- name: The name(s) of the metric(s) to compute.
- by: The argument name along which methods are plotted.
- subset: Logical expression based on the lcModel method arguments, indicating which lcModel objects to keep.
- group: The argument names to use for determining groups of different models. By default, all arguments are included. Specifying group = character() disables grouping. Specifying a single argument for grouping uses that specific column as the grouping column. In all other cases, groupings are represented by a number.

Value
A ggplot object.

Examples
```r
Load data
data(latrendData)

Define base method
baseMethod <- lcMethodKML(response = "Y", id = "Id", time = "Time")

Create lcModels
kml1 <- latrend(baseMethod, nClusters = 1, latrendData)
kml2 <- latrend(baseMethod, nClusters = 2, latrendData)
kml3 <- latrend(baseMethod, nClusters = 3, latrendData)
models <- lcModels(kml1, kml2, kml3)

Plot BIC by number of clusters
plotMetric(models, "BIC", by = "nClusters", group = ".name")
```
plotTrajectories

**Plot trajectories**

Plot fitted trajectories of a lcModel

### Usage

```r
S4 method for signature 'data.frame'
plotTrajectories(object, response, time = getOption("latrend.time"),
 id = getOption("latrend.id"),
 cluster = NULL,
 facet = TRUE,
 ...)

S4 method for signature 'lcModel'
plotTrajectories(object, ...)
```

### Arguments

- **object**: The model.
- **response**: Response variable character name or a call.
- **time**: The name of the time variable.
- **id**: The name of the trajectory identifier variable.
- **cluster**: Cluster variable name. If unspecified, trajectories are not grouped. Alternatively, cluster is a vector indicating cluster membership per id.
- **facet**: Whether to facet by cluster.
- **...**: Arguments passed on to `trajectories`

- **at**: The time points at which to compute the id-specific trajectories.
- **what**: The distributional parameter to compute the response for.
- **clusters**: The cluster assignments for the strata to base the trajectories on.

### Examples

```r
data(latrendData)
plotTrajectories(latrendData, response = "Y", id = "Id", time = "Time")

plotTrajectories(latrendData, response = quote(exp(Y)), id = "Id", time = "Time")
```
postprob

Posterior probability per fitted id

Description
Posterior probability per fitted id

Usage
## S4 method for signature 'lcModel'
postprob(object, ...)

Arguments
object The lcModel.

... Additional arguments.

See Also
Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(), df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), predict.lcModel(), predictAssignments(), predictForCluster(), predictPostprob(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()

Examples
data(latrendData)
model <- latrend(lcMethodLcmmGMM(fixed = Y ~ Time, mixture = ~ Time, id = "Id", time = "Time"), data = latrendData)
postprob(model)

postprobFromAssignments

Create a posterior probability matrix from a vector of cluster assignments.

Description
For each trajectory, the probability of the assigned cluster is 1.

Usage
postprobFromAssignments(assignments, k)

Arguments
assignments Integer vector indicating cluster assignment per trajectory

k The number of clusters.
**predict.lcModel**  

**lcModel predictions**

**Description**

Predicts the expected trajectory observations at the given time for each cluster.

**Usage**

```r
S3 method for class 'lcModel'
predict(object, newdata = NULL, what = "mu", ...)
```

**Arguments**

- `object`  
  The `lcModel` object.

- `newdata`  
  Optional `data.frame` for which to compute the model predictions. If omitted, the model training data is used. Cluster trajectory predictions are made when `ids` are not specified.

- `what`  
  The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying `what = 'mb'`.

- `...`  
  Additional arguments.

**Details**

Subclasses of `lcModel` should preferably implement `predictForCluster` instead of overriding `predict.lcModel` in order to benefit from standardized error checking and output handling.

**Value**

If `newdata` specifies the cluster membership; a `data.frame` of cluster-specific predictions. Otherwise, a list of `data.frame` of cluster-specific predictions is returned.

**See Also**

Other model-specific methods: `clusterTrajectories()`, `coef.lcModel()`, `converged()`, `deviance.lcModel()`, `df.residual.lcModel()`, `fitted.lcModel()`, `lcModel-class`, `logLik.lcModel()`, `model.frame.lcModel()`, `nobs.lcModel()`, `postprob()`, `predictAssignments()`, `predictForCluster()`, `predictPostprob()`, `residuals.lcModel()`, `sigma.lcModel()`, `time.lcModel()`, `trajectories()`

**Examples**

```r
data(latrendData)
model <- latrend(lcMethodLcmmGMM(
 fixed = Y ~ Time, mixture = ~ Time,
 id = "Id", time = "Time"), latrendData)
predFitted <- predict(model) # same result as fitted(model)
```
predictAssignments

Predict the cluster assignments for new trajectories

Description
Computes the posterior probability based on the provided (observed) data.

Usage
## S4 method for signature 'lcModel'
predictAssignments(object, newdata = NULL, strategy = which.max, ...)

