Package ‘lcsm’

October 13, 2022

Type Package
Title Univariate and Bivariate Latent Change Score Modeling
Date 2020-07-24
Version 0.1.2

Description Helper functions to implement univariate and bivariate latent change score models in R using the 'lavaan' package.
The package automatically generates 'lavaan' syntax for different model specifications and varying timepoints.
The 'lavaan' syntax generated by this package can be returned and further specifications can be added manually.
Longitudinal plots as well as simplified path diagrams can be created to visualise data and model specifications.
Estimated model parameters and fit statistics can be extracted as data frames.
Data for different univariate and bivariate LCSM can be simulated by specifying estimates for model parameters to explore their effects.
This package combines the strengths of other R packages like 'lavaan', 'broom', and 'semPlot' by generating 'lavaan' syntax that helps these packages work together.

Depends R (>= 3.5.0)
License GPL-3
Encoding UTF-8

URL https://milanwiedemann.github.io/lcsm/
BugReports https://github.com/milanwiedemann/lcsm/issues
LazyData true
Imports lavaan (>= 0.6.2), dplyr (>= 0.7.4), tibble (>= 1.4.2),
 magrittr (>= 1.5), rlang (>= 0.1.6), tidyr (>= 0.8.0), ggplot2
 (>= 2.2.1), broom (>= 0.5.1), semPlot (>= 1.1), stats (>= 3.5.2), stringr (>= 1.4.0), purrr (>= 0.3.4), data.table, utf8
RoxygenNote 7.1.1
Suggests testthat (>= 2.1.0), knitr (>= 1.22), rmarkdown (>= 1.12), shiny (>= 1.4.0)

VignetteBuilder knitr

NeedsCompilation no

Author Milan Wiedemann [aut, cre] (<https://orcid.org/0000-0003-1991-282X>), Anke Ehlers [ths] (<https://orcid.org/0000-0002-8742-0192>), Mental Health Research UK [fnd]

Maintainer Milan Wiedemann <milan.wiedemann@gmail.com>

Repository CRAN

Date/Publication 2020-07-24 18:00:02 UTC

R topics documented:

data_bi_lcsm ... 2
data_uni_lcsm ... 3
extract_fit ... 4
extract_param ... 5
fit_bi_lcsm ... 6
fit_uni_lcsm ... 8
plot_lcsm ... 10
plot_trajectories ... 12
rename_lcsm_vars .. 14
select_bi_cases .. 14
select_uni_cases ... 15
sim_bi_lcsm .. 16
sim_uni_lcsm ... 19
specify_bi_lcsm .. 21
specify_uni_lcsm ... 23

Index 25

data_bi_lcsm Longitudinal dataset with repeated measures of two constructs

Description

Example dataset with repeated measures of two constructs to illustrate how the package works.

Usage

data(data_bi_lcsm)
data_uni_lcsm

Format

A longitudinal dataset in wide format:

- id: ID variable, unique identifier for each person
- x1: x value at time point 1
- x2: x value at time point 2
- x3: x value at time point 3
- x4: x value at time point 4
- x5: x value at time point 5
- x6: x value at time point 6
- x7: x value at time point 7
- x8: x value at time point 8
- x9: x value at time point 9
- x10: x value at time point 10
- y1: y value at time point 1
- y2: y value at time point 2
- y3: y value at time point 3
- y4: y value at time point 4
- y5: y value at time point 5
- y6: y value at time point 6
- y7: y value at time point 7
- y8: y value at time point 8
- y9: y value at time point 9
- y10: y value at time point 10

Examples

```r
# Load data into global environment
data(data_bi_lcsm)
```

data_uni_lcsm

Longitudinal dataset with repeated measures of one constructs

Description

Example dataset with repeated measures of one constructs to illustrate how the package works.

