Package ‘lclGWAS’

February 21, 2017

Type Package

Title Efficient Estimation of Discrete-Time Multivariate Frailty Model Using Exact Likelihood Function for Grouped Survival Data

Version 1.0.3

Date 2017-02-20

Author Jiaxing Lin, Alexander Sibley, Tracy Truong, Nancy Cox, Eileen Dolan, Yu Jiang, Janice McCarthy, Andrew Allen, Kouros Owzar, Zhiguo Li

Maintainer Jiaxing Lin <jiaxing.lin@duke.edu>

Description The core of this 'Rcpp' based package is several functions to estimate the baseline hazard, frailty variance, and fixed effect parameter for a discrete-time shared frailty model with random effects. The functions are designed to analyze grouped time-to-event data accounting for family structure of related individuals (i.e., trios). The core functions include two processes: (1) evaluate the multivariable integration to compute the exact proportional hazards model based likelihood and (2) estimate the desired parameters using maximum likelihood estimation. The integration is evaluated by the 'Cuhre' algorithm from the 'Cuba' library (Hahn, T., Cuba—a library for multidimensional numerical integration, Comput. Phys. Commun. 168, 2005, 78-95 <doi:10.1016/j.cpc.2005.01.010>), and the source files of the 'Cuhre' function are included in this package. The maximization process is carried out using Brent's algorithm, with the 'C++' code file from John Burkardt and John Denker (Brent, R., Algorithms for Minimization without Derivatives, Dover, 2002, ISBN 0-486-41998-3).

License GPL (>= 2)

Imports Rcpp (>= 0.12.4)

LinkingTo Rcpp, BH

Suggests knitr

VignetteBuilder knitr

BuildVignettes yes

NeedsCompilation yes

Repository CRAN

Date/Publication 2017-02-21 00:03:26
Description

The core of this Rcpp based package is several functions to estimate the baseline hazard, frailty variance, and fixed effect parameter for a discrete-time shared frailty model with random effects. The functions are designed to analyze grouped time-to-event data accounting for family structure of related individuals (i.e., trios). The core functions include two processes: (1) evaluate the multivariate integration to compute the exact proportional hazards model based likelihood and (2) estimate the desired parameters using maximum likelihood estimation. The integration is evaluated by the Cuhre algorithm from the Cuba library (Hahn, T., Cuba-a library for multidimensional numerical integration, Comput. Phys. Commun. 168, 2005, 78-95), and the source files of the Cuhre function are included in this package. The maximization process is carried out using Brent’s algorithm, with the C++ code file from John Burkardt and John Denker (Brent, R., Algorithms for Minimization without Derivatives, Dover, 2002). License: GPL (>= 2)

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>lclGWAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.0.2</td>
</tr>
<tr>
<td>Date:</td>
<td>2017-02-20</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-3</td>
</tr>
</tbody>
</table>

Please refer to the individual function documentation or the included vignette for more information. The package vignette serves as a tutorial for using this package.

Author(s)

Jiaxing Lin, Alexander Sibley, Tracy Truong, Nancy Cox, Eileen Dolan, Yu Jiang, Janice McCarthy, Andrew Allen, Kouros Owzar, Zhiguo Li
Maintainer: Jiaxing Lin <jiaxing.lin@duke.edu>

References

alphaEst

Hahn, T., Cuba—a library for multidimensional numerical integration, Computer Physics Communications, 168, 2005, 78-95.

See Also

Rcpp

alphaEst

Estimate the Interval Baseline Survival Rates for Discrete-Time Multivariate Frailty Model for Grouped Survival Data

Description

A method to estimate the baseline survival rate for each time interval for a multivariate frailty model. The estimation is conducted under the null hypothesis, i.e., that there is no fixed effect.

Usage

alphaEst(dtime, delta)

Arguments

dtime Vector of observed discrete survival times for each sample.
delta Event indicator vector: 1 indicates observed event, 0 indicates censored.

Value

A list with one object:

alphaEst Vector of estimates of the baseline survival rates.