Arguments
object         The lcModel object.
newdata        Optional data.frame for which to compute the model predictions. If omitted,
                the model training data is used. Cluster trajectory predictions are made when
                ids are not specified.
strategy        A function returning the cluster index based on the given vector of membership
                probabilities. By default, ids are assigned to the cluster with the highest
                probability.
...             Additional arguments.

Details
The default implementation uses predictPostprob to determine the cluster membership.

Value
A factor with length nrow(newdata) that indicates the posterior probability per trajectory per
observation.

See Also
predictPostprob
Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(),
df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(),
nobs.lcModel(), postprob(), predict.lcModel(), predictForCluster(), predictPostprob(),
residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()
predictForCluster

Description

Predicts the expected trajectory observations at the given time under the assumption that the trajectory belongs to the specified cluster.

Usage

```r
S4 method for signature 'lcModel'
predictForCluster(object, newdata = NULL, cluster, ..., what = "mu")
```

Arguments

- `object`: The `lcModel` object.
- `newdata`: Optional `data.frame` for which to compute the model predictions. If omitted, the model training data is used. Cluster trajectory predictions are made when `ids` are not specified.
- `cluster`: The cluster name (as character) to predict for.
- `...`: Additional arguments.
- `what`: The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying `what = "mb"`.

Value

A vector with the predictions per `newdata` observation, or a `data.frame` with the predictions and `newdata` alongside.

See Also

`predict.lcModel`

Other model-specific methods: `clusterTrajectories()`, `coef.lcModel()`, `converged()`, `deviance.lcModel()`, `df.residual.lcModel()`, `fitted.lcModel()`, `lcModel-class`, `logLik.lcModel()`, `model.frame.lcModel()`, `nobs.lcModel()`, `postprob()`, `predict.lcModel()`, `predictAssignments()`, `predictPostprob()`, `residuals.lcModel()`, `sigma.lcModel()`, `time.lcModel()`, `trajectories()`
predictPostprob

lcModel posterior probability prediction

Description

lcModel posterior probability prediction

Usage

## S4 method for signature 'lcModel'
predictPostprob(object, newdata = NULL, ...)

Arguments

object
The lcModel to predict the posterior probabilities with.

newdata
Optional data frame for which to compute the posterior probability. If omitted, the model training data is used.

...
Additional arguments.

Details

The default implementation returns a uniform probability matrix.

Value

A matrix indicating the posterior probability per trajectory per measurement on each row, for each cluster (the columns).

See Also

Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(), df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()

print.lcMethod

Print the arguments of an lcMethod object

Description

Print the arguments of an lcMethod object

Usage

## S3 method for class 'lcMethod'
print(x, ..., eval = FALSE, width = 40, envir = NULL)
**Arguments**

- **x**  
  The lcMethod object.
- **...**  
  Not used.
- **eval**  
  Whether to print the evaluated argument values.
- **width**  
  Maximum number of characters per argument.
- **envir**  
  The environment in which to evaluate the arguments when `eval = TRUE`.

**Description**

Print lcModels list concisely

**Usage**

```r
S3 method for class 'lcModels'
print(
 x,
 ...,
 summary = FALSE,
 excludeShared = !getOption("latrend.printSharedModelArgs")
)
```

**Arguments**

- **x**  
  The lcModels object.
- **...**  
  Not used.
- **summary**  
  Whether to print the complete summary per model. This may be slow for long lists!
- **excludeShared**  
  Whether to exclude model arguments which are identical across all models.

**See Also**

Other lcModel list functions: `as.lcModels()`, `lcModels`, `subset.lcModels()`
qqPlot

Quantile-quantile plot

Description
Quantile-quantile plot

Usage
### S4 method for signature 'lcModel'
qqPlot(object, byCluster = FALSE, ...)

Arguments
- **object**: The model.
- **byCluster**: Whether to plot the Q-Q line per cluster
- **...**: Other arguments passed to qqplotr::geom_qq_band, qqplotr::stat_qq_line, and qqplotr::stat_qq_point.

See Also
residuals.lcModel metric plotClusterTrajectories

residuals.lcModel

Extract lcModel residuals

Description
Extract lcModel residuals

Usage
### S3 method for class 'lcModel'
residuals(object, ..., clusters = trajectoryAssignments(object))

Arguments
- **object**: The lcModel object.
- **...**: Additional arguments.
- **clusters**: Optional cluster assignments per id. If unspecified, a matrix is returned containing the cluster-specific predictions per column.

Value
A vector of residuals for the cluster assignments specified by clusters. If clusters is unspecified, a matrix of cluster-specific residuals per observations is returned.
See Also

Other model-specific methods: \texttt{clusterTrajectories()}, \texttt{coef.lcModel()}, \texttt{converged()}, \texttt{deviance.lcModel()}, \texttt{df.residual.lcModel()}, \texttt{fitted.lcModel()}, \texttt{lcModel-class}, \texttt{logLik.lcModel()}, \texttt{model.frame.lcModel()}, \texttt{nobs.lcModel()}, \texttt{postprob()}, \texttt{predict.lcModel()}, \texttt{predictAssignments()}, \texttt{predictForCluster()}, \texttt{predictPostprob()}, \texttt{sigma.lcModel()}, \texttt{time.lcModel()}, \texttt{trajectories()}

Description

Extracts the response variable from the given object.