Usage

```r
data(data_uni_lcsm)
```
Format

A longitudinal dataset in wide format:

- id: ID variable, unique identifier for each person
- x1: x value at time point 1
- x2: x value at time point 2
- x3: x value at time point 3
- x4: x value at time point 4
- x5: x value at time point 5
- x6: x value at time point 6
- x7: x value at time point 7
- x8: x value at time point 8
- x9: x value at time point 9
- x10: x value at time point 10

Examples

```r
# Load data into global environment
data(data_uni_lcsm)
```

<table>
<thead>
<tr>
<th>extract_fit</th>
<th>Extract fit statistics of lavaan objects</th>
</tr>
</thead>
</table>

Description

Extract fit statistics of lavaan objects

Usage

```r
extract_fit(..., details = FALSE)
```

Arguments

- `...` lavaan object(s)
- `details` Logical, if TRUE return all fit statistics. By default this is set to FALSE, a selection (chisq, npar, aic, bic, cfi, rmsea, srmr) of fit statistics is returned.

Value

This function returns a tibble.

References

extract_param

Examples

First create a lavaan object
Not run:
bi_lcsm_01 <- fit_bi_lcsm(data = data_bi_lcsm,
 var_x = names(data_bi_lcsm)[2:4],
 var_y = names(data_bi_lcsm)[12:14],
 model_x = list(alpha_constant = TRUE,
 beta = TRUE,
 phi = FALSE),
 model_y = list(alpha_constant = TRUE,
 beta = TRUE,
 phi = TRUE),
 coupling = list(delta_lag_xy = TRUE,
 xi_lag_yx = TRUE)
)

Now extract fit statistics
extract_fit(bi_lcsm_01)

End(Not run)

extract_param

Extract labelled parameters of lavaan objects

Description

Extract labelled parameters of lavaan objects

Usage

extract_param(lavaan_object, printp = FALSE)

Arguments

- lavaan_object: lavaan object.
- printp: If TRUE convert into easily readable p values.

Value

This function returns a tibble with labelled parameters.

References

David Robinson and Alex Hayes (2019). broom: Convert Statistical Analysis Objects into Tidy Tibbles. R package version 0.5.2. https://CRAN.R-project.org/package=broom
Examples

First create a lavaan object
bi_lcsm_01 <- fit_bi_lcsm(data = data_bi_lcsm,
var_x = names(data_bi_lcsm)[2:4],
var_y = names(data_bi_lcsm)[12:14],
model_x = list(alpha_constant = TRUE,
 beta = TRUE,
 phi = FALSE),
model_y = list(alpha_constant = TRUE,
 beta = TRUE,
 phi = TRUE),
coupling = list(delta_lag_xy = TRUE,
 xi_lag_yx = TRUE)
)

Now extract parameter estimates
extract_param(bi_lcsm_01)

fit_bi_lcsm

Fit bivariate latent change score models

Description

Fit bivariate latent change score models.

Usage

fit_bi_lcsm(
 data,
 var_x,
 var_y,
 model_x,
 model_y,
 coupling,
 mimic = "Mplus",
 estimator = "MLR",
 missing = "FIML",
 return_lavaan_syntax = FALSE,
...
)

Arguments

data Wide dataset.
var_x List of variables measuring one construct of the model.
var_y List of variables measuring another construct of the model.
model_x List of model specifications (logical) for variables specified in var_x.
• alpha_constant (Constant change factor),
• alpha_piecewise (Piecewise constant change factors),
• alpha_piecewise_num (Changepoint of piecewise constant change factors),
• alpha_linear (Linear change factor),
• beta (Proportional change factor),
• phi (Autoregression of change scores).

model_y List of model specifications for variables specified in var_y.
• alpha_constant (Constant change factor),
• alpha_piecewise (Piecewise constant change factors),
• alpha_piecewise_num (Changepoint of piecewise constant change factors),
• alpha_linear (Linear change factor),
• beta (Proportional change factor),
• phi (Autoregression of change scores).

coupling List of model specifications (logical) for coupling parameters.
• coupling_piecewise (Piecewise coupling parameters),
• coupling_piecewise_num (Changepoint of piecewise coupling parameters),
• delta_xy (True score y predicting subsequent change score x),
• delta_yx (True score x predicting subsequent change score y),
• xi_xy (Change score y predicting subsequent change score x),
• xi_yx (Change score x predicting subsequent change score y).

mimic See lavaan.
estimator See lavaan.
missing See lavaan.
return_lavaan_syntax Logical, if TRUE return the lavaan syntax used for simulating data. To make it look beautiful use the function cat.