Examples

Generate dummy data
dtime <- c(1, 3, 3, 2, 1, 1, 2, 3, 1)
delta <- c(1, 0, 1, 1, 0, 1, 0, 1)
res <- alphaEst(dtime, delta)
res
betaEst Estimate the Fixed Effect Parameter for Discrete-Time Multivariate Frailty Model for Grouped Survival Data

Description

A method to estimate the fixed effect parameter for a multivariate frailty model accounting for family structure of related individuals (i.e., trios). The input data is assumed to be organized such that records for each family occur consecutively, and that records for offspring precede those for parents. The variance matrix for the random effects is assumed to be of the form \(\text{var} \times K \), where \(K \) is a matrix of kinship coefficients between family members. The following groupings are permitted: (Individual), (Offspring, Offspring), (Offspring, Parent), (Offspring, Parent, Parent), and (Offspring, Offspring, Parent, Parent). Other family structures have not been implemented.

Usage

```
betaEst(fam_group, alpha, dtime, delta, g, var, lower, upper)
```

Arguments

- `fam_group` Vector of family indicators for each sample.
- `alpha` Vector of baseline survival rates for each time interval.
- `dtime` Vector of observed discrete survival times for each sample.
- `delta` Event indicator vector: 1 indicates observed event, 0 indicates censored.
- `g` Vector of numeric genotypes for each sample.
- `var` Scalar for frailty variance.
- `lower` Scalar for the lower bound of the fixed effect parameter estimation search region.
- `upper` Scalar for the upper bound of the fixed effect parameter estimation search region.

Value

A list with one object:

- `betaEst` Scalar estimate of the fixed effect parameter.

Examples

```r
# Generate dummy data
fam_group <- rep(1:3,each=3)
alpha <- c(0.7500000, 0.6666667, 0.5000000, 0.0000000)
dtime <- c(1, 3, 3, 2, 1, 1, 2, 3, 1)
delta <- c(1, 0, 1, 1, 0, 1, 0, 1)
g <- c(0, 1, 1, 1, 2, 2, 0, 0, 0)
var <- 0.2
res <- betaEst(fam_group, alpha, dtime, delta, g, var, lower = 0, upper = 2)
res
```
Estimate the Frailty Variance for Discrete-Time Multivariate Frailty Model for Grouped Survival Data

Description

A method to estimate the frailty variance for a multivariate frailty model accounting for family structure of related individuals (i.e., trios). The input data is assumed to be organized such that records for each family occur consecutively, and that records for offspring precede those for parents. The variance matrix for the random effects is assumed to be of the form $\text{var} \cdot K$, where K is a matrix of kinship coefficients between family members. The following groupings are permitted: (Individual), (Offspring, Offspring), (Offspring, Parent), (Offspring, Parent, Parent), and (Offspring, Offspring, Parent, Parent). Other family structures have not been implemented.

Usage

```r
varEst(fam_group, alpha, dtime, delta, g, beta, lower, upper)
```

Arguments

- `fam_group`: Vector of family indicators for each sample.
- `alpha`: Vector of baseline survival rates for each time interval.
- `dtime`: Vector of observed discrete survival times for each sample.
- `delta`: Event indicator vector: 1 indicates observed event, 0 indicates censored.
- `g`: Vector of numeric genotypes for each sample.
- `beta`: Scalar for the fixed effect size.
- `lower`: Scalar for the lower bound of the variance estimation search region.
- `upper`: Scalar for the upper bound of the variance estimation search region.

Value

A list with one object:

```r
varEst
```

Examples

```r
# Generate dummy data
fam_group <- rep(1:3, each = 3)
alpha <- c(0.7500000, 0.6666667, 0.5000000, 0.0000000)
dtime <- c(1, 3, 3, 2, 1, 1, 2, 3, 1)
delta <- c(1, 0, 1, 1, 0, 1, 0, 1)
g <- c(0, 1, 1, 1, 2, 2, 0, 0)
beta <- 1
res <- varEst(fam_group, alpha, dtime, delta, g, beta, lower = 0, upper = 2)
res
```
Index

*Topic package
 lclGWAS-package, 2

alphaEst, 3

betaEst, 4

lclGWAS (lclGWAS-package), 2
lclGWAS-package, 2

Rcpp, 3

varEst, 5