Usage

\begin{verbatim}
## S4 method for signature 'lcMethod'
responseVariable(object, ...)

## S4 method for signature 'lcModel'
responseVariable(object, ...)
\end{verbatim}

Arguments

\begin{itemize}
  \item \texttt{object} \hspace{1cm} The object to extract the response variable from.
  \item \texttt{...} \hspace{1cm} Additional arguments.
\end{itemize}

Details

If the lcMethod object specifies a formula argument, then the response is extracted from the response term of the formula.

Value

The response variable name as a character.

See Also

Other lcModel variables: \texttt{idVariable()}, \texttt{timeVariable()}

Examples

\begin{verbatim}
method <- lcMethodKML("Value")
responseVariable(method) # "Value"

method <- lcMethodLcmmGBTM(fixed = Value ~ Time, mixture = ~ Time)
responseVariable(method) # "Value"

data(latrendData)
\end{verbatim}
model <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
responseVariable(model) # "Value"

sigma.lcModel

Extract residual standard deviation from a lcModel

Description
Extract residual standard deviation from a lcModel

Usage

## S3 method for class 'lcModel'
sigma(object, ...)

Arguments

object The lcModel object.
...
Additional arguments.

See Also
Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(),
df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(),
mobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(),
predictPostprob(), residuals.lcModel(), time.lcModel(), trajectories()

strip

Strip a lcModel for serialization

Description
Removes associated environments from any of the arguments. This is typically the case for arguments of type formula.
Strip a lcModel of non-essential variables and environments in order to reduce the model size for serialization.

Usage

## S4 method for signature 'lcMethod'
strip(object, ...)

## S4 method for signature 'lcModel'
strip(object, ...)

subset.lcModels

Subsetting a lcModels list based on method arguments

Description

Subsetting a lcModels list based on method arguments

Usage

## S3 method for class 'lcModels'
subset(x, subset, drop = FALSE, ...)

Arguments

- **x**: The lcModels or list of lcModel to be subsetted.
- **subset**: Logical expression based on the lcModel method arguments, indicating which lcModel objects to keep.
- **drop**: Whether to return a lcModel object if the result is length 1.
- **...**: Not used.

Value

A lcModels list with the subset of lcModel objects.

See Also

Other lcModel list functions: as.lcModels(), lcModels, print.lcModels()

Examples

data(latrendData)
mKML <- lcMethodKML(response = "Y", id = "Id", time = "Time")
kml1 <- latrend(mKML, nClusters = 1, latrendData)
kml2 <- latrend(mKML, nClusters = 2, latrendData)
kml3 <- latrend(mKML, nClusters = 3, latrendData)
gmm <- latrend(lcMethodLcmmGMM(fixed = Y ~ Time, mixture = ~ Time,
        id = "Id", time = "Time"), latrendData)
models <- lcModels(kml1, kml2, kml3, gmm)
subset(models, nClusters > 1 & .method == 'kml')
### summary.lcModel

*Summarize a lcModel*

**Description**

Extracts all relevant information from the underlying model into a list

**Usage**

```r
S3 method for class 'lcModel'
summary(object, ...)
```

**Arguments**

- `object` The lcModel object.
- `...` Additional arguments.

### time.lcModel

*Sampling times of a lcModel*

**Description**

Sampling times of a lcModel

**Usage**

```r
S3 method for class 'lcModel'
time(x, ...)
```

**Arguments**

- `x` The lcModel object.
- `...` Not used.

**Value**

The unique times at which observations occur.

**See Also**

Other model-specific methods: `clusterTrajectories()`, `coef.lcModel()`, `converged()`, `deviance.lcModel()`, `df.residual.lcModel()`, `fitted.lcModel()`, `lcModel-class`, `logLik.lcModel()`, `model.frame.lcModel()`, `nobs.lcModel()`, `postprob()`, `predict.lcModel()`, `predictAssignments()`, `predictForCluster()`, `predictPostprob()`, `residuals.lcModel()`, `sigma.lcModel()`, `trajectories()`
### timeVariable

*Extract the time variable*

**Description**

Extracts the time variable (i.e., column name) from the given object.

**Usage**

```r
S4 method for signature 'lcMethod'
timeVariable(object, ...)
```

```r
S4 method for signature 'lcModel'
timeVariable(object)
```

**Arguments**

- **object**
  - The object to extract the variable from.
- **...**
  - Additional arguments.

**Value**

The time variable name, as character.