Value
This function returns a lavaan class object.

References

Examples

```r
# Fit
fit_bi_lcsm(data = data_bi_lcsm,
            var_x = names(data_bi_lcsm)[2:4],
            var_y = names(data_bi_lcsm)[12:14],
            model_x = list(alpha_constant = TRUE,
                            beta = TRUE,
                            phi = FALSE),
            model_y = list(alpha_constant = TRUE,
                            beta = TRUE,
                            phi = TRUE),
            coupling = list(delta_lag_xy = TRUE,
                             xi_lag_yx = TRUE))
```

fit_uni_lcsm

Fit univariate latent change score models

Description

Fit univariate latent change score models.

Usage

```r
fit_uni_lcsm(
  data,
  var,
  model,
  mimic = "Mplus",
  estimator = "MLR",
  missing = "FIML",
  return_lavaan_syntax = FALSE,
  ...
)
```

Arguments

- **data**: A data frame in "wide" format, i.e. one column for each measurement point and one row for each observation.
- **var**: Vector, specifying the variable names of each measurement point sequentially.
- **model**: List of model specifications (logical) for variables specified in var.
• alpha_constant (Constant change factor),
• alpha_piecewise (Piecewise constant change factors),
• alpha_piecewise_num (Changepoint of piecewise constant change factors),
• alpha_linear (Linear change factor),
• beta (Proportional change factor),
• phi (Autoregression of change scores).

mimic
See lavaan.
estimator
See lavaan.
missing
See lavaan.
return_lavaan_syntax
Logical, if TRUE return the lavaan syntax used for simulating data. To make it look beautiful use the function cat.

Value
This function returns a lavaan class object.

References

Examples
Fit univariate latent change score model
fit_uni_lcsm(data = data_uni_lcsm,
 var = names(data_uni_lcsm)[2:4],
 model = list(alpha_constant = TRUE,
 beta = FALSE,
 phi = FALSE))
plot_lcsm
Plot simplified path diagram of univariate and bivariate latent change score models

Description
Plot simplified path diagram of univariate and bivariate latent change score models

Usage

```r
plot_lcsm(
  lavaan_object,
  layout = NULL,
  lavaan_syntax = NULL,
  return_layout_from_lavaan_syntax = FALSE,
  lcsm = c("univariate", "bivariate"),
  lcsm_colours = FALSE,
  curve_covar = 0.5,
  what = "path",
  whatLabels = "est",
  edge.width = 1,
  node.width = 1,
  border.width = 1,
  fixedStyle = 1,
  freeStyle = 1,
  residuals = FALSE,
  label.scale = FALSE,
  sizeMan = 3,
  sizeLat = 5,
  intercepts = FALSE,
  fade = FALSE,
  nCharNodes = 0,
  nCharEdges = 0,
  edge.label.cex = 0.5,
...
)
```

Arguments

- **lavaan_object** lavaan object of a univariate or bivariate latent change score model.
- **layout** Matrix, specifying number and location of manifest and latent variables of LCS model specified in lavaan_object.
- **lavaan_syntax** String, lavaan syntax of the lavaan object specified in lavaan_object. If lavaan_syntax is provided a layout matrix will be generated automatically.
- **return_layout_from_lavaan_syntax** Logical, if TRUE and lavaan_syntax is provided, the layout matrix generated for semPaths will be returned for inspection of further customisation.
plot_lcs