**See Also**

Other lcModel variables: `idVariable()`, `responseVariable()`

**Examples**

```r
method <- lcMethodKML(time = "Assessment")
timeVariable(method) # "Assessment"
```

```r
data(latrendData)
model <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
idVariable(model) # "Id"
```

---

### trajectories

*Extract the fitted trajectories for all strata*

**Description**

Extract the fitted trajectories for all strata
Usage

```r
trajectories(
 object,
 at = time(object),
 what = "mu",
 clusters = trajectoryAssignments(object),
 ...
)
```

```r
S4 method for signature 'lcModel'
trajectories(
 object,
 at = time(object),
 what = "mu",
 clusters = trajectoryAssignments(object),
 ...
)
```

Arguments

- `object` The model.
- `at` The time points at which to compute the id-specific trajectories.
- `what` The distributional parameter to compute the response for.
- `clusters` The cluster assignments for the strata to base the trajectories on.
- `...` Additional arguments.

See Also

Other model-specific methods: `clusterTrajectories()`, `coef.lcModel()`, `converged()`, `deviance.lcModel()`, `df.residual.lcModel()`, `fitted.lcModel()`, `lcModel-class`, `logLik.lcModel()`, `model.frame.lcModel()`, `nobs.lcModel()`, `postprob()`, `predict.lcModel()`, `predictAssignments()`, `predictForCluster()`, `predictPostprob()`, `residuals.lcModel()`, `sigma.lcModel()`, `time.lcModel()`

Examples

```r
data(latrendData)
model <- latrend(method = lcMethodKML("Y", id = "Id", time = "Time"), data = latrendData)
trajectories(model)

trajectories(model, at = c(0, .5, 1))
```
trajectoryAssignments  

*Get the cluster membership of each trajectory*

**Description**

Get the cluster membership of each trajectory

**Usage**

```r
S4 method for signature 'lcModel'
trajectoryAssignments(object, strategy = which.max, ...)
```

**Arguments**

- **object**: The lcModel to obtain the cluster assignments from.
- **strategy**: A function returning the cluster index based on the given vector of membership probabilities. By default, ids are assigned to the cluster with the highest probability.
- **...**: Any additional arguments passed to the strategy function.

**Details**

While the default strategy is `which.max`, it is recommended to use `which.is.max` instead, as this function breaks ties randomly. Another strategy to consider is the function `which.weight`, which enables weighted sampling of cluster assignments.

**Examples**

```r
data(latrendData)
model <- latrend(method = lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
trajectoryAssignments(model)

assign ids at random using weighted sampling
trajectoryAssignments(model, strategy = which.weight)
```

---

**transformFitted**  

*Helper function for ensuring the right fitted() output*

**Description**

This function is also responsible for checking whether the input data is valid, such that the fitting process can fail early.
transformLatrendData

Usage

transformFitted(pred, model, clusters)

## S4 method for signature 'NULL, lcModel'
transformFitted(pred, model, clusters)

## S4 method for signature 'matrix, lcModel'
transformFitted(pred, model, clusters)

## S4 method for signature 'list, lcModel'
transformFitted(pred, model, clusters)

## S4 method for signature 'data.frame, lcModel'
transformFitted(pred, model, clusters)

Arguments

pred Prediction object
model The model from which the prediction is made.
clusters Optional argument for specifying the trajectory cluster assignments.

Value

A vector if the clusters argument is specified, else a matrix with the fitted values per cluster per column.

transformLatrendData  Transform latrend input data into the right format

Description

This function is also responsible for checking whether the input data is valid, such that the fitting process can fail early.

Usage

transformLatrendData(object, id, time, response, envir)

## S4 method for signature 'data.frame'
transformLatrendData(object, id, time, response, envir)

## S4 method for signature 'matrix'
transformLatrendData(object, id, time, response, envir)

## S4 method for signature 'call'
transformLatrendData(object, id, time, response, envir)
transformPredict

Arguments

- **object**: The data object to transform.
- **id**: The name of the trajectory identifier variable.
- **time**: The name of the time variable.
- **response**: The name of the response variable.
- **envir**: The environment used to evaluate the data object in (e.g., in case object is of type call).

Value

A data.frame with an id, time, and measurement columns.

Description

If Cluster is not provided, the prediction is outputted in long format per cluster, resulting in a longer data.frame than the newdata input.

Usage

```r
transformPredict(pred, model, newdata)
```

```r
S4 method for signature 'NULL',lcModel'
transformPredict(pred, model, newdata)
```

```r
S4 method for signature 'vector,lcModel'
transformPredict(pred, model, newdata)
```

```r
S4 method for signature 'matrix,lcModel'
transformPredict(pred, model, newdata)
```

```r
S4 method for signature 'data.frame,lcModel'
transformPredict(pred, model, newdata)
```

Arguments

- **pred**: The prediction object
- **model**: The model for which the prediction is made.
- **newdata**: A data.frame containing the input data to predict for.

Value

A data.frame with the predictions, or a list of cluster-specific prediction frames.
update.lcMethod  Update a method specification

Description
Update a method specification

Usage
```r
S3 method for class 'lcMethod'
update(object, ..., .eval = FALSE, .remove = character(), envir = NULL)
```

Arguments
- `object`: The lcMethod object.
- `...`: The new or updated method argument values.
- `.eval`: Whether to assign the evaluated argument values to the method. By default (FALSE), the argument expression is preserved.
- `.remove`: Names of arguments that should be removed.
- `envir`: The environment in which to evaluate the arguments. If NULL, the environment associated with the object is used. If not available, the parent.frame() is used.