- **lcsm**: String, specifying whether lavaan_object represent a "univariate" or "bivariate" LCS model.
- **lcsm_colours**: Logical, if TRUE the following colours will be used to highlight different parts of the model: Observed variables (White); Latent true scores (Green); Latent change scores (Blue); Change factors (Yellow).
- **curve_covar**: See semPaths.
- **what**: See semPlot. "path" to show unweighted grey edges, "par" to show parameter estimates as weighted (green/red) edges
- **what_labels**: See semPaths. "label" to show edge names as label, "est" for parameter estimates, "hide" to hide edge labels.
- **edge_width**: See semPaths.
- **node_width**: See semPaths.
- **border_width**: See semPaths.
- **fixedStyle**: See semPaths.
- **freeStyle**: See semPaths.
- **residuals**: See semPaths.
- **label_scale**: See semPaths.
- **sizeMan**: See semPaths.
- **sizeLat**: See semPaths.
- **intercepts**: See semPaths.
- **fade**: See semPaths.
- **nCharNodes**: See semPaths.
- **nCharEdges**: See semPaths.
- **edge_label_cex**: See semPaths.
- **...**: Other arguments passed on to semPaths.

Value

Plot

References

Examples

```r
lavaan_syntax_uni <- fit_uni_lcsm(data = data_bi_lcsm,
    var = c("x1", "x2", "x3", "x4", "x5"),
    model = list(alpha_constant = TRUE,
                 beta = TRUE,
                 phi = TRUE),
    return_lavaan_syntax = TRUE,
    return_lavaan_syntax_string = TRUE)
```
plot_trjectories <- fit_uni_lcsm(data = data_bi_lcsm,
 var = c("x1", "x2", "x3", "x4", "x5"),
 model = list(alpha_constant = TRUE,
 beta = TRUE,
 phi = TRUE))

plot_lcsm(lavaan_object = lavaan_object_uni,
 what = "cons", whatLabels = "invisible",
 lavaan_syntax = lavaan_syntax_uni,
 lcsm = "univariate")

plot_trjectories

Plot individual trajectories

Description

Plot individual trajectories

Usage

```r
plot_trjectories(  
data,  
id_var,  
var_list,  
line_colour = "blue",  
group_var = NULL,  
point_colour = "black",  
line_alpha = 0.2,  
point_alpha = 0.2,  
point_size = 1,  
smooth = FALSE,  
smooth_method = "loess",  
smooth_se = FALSE,  
xlab = "X",  
ylab = "Y",  
scale_x_num = FALSE,  
scale_x_num_start = 1,  
random_sample_frac = 1,  
seed = 1234,  
title_n = FALSE,  
connect_missing = TRUE)
```
plot_trajectories

Arguments

- **data**: Dataset in wide format.
- **id_var**: String, specifying id variable.
- **var_list**: Vector, specifying variable names to be plotted in sequential order.
- **line_colour**: String, specifying colour of lines.
- **group_var**: String, specifying variable name of group, each group will get individual colour lines. This overwrites the line_colour argument. Also consider other options to look at trajectories like facet_wrap which may be more appropriate.
- **point_colour**: String, specifying colour of points.
- **line_alpha**: Numeric, specifying alpha of lines.
- **point_alpha**: Numeric, specifying alpha of points.
- **point_size**: Numeric, size of point
- **smooth**: Logical, add smoothed conditional means using geom_smooth.
- **smooth_method**: String, specifying method to be used for calculating average line, see geom_smooth.
- **smooth_se**: Logical, specifying whether to add standard error of average line or not.
- **xlab**: String for x axis label.
- **ylab**: String for y axis label.
- **scale_x_num**: Logical, if TRUE print sequential numbers starting from 1 as x axis labels, if FALSE use variable names.
- **scale_x_num_start**: Numeric, if scale_x_num = TRUE this is the starting value of the x axis.
- **random_sample_frac**: The fraction of rows to select (from wide dataset), default is set to 1 (100 percent) of the sample.
- **seed**: Set seed for random sample if random_sample_frac argument is used.
- **title_n**: Logical, specifying whether to print title with number and percentage of cases used for the plot.
- **connect_missing**: Logical, specifying whether to connect points by id_var across missing values.