Details
Updates or adds arguments to a lcMethod object. The inputs are evaluated in order to determine the presence of formula objects, which are updated accordingly.

Value
The new lcMethod object with the additional or updated arguments.

See Also
Other lcMethod functions: `[[`, `lcMethod-method`, `as.data.frame.lcMethods()`, `as.data.frame.lcMethod()`, `as.lcMethods()`, `as.list.lcMethod()`, `evaluate.lcMethod()`, `formula.lcMethod()`, `lcMethod-class`

Examples
```r
m <- lcMethodMixtoolsGMM(Value ~ 1)
m2 <- update(m, formula = ~ . + Time)
m3 <- update(m2, nClusters = 3)
k <- 2
m4 <- update(m, nClusters = k) # nClusters: k
m5 <- update(m, nClusters = k, .eval = TRUE) # nClusters: 2
```
update.lcModel

Update a lcModel

Description

Fit a new model with modified arguments from the current model.

Usage

```r
S3 method for class 'lcModel'
update(object, ...)
```

Arguments

- `object` The lcModel object.
- `...` Arguments passed on to `latrend` method.
- `method` The lcMethod object specifying the longitudinal cluster method to apply.
- `data` The data.frame or matrix to which to apply the method.
- `envir` The environment in which to evaluate the method arguments. Note that this only applies to `data` when `data` is a call.
- `verbose` The level of verbosity. Either an object of class `Verbose` (see `R.utils::Verbose` for details), a logical indicating whether to show basic computation information, a numeric indicating the verbosity level (see `Verbose`), or one of `c('info', 'fine', 'finest')`.

which.weight

Sample an index of a vector weighted by the elements

Description

Returns a random index, weighted by the element magnitudes. This function is intended to be used as an optional strategy for `trajectoryAssignments`, resulting in randomly sampled cluster membership.

Usage

```r
which.weight(x)
```

Arguments

- `x` A positive numeric vector.
Value

An integer giving the index of the sampled element.

Examples

\[
x = c(.01, .69, .3)
\]

which.weight(x) #1, 2, or 3

[[lcMethod-method]

Retrieve and evaluate a lcMethod argument by name

Description

Retrieve and evaluate a lcMethod argument by name

Usage

## S4 method for signature 'lcMethod'
x[[i, eval = TRUE, envir = NULL]]

Arguments

x The lcMethod object.
i Name or index of the argument to retrieve.
eval Whether to evaluate the call argument (enabled by default).
envir The environment in which to evaluate the argument. This argument is only applicable when eval = TRUE.

Value

The argument call or evaluation result.

See Also

Other lcMethod functions: as.data.frame.lcMethods(), as.data.frame.lcMethod(), as.lcMethods(), as.list.lcMethod(), evaluate.lcMethod(), formula.lcMethod(), lcMethod-class, update.lcMethod()

Examples

m = lcMethodKML(nClusters = 5)
m[['nClusters']] # 5

k = 2
m = lcMethodKML(nClusters = k)
m[['nClusters', eval=FALSE]] # k
$\text{lcMethod-method}$

Retrieve and evaluate a lcMethod argument by name

Description
Retrieve and evaluate a lcMethod argument by name

Usage
```
S4 method for signature 'lcMethod'
x$name
```

Arguments
```
x
name
```

Name of the argument to retrieve.

Value
The argument evaluation result.

Examples
```
m <- lcMethodKML(nClusters = 3)
m$nClusters # 3
```
Index

* datasets
  latrendData, 35
* lcMethod functions
  [[,lcMethod-method, 100
  as.data.frame.lcMethod, 6
  as.data.frame.lcMethods, 6
  as.lcMethods, 8
  as.list.lcMethod, 9
  evaluate.lcMethod, 20
  formula.lcMethod, 23
  lcMethod-class, 39
  update.lcMethod, 98
* lcMethod implementations
  lcMethod-class, 39
  lcMethodAkmedoids, 42
  lcMethodCrimCV, 43
  lcMethodCustom, 44
  lcMethodDtwclust, 45
  lcMethodFeature, 46
  lcMethodFunFEM, 49
  lcMethodGCKM, 50
  lcMethodKML, 51
  lcMethodLcmmGBTM, 52
  lcMethodLcmmGMM, 53
  lcMethodLMKM, 55
  lcMethodLongclus, 56
  lcMethodMixAK,GLMM, 58
  lcMethodMixtoolsGMM, 59
  lcMethodMixtoolsNPRM, 60
  lcMethodRandom, 62
  lcMethodStratify, 64
* lcMethod package interfaces
  lcMethodFlexmix, 47
  lcMethodFlexmixGBTM, 48
* lcModel list functions
  as.lcModels, 8
  lcModels, 69
  print.lcModels, 87
  subset.lcModels, 91
* lcModel variables
  idVariable, 29
  responseVariable, 89
  timeVariable, 93
* longitudinal cluster fit functions
  latrend, 29
  latrendBatch, 32
  latrendBoot, 33
  latrendCV, 34
  latrendRep, 36
* metric functions
  defineExternalMetric, 17
  defineInternalMetric, 18
  externalMetric,lcModel,lcModel-method, 21
  getExternalMetricDefinition, 26
  getExternalMetricNames, 26
  getInternalMetricDefinition, 27
  getInternalMetricNames, 27
  metric, 73
* model-specific methods
  clusterTrajectories, 12
  coef.lcModel, 13
  converged, 14
  deviance.lcModel, 19
  df.residual.lcModel, 19
  fitted.lcModel, 23
  lcModel-class, 66
  logLik.lcModel, 71
  model.frame.lcModel, 76
  nobs.lcModel, 77
  postprob, 82
  predict.lcModel, 83
  predictAssignments, 84
  predictForCluster, 85
  predictPostprob, 86
  residuals.lcModel, 88
  sigma.lcModel, 90
INDEX

103

as.lcMethods, 17

as.data.frame.lcModels, 17

*validation methods*

createTestDataFold, 15
createTestDataFolds, 15
createTrainDataFolds, 16
latrendBoot, 33
latrendCV, 34

[[lcMethod-method, 100

$lcMethod-method, 101

PACKAGE (latrend-package), 5

akmedoids::akclustr, 42
approx. 38
as.data.frame.lcMethod, 6, 7–9, 21, 24, 41, 98, 100
as.data.frame.lcModels, 6, 6, 8, 9, 21, 24, 41, 98, 100
as.data.frame.lcModels, 7
as.lcMethods, 6, 7, 8, 9, 21, 24, 41, 98, 100
as.lcModels, 8, 70, 87, 91
as.list.lcMethod, 6–8, 9, 21, 24, 41, 98, 100
atomic, 6

clusterNames, 10
clusterNames<-, 10
clusterProportions, 11
clusterProportions, lcModel-method
(clusterProportions), 11
clusterSizes, 11
clusterTrajectories, 12, 13, 14, 19, 23, 67, 71, 76, 77, 79, 82–86, 89, 90, 92, 94
clusterTrajectories, lcModel-method
(clusterTrajectories), 12
coeff.lcModel, 12, 13, 14, 19, 23, 67, 71, 76, 77, 82–86, 89, 90, 92, 94
compose (lcMethod-class), 39
compose, lcMethod-method
(lcMethod-class), 39
confusionMatrix, 13
converged, 12, 13, 14, 19, 23, 67, 71, 76, 77, 82–86, 89, 90, 92, 94
converged, lcModel-method (converged), 14
createTestDataFold, 15, 15, 16, 34, 35
createTestDataFolds, 15, 15, 16, 34, 35
createTrainDataFolds, 15, 16, 16, 34, 35
dtwclust::tsclust, 45
dtcastRepeatedMeasures, 17
defineExternalMetric, 17, 18, 22, 26, 27, 74
defineInternalMetric, 18, 18, 22, 26, 27, 74
deviance.lcModel, 12–14, 19, 19, 23, 67, 71, 76, 77, 82–86, 89, 90, 92, 94
df.residual.lcModel, 12–14, 19, 19, 23, 67, 71, 76, 77, 82–86, 89, 90, 92, 94
dist. 22
dtcastRepeatedMeasures, 17
dtwclust::tsclust, 45
evaluation.lcMethod, 6–9, 20, 41, 98, 100
externalMetric, 72, 74, 75
externalMetric
(externalMetric, lcModel, lcModel-method), 21
externalMetric, lcModel, lcModel-method, 21
externalMetric, lcModels, character-method
(externalMetric, lcModel, lcModel-method), 21
externalMetric, lcModels, lcModel-method
(externalMetric, lcModel, lcModel-method), 21
externalMetric, lcModels, lcModels-method
(externalMetric, lcModel, lcModel-method), 21
fit (lcMethod-class), 39
fit, lcMethod-method (lcMethod-class), 39
fitted.lcApproxModel
(lcApproxModel-class), 37
fitted.lcModel, 12–14, 19, 23, 67, 71, 76, 77, 82–86, 89, 90, 92, 94
flexmix::flexmix, 47, 48
flexmix::FLXMRglm, 48
foreach, 31
formula.lcMethod, 6–9, 21, 23, 41, 98, 100
formula.lcModel, 24
funFEM::funFEM, 49
generateLongData, 25, 36

debug, 35
deviance.lcModel, 12–14, 19, 19, 23, 67, 71, 76, 77, 82–86, 89, 90, 92, 94
distribution, 103