Value

ggplot2 object

Examples

```r
# Create plot for construct x
plot_trajectories(data = data_bi_lcm,
                   id_var = "id",
                   var_list = c("x1", "x2", "x3", "x4", "x5",
                                 "x6", "x7", "x8", "x9", "x10"))

# Create plot for construct y specifying some other arguments
plot_trajectories(data = data_bi_lcm,
                   ...)```
rename_lcsm_vars

Rename variables for univariate and bivariate latent change score models

Description

Rename variables for univariate and bivariate latent change score models

Usage

rename_lcsm_vars(data, var_x, var_y)

Arguments

data
  Dataset in wide format

var_x
  List of variables measuring first construct

var_y
  List of variables measuring second construct

Value

Dataset in wide format with renamed variables

select_bi_cases

Select cases based on minimum number of available session scores on two longitudinal measures

Description

Select cases based on minimum number of available session scores on two longitudinal measures

Usage

select_bi_cases(data, id_var, var_list_x, var_list_y, min_count_x, min_count_y)
select_uni_cases

Arguments

- **data**
  A data frame in "wide" format, i.e. one column for each measurement point and one row for each observation.

- **id_var**
  String, specifying id variable.

- **var_list_x**
  Vector, specifying variable names of construct X in sequential order.

- **var_list_y**
  Vector, specifying variable names of construct Y in sequential order.

- **min_count_x**
  Numeric, specifying minimum number of available scores for construct X.

- **min_count_y**
  Numeric, specifying minimum number of available scores for construct Y.

Value
tibble

Examples

```r
select_bi_cases(data_bi_lcsm,
 id_var = "id",
 var_list_x = names(data_bi_lcsm)[2:11],
 var_list_y = names(data_bi_lcsm)[12:21],
 min_count_x = 7,
 min_count_y = 7)
```

select_uni_cases

**Select cases based on minimum number of available session scores on one longitudinal measure**

Description

Select cases based on minimum number of available session scores on one longitudinal measure.

Usage

```r
select_uni_cases(data, id_var, var_list, min_count, return_id_only = FALSE)
```

Arguments

- **data**
  Dataset in wide format.

- **id_var**
  String, specifying id variable.

- **var_list**
  Vector, specifying variable names in sequential order.

- **min_count**
  Numeric, specifying minimum number of available scores

- **return_id_only**
  Logical, if TRUE only return ID. This is needed for select_bi_cases

Value
tibble
Examples

```
select_uni_cases(data_uni_lcsm,
 id_var = "id",
 var_list = names(data_uni_lcsm)[-1],
 min_count = 7)
```

---

**sim_bi_lcsm**

*Simulate data from bivariate latent change score model parameter estimates*

---

**Description**

This function simulate data from bivariate latent change score model parameter estimates using `simulateData`.

**Usage**

```
sim_bi_lcsm(
 timepoints,
 model_x, # See specify_bi_lcsm
 model_x_param = NULL,
 model_y, # See specify_bi_lcsm
 model_y_param = NULL,
 coupling, # List, specifying parameter estimates for the LCS model that has been specified
 coupling_param = NULL,
 sample.nobs = 500,
 na_x_pct = 0,
 na_y_pct = 0,
 ...
 var_x = "x",
 var_y = "y",
 change_letter_x = "g",
 change_letter_y = "j",
 return_lavaan_syntax = FALSE
)
```

**Arguments**

- `timepoints` [See specify_bi_lcsm](#)
- `model_x` [See specify_bi_lcsm](#)
- `model_x_param` List, specifying parameter estimates for the LCS model that has been specified in the argument `model_x`:
  - `gamma_lx1`: Mean of latent true scores x (Intercept),
  - `sigma2_lx1`: Variance of latent true scores x,
  - `sigma2_ux`: Variance of observed scores x,
sim_bi_lcs

- alpha_g2: Mean of change factor (g2),
- alpha_g3: Mean of change factor (g3),
- sigma2_g2: Variance of change factor (g2),
- sigma2_g3: Variance of change factor (g3),
- sigma_g2lxl1: Covariance of change factor (g2) with the initial true score x (lx1),
- sigma_g3lxl1: Covariance of change factor (g3) with the initial true score x (lx1),
- sigma_g2g3: Covariance of change factors (g2 and g2),
- phi_x: Autoregression of change scores x.

**model_y**

See specify_bi_lcs

**model_y_param**

List, specifying parameter estimates for the LCS model that has been specified in the argument `model_y`:

- gamma_ly1: Mean of latent true scores y (Intercept),
- sigma2_ly1: Variance of latent true scores y,
- sigma2_uy: Variance of observed scores y,
- alpha_j2: Mean of change factor (j2),
- alpha_j3: Mean of change factor (j3),
- sigma2_j2: Variance of change factor (j2),
- sigma2_j3: Variance of change factor (j3),
- sigma_j2lxl1: Covariance of change factor (j2) with the initial true score x (lx1),
- sigma_j3lxl1: Covariance of change factor (j3) with the initial true score x (lx1),
- sigma_j2j3: Covariance of change factors (j2 and j2),
- phi_y: Autoregression of change scores y.

**coupling**

See specify_bi_lcs

**coupling_param**

List, specifying parameter estimates coupling parameters that have been specified in the argument `coupling`:

- sigma_su: Covariance of residuals x and y,
- sigma_lyl1x1: Covariance of intercepts x and y,
- sigma_g2lyl1: Covariance of change factor x (g2) with the initial true score y (ly1),
- sigma_g3lyl1: Covariance of change factor x (g3) with the initial true score y (ly1),
- sigma_j2lx1: Covariance of change factor y (j2) with the initial true score x (lx1),
- sigma_j3lx1: Covariance of change factor y (j3) with the initial true score x (lx1),
- sigma_j2g2: Covariance of change factors y (j2) and x (g2),
- sigma_j2g3: Covariance of change factors y (j2) and x (g3),
- sigma_j3g2: Covariance of change factors y (j3) and x (g2),
- delta_con_xy: Change score x (t) determined by true score y (t),
- delta_con_yx: Change score y (t) determined by true score x (t),
- delta_lag_xy: Change score x (t) determined by true score y (t-1),
- delta_lag_yx: Change score y (t) determined by true score x (t-1),
- xi_con_xy: Change score x (t) determined by change score y (t),
- xi_con_yx: Change score y (t) determined by change score x (t),
- xi_lag_xy: Change score x (t) determined by change score y (t-1),
- xi_lag_yx: Change score y (t) determined by change score x (t-1),

sample.nobs Numeric, number of cases to be simulated, see specify_uni_lcsm
na_x_pct Numeric, percentage of random missing values in the simulated dataset [0,1]
na_y_pct Numeric, percentage of random missing values in the simulated dataset [0,1]
... Arguments to be passed on to simulateData
var_x See specify_bi_lcsm
var_y See specify_bi_lcsm
change_letter_x See specify_bi_lcsm
change_letter_y See specify_bi_lcsm
return_lavaan_syntax Logical, if TRUE return the lavaan syntax used for simulating data. To make it look beautiful use the function cat.

Value
tibble

References


Examples

```r
Simulate data from bivariate LCS model parameters
sim_bi_lcsmodel(timepoints = 12,
 na_x_pct = .05,
 na_y_pct = .1,
 model_x = list(alpha_constant = TRUE, beta = TRUE, phi = FALSE),
 model_x_param = list(gamma_lx1 = 21,
 sigma2_lx1 = .5,
 sigma2_ux = .2,
 alpha_g2 = -.4,
 sigma2_g2 = .4,
 sigma_g2lx1 = .2,
 beta_x = -.1),
 model_y = list(alpha_constant = TRUE, beta = TRUE, phi = TRUE),
 model_y_param = list(gamma_ly1 = 5,
 sigma2_ly1 = .2,
 sigma2_uy = .2,
 alpha_j2 = -.2,
 sigma2_j2 = .1,
 sigma_j2ly1 = .02,
 beta_y = -.2,
 phi_y = .1),
 coupling = list(delta_lag_xy = TRUE,
 xi_lag_yx = TRUE),
 coupling_param = list(sigma_su = .01,
 sigma_ly1lx1 = .2,
 sigma_g2ly1 = .1,
 sigma_j2lx1 = .1,
 sigma_j2g2 = .01,
 delta_lag_xy = .13,
 xi_lag_yx = .4),
 return_lavaan_syntax = FALSE)
```

**Description**

This function simulates data from univariate latent change score model parameter estimates using `simulateData`.  

**Usage**