dtcastRepeatedMeasures, 17
dtwclust::tsclust, 45
evaluation.lcMethod, 6–9, 20, 41, 98, 100
externalMetric, 72, 74, 75
externalMetric
(externalMetric, lcModel, lcModel-method), 21
externalMetric, lcModel, lcModel-method, 21
externalMetric, lcModels, character-method
(externalMetric, lcModel, lcModel-method), 21
externalMetric, lcModels, lcModel-method
(externalMetric, lcModel, lcModel-method), 21
externalMetric, lcModels, lcModels-method
(externalMetric, lcModel, lcModel-method), 21
fit (lcMethod-class), 39
fit, lcMethod-method (lcMethod-class), 39
fitted.lcApproxModel
(lcApproxModel-class), 37
fitted.lcModel, 12–14, 19, 23, 67, 71, 76, 77, 82–86, 89, 90, 92, 94
flexmix::flexmix, 47, 48
flexmix::FLXMRglm, 48
foreach, 31
formula.lcMethod, 6–9, 21, 23, 41, 98, 100
formula.lcModel, 24
funFEM::funFEM, 49
generateLongData, 25, 36
getExternalMetricDefinition, 18, 22, 26, 27, 74
getExternalMetricNames, 18, 22, 26, 27, 74
getInternalMetricDefinition, 18, 22, 26, 27, 74
getInternalMetricNames, 18, 22, 26, 27, 74
getAddress (lcMethod-class), 39
getLabel (lcMethod-class), 39
getLabel, lcMethod-method (lcMethod-class), 39
getName, lcMethod-method (lcMethod-class), 39
getName, lcModel-method (lcModel-class), 66
getLCMethod, 28
getName (lcMethod-class), 39
getName, lcMethod-method (lcMethod-class), 39
getName, lcModel-method (lcModel-class), 66
getShortName (lcMethod-class), 39
getShortName, lcMethod-method (lcMethod-class), 39
getShortName, lcModel-method (lcModel-class), 66
ggplot2::geom_line, 79

d, 28
idVariable, 29, 89, 93
idVariable, lcModel-method (idVariable), 29
idVariable, lcModel-method (idVariable), 29

kml::kml, 51
kml::parALGO, 51

latrend, 29, 32, 34, 35, 37, 39, 99
latrend-package, 5
latrend-parallel, 31, 32–34, 36
latrendBatch, 30, 31, 32, 34, 35, 37
latrendBoot, 15, 16, 30–32, 33, 35, 37
latrendCV, 15, 16, 30–32, 34, 37
latrendData, 35
latrendRep, 30–32, 34, 35, 36
lcApproxModel (lcApproxModel-class), 37
lcApproxModel-class, 37
lcMethod, 38, 41
lcMethod-class, 38, 39, 67
lcMethod.call, 38, 41

lcMethodAkmedoids, 41, 42, 44–47, 50–58, 60, 61, 63, 65
lcMethodCrimCV, 41, 43, 43, 45–47, 50–58, 60, 61, 63, 65
lcMethodCustom, 41, 43, 44, 44, 46, 47, 50–58, 60, 61, 63, 65
lcMethodDtwclus, 41, 43–45, 45, 47, 50–58, 60, 61, 63, 65
lcMethodFeature, 41, 43–46, 46, 50–58, 60, 61, 63, 65
lcMethodFlexmix, 47, 49
lcMethodFlexmixGBTM, 48, 48
lcMethodFunFEM, 41, 43–47, 49, 51–58, 60, 61, 63, 65
lcMethodGCKM, 41, 43–47, 50, 50, 52–58, 60, 61, 63, 65
lcMethodKML, 41, 43–47, 50, 51, 51, 53–58, 60, 61, 63, 65
lcMethodLCmmbGBTM, 41, 43–47, 50–52, 52, 54–58, 60, 61, 63, 65
lcMethodLCmmbGMM, 41, 43–47, 50–53, 53, 55–58, 60, 61, 63, 65
lcMethodLMKM, 41, 43–47, 50–54, 55, 56–58, 60, 61, 63, 65
lcMethodLongclust, 41, 43–47, 50–55, 56, 57, 58, 60, 61, 63, 65
lcMethodMclustLLPA, 41, 43–47, 50–56, 57, 58, 60, 61, 63, 65
lcMethodMixAK_GLMM, 41, 43–47, 50–57, 58, 60, 61, 63, 65
lcMethodMixtoolsGMM, 41, 43–47, 50–58, 59, 60, 61, 63, 65
lcMethodMixtoolsNPRM, 41, 43–47, 50–58, 60, 60, 63, 65
lcMethodMixTVEM, 61
lcMethodRandom, 41, 43–47, 50–58, 60, 60, 61, 62, 65
lcMethods, 63
lcMethodStratify, 41, 43–47, 50–58, 60, 61, 63, 64
lcmm::hlme, 52–54
lcModel-class, 66
lcModelCustom, 67
lcModelPartition, 68
lcModels, 8, 69, 87, 91
lcModelWeightedPartition, 70
length, lcMethod-method (lcMethod-class), 39
lme4::lmer, 50, 51, 59
logLik.lcModel, 12–14, 19, 23, 67, 71, 76, 77, 82–86, 89, 90, 92, 94
longclust::longclustEM, 56
max.lcModels, 72, 74, 75
mclust::Mclust, 57
meltRepeatedMeasures, 72
metric, 18, 22, 26, 27, 73, 88
metric, lcModel-method (metric), 73
metric, lcModels-method (metric), 73
metric, list-method (metric), 73
min.lcModels, 72, 74, 75
mixAK::GLMM_MCMC, 58
mixtools::npEM, 60, 61
mixtools::regmixEM.mixed, 59
model.data.lcModel, 69, 75
model.frame.lcModel, 12–14, 19, 23, 67, 71, 76, 77, 82–86, 89, 90, 92, 94
names, lcMethod-method (lcMethod-class), 39
nClusters, 76
nIds, 77
nobs.lcModel, 12–14, 19, 23, 67, 71, 76, 77, 82–86, 89, 90, 92, 94
parallel-package, 31
plot, lcModel, ANY-method, 78
plotClusterTrajectories, 78, 79, 88
plotClusterTrajectories, data.frame-method (plotClusterTrajectories), 78
plotClusterTrajectories, lcModel-method (plotClusterTrajectories), 78
plotMetric, 80
plotTrajectories, 81
plotTrajectories, data.frame-method (plotTrajectories), 81
plotTrajectories, lcModel-method (plotTrajectories), 81
postFit, lcMethod-class, 39
postFit, lcModel-method (lcModel-class), 39
postprob, 12–14, 19, 23, 67, 71, 76, 77, 82, 83–86, 89, 90, 92, 94
postprob, lcModel-method (postprob), 82
postprobFromAssignments, 82
predict.lcModel, 12–14, 19, 23, 67, 71, 76, 77, 82, 83, 84–86, 89, 90, 92, 94
predictAssignments, 12–14, 19, 23, 67, 71, 76, 77, 82, 83, 84, 85, 86, 89, 90, 92, 94
predictAssignments, lcModel-method (predictAssignments), 84
predictForCluster, 12–14, 19, 23, 67, 71, 76, 77, 82–84, 85, 86, 89, 90, 92, 94
predictForCluster, lcApproxModel-method (lcApproxModel-class), 37
predictForCluster, lcModel-method (predictForCluster), 85
predictPostprob, 12–14, 19, 23, 67, 71, 76, 77, 82–84, 86, 89, 90, 92, 94
predictPostprob, lcModel-method (predictPostprob), 86
preFit (lcMethod-class), 39
preFit, lcMethod-method (lcMethod-class), 39
prepareData (lcMethod-class), 39
prepareData, lcMethod-method (lcMethod-class), 39
print.lcMethod, 86
print.lcModels, 8, 70, 87, 91
qqPlot, 88
qqPlot, lcModel-method (qqPlot), 88
R.utils::Verbose, 30, 32, 33, 35, 36, 40, 99
residuals.lcModel, 12–14, 19, 23, 67, 71, 76, 77, 82–86, 88, 89, 90, 92, 94
responseVariable, 29, 89, 93
responseVariable, lcMethod-method (responseVariable), 89
responseVariable, lcModel-method (responseVariable), 89
sigma.lcModel, 12–14, 19, 23, 67, 71, 76, 77, 82–86, 89, 90, 92, 94
stats::lm, 55
strip, 90
strip, lcMethod-method (strip), 90
strip, lcModel-method (strip), 90
subset.lcModels, 8, 70, 87, 91
summary.lcModel, 92
time.lcModel, 12–14, 19, 23, 67, 71, 76, 77, 82–86, 89, 90, 92, 94
timeVariable, 29, 89, 93
timeVariable, lcMethod-method (timeVariable), 93
timeVariable, lcModel-method (timeVariable), 93
trajectories, 12–14, 19, 23, 67, 71, 76, 77, 81–86, 89, 90, 92, 93
trajectories, lcModel-method (trajectories), 93
trajectoryAssignments, 14, 79, 95, 99
trajectoryAssignments, lcModel-method (trajectoryAssignments), 95
transformFitted, 95
transformFitted, data.frame, lcModel-method (transformFitted), 95
transformFitted, list, lcModel-method (transformFitted), 95
transformFitted, matrix, lcModel-method (transformFitted), 95
transformFitted, NULL, lcModel-method (transformFitted), 95
transformLatrendData, 96
transformLatrendData, call-method (transformLatrendData), 96
transformLatrendData, data.frame-method (transformLatrendData), 96
transformLatrendData, matrix-method (transformLatrendData), 96
transformPredict, 97
transformPredict, data.frame, lcModel-method (transformPredict), 97
transformPredict, matrix, lcModel-method (transformPredict), 97
transformPredict, NULL, lcModel-method (transformPredict), 97
transformPredict, vector, lcModel-method (transformPredict), 97
update.lcMethod, 6–9, 21, 24, 41, 98, 100
update.lcModel, 99
validate (lcMethod-class), 39
validate, lcMethod-method (lcMethod-class), 39
Verbose, 30, 32, 33, 35, 36, 99

which.is.max, 95
which.max, 95
which.weight, 14, 95, 99