```r
sim_uni_lcsmodel(
 timepoints,
 model,
 model_param = NULL,
 return_lavaan_syntax = FALSE)
```
\begin{verbatim}
var = "x",
change_letter = "g",
sample.nobs = 500,
na_pct = 0,
...
return_lavaan_syntax = FALSE
)

Arguments

timepoints       See \texttt{specify_uni_lcsm}
model            See \texttt{specify_uni_lcsm}
model_param      List, specifying parameter estimates for the LCS model that has been specified in the argument \texttt{model}
                 • \texttt{gamma_lx1}: Mean of latent true scores x (Intercept),
                 • \texttt{sigma2_lx1}: Variance of latent true scores x,
                 • \texttt{sigma2_ux}: Variance of observed scores x,
                 • \texttt{alpha_g2}: Mean of change factor (g2),
                 • \texttt{alpha_g3}: Mean of change factor (g3),
                 • \texttt{sigma2_g2}: Variance of constant change factor (g2),
                 • \texttt{sigma2_g3}: Variance of constant change factor (g3),
                 • \texttt{sigma_g2lx1}: Covariance of constant change factor (g2) with the initial true score x (lx1),
                 • \texttt{sigma_g3lx1}: Covariance of constant change factor (g3) with the initial true score x (lx1),
                 • \texttt{sigma_g2g3}: Covariance of change factors (g2 and g2),
                 • \texttt{phi_x}: Autoregression of change scores x.

var              See \texttt{specify_uni_lcsm}
change_letter    See \texttt{specify_uni_lcsm}
sample.nobs      Numeric, number of cases to be simulated, see \texttt{specify_uni_lcsm}
na_pct           Numeric, percentage of random missing values in the simulated dataset [0,1]
...               Arguments to be passed on to \texttt{simulateData}
return_lavaan_syntax
                 Logical, if TRUE return the lavaan syntax used for simulating data. To make it look beautiful use the function \texttt{cat}.

Value

tibble

Examples

# Simulate data from univariate LCS model parameters
sim_uni_lcsm(timepoints = 10,
              model = list(alpha_constant = TRUE, beta = FALSE, phi = TRUE),
              ...)
specify_bi_lcsm = list(gamma_lx1 = 21,
    sigma2_lx1 = 1.5,
    sigma2_ux = .2,
    alpha_j2 = -.93,
    sigma2_j2 = .1,
    sigma_j2lx1 = .2),
return_lavaan_syntax = FALSE,
sample.nobs = 1000,
na_pct = .3)

specify_bi_lcsm  Specify lavaan model for bivariate latent change score models

Description
Specify lavaan model for bivariate latent change score models

Usage
specify_bi_lcsm(
    timepoints,
    var_x,
    model_x,
    var_y,
    model_y,
    coupling,
    change_letter_x = "g",
    change_letter_y = "j"
)

Arguments

  timepoints    Number of timepoints.
  var_x         Vector, specifying variables measuring one construct of the model.
  model_x       List, specifying model specifications (logical) for variables specified in var_x.
                 • alpha_constant (Constant change factor),
                 • alpha_piecewise (Piecewise constant change factors),
                 • alpha_piecewise_num (Changepoint of piecewise constant change factors),
                 • alpha_linear (Linear change factor),
                 • beta (Proportional change factor),
                 • phi (Autoregression of change scores).
  var_y         Vector, specifying variables measuring another construct of the model.
  model_y       List, specifying model specifications (logical) for variables specified in var_y.
• alpha_constant (Constant change factor),
• alpha_piecewise (Piecewise constant change factors),
• alpha_piecewise_num (Changepoint of piecewise constant change factors),
• alpha_linear (Linear change factor),
• beta (Proportional change factor),
• phi (Autoregression of change scores).

coupling List, specifying coupling parameters.
• coupling_piecewise (Piecewise coupling parameters),
• coupling_piecewise_num (Changepoint of piecewise coupling parameters),
• delta_con_xy (True score y predicting concurrent change score x),
• delta_lag_xy (True score y predicting subsequent change score x),
• delta_con_yx (True score x predicting concurrent change score y),
• delta_lag_yx (True score x predicting subsequent change score y),
• xi_con_xy (Change score y predicting concurrent change score x),
• xi_lag_xy (Change score y predicting subsequent change score x),
• xi_con_yx (Change score x predicting concurrent change score y),
• xi_lag_yx (Change score x predicting subsequent change score y).

change_letter_x String, specifying letter to be used as change factor for construct x in lavaan syntax.

change_letter_y String, specifying letter to be used as change factor for construct y in lavaan syntax.

Value
Lavaan model syntax including comments.

References


Examples

```r
Specify bivariate LCS model
lavaan_bi_lcsm_01 <- specify_bi_lcsm(timepoints = 10,
 var_x = "x",
 model_x = list(alpha_constant = TRUE,
 beta = TRUE,
 phi = TRUE),
 var_y = "y",
 model_y = list(alpha_constant = TRUE,
 beta = TRUE,
 phi = TRUE),
 coupling = list(delta_lag_xy = TRUE,
 delta_lag_yx = TRUE),
 change_letter_x = "g",
 change_letter_y = "j")

To look at string simply return the object
lavaan_bi_lcsm_01

To get a readable output use cat() function
cat(lavaan_bi_lcsm_01)
```

**specify_uni_lcsm**

*Specify lavaan model for univariate latent change score models*

**Description**

Specify lavaan model for univariate latent change score models

**Usage**

```r
specify_uni_lcsm(timepoints, model, var, change_letter = "g")
```

**Arguments**

- `timepoints`: Number if timepoints.
- `model`: List of model specifications (logical) for the variables specified in variable.
  - `alpha_constant`: Constant change factor,
  - `alpha_piecewise`: Piecewise constant change factors,
  - `alpha_piecewise_num`: Changepoint of piecewise constant change factors,
  - `alpha_linear`: Linear change factor,
  - `beta`: Proportional change factor,
  - `phi`: Autoregression of change scores.
- `var`: String, specifying letter to be used for of variables (Usually x or y).
- `change_letter`: String, specifying letter to be used for change factor (Usually g or j).
specify_uni_lcsm

Value

Lavaan model syntax including comments.

References


Examples

# Specify univariate LCS model
lavaan_uni_lcsm_01 <- specify_uni_lcsm(timepoints = 10,
    model = list(alpha_constant = TRUE,
                 beta = TRUE,
                 phi = TRUE),
    var = "x",
    change_letter = "g")

# To look at string simply return the object
lavaan_uni_lcsm_01

# To get a readable output use cat() function
cat(lavaan_uni_lcsm_01)
Index

* dataset
  data_bi_lcsm, 2
  data_uni_lcsm, 3

cat, 7, 9, 18, 20

data_bi_lcsm, 2
data_uni_lcsm, 3

extract_fit, 4
extract_param, 5

facet_wrap, 13
fit_bi_lcsm, 6
fit_uni_lcsm, 8

geom_smooth, 13

lavaan, 7, 9

plot_lcsm, 10
plot_trajectories, 12

rename_lcsm_vars, 14

select_bi_cases, 14
select_uni_cases, 15

semPaths, 10, 11
sim_bi_lcsm, 16
sim_uni_lcsm, 19

simulateData, 16, 18–20
specify_bi_lcsm, 16–18, 21
specify_uni_lcsm, 18, 20, 23