Package ‘lcsm’

February 26, 2023

Type Package

Title Univariate and Bivariate Latent Change Score Modelling

Date 2023-02-25

Version 0.3.2

Description Helper functions to implement univariate and bivariate latent change score models in R using the 'lavaan' package.

The package automatically generates 'lavaan' syntax for different model specifications and varying timepoints.

The 'lavaan' syntax generated by this package can be returned and further specifications can be added manually.

Longitudinal plots as well as simplified path diagrams can be created to visualise data and model specifications.

Estimated model parameters and fit statistics can be extracted as data frames.

Data for different univariate and bivariate LCSM can be simulated by specifying estimates for model parameters to explore their effects.

This package combines the strengths of other R packages like 'lavaan', 'broom', and 'semPlot' by generating 'lavaan' syntax that helps these packages work together.

Depends R (>= 3.5.0)

License MIT + file LICENSE

Encoding UTF-8

URL https://milanwiedemann.github.io/lcsm/

BugReports https://github.com/milanwiedemann/lcsm/issues

LazyData true

Imports lavaan (>= 0.6.2), dplyr (>= 0.7.4), tibble (>= 1.4.2), magrittr (>= 1.5), rlang (>= 0.1.6), tidyr (>= 0.8.0), ggplot2 (>= 2.2.1), broom (>= 0.5.1), semPlot (>= 1.1), stats (>= 3.5.2), stringr (>= 1.4.0), purrr (>= 0.3.4), cli

RoxygenNote 7.2.3
Suggests testthat (>= 3.0.0), knitr (>= 1.22), rmarkdown (>= 1.12), shiny (>= 1.4.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Milan Wiedemann [aut, cre] (<https://orcid.org/0000-0003-1991-282X>),
Graham M Thew [ctb] (<https://orcid.org/0000-0003-2851-1315>),
Urška Košir [ctb] (<https://orcid.org/0000-0003-2132-4090>),
Anke Ehlers [ths] (<https://orcid.org/0000-0002-8742-0192>),
Mental Health Research UK [fnd]

Maintainer Milan Wiedemann <milan.wiedemann@gmail.com>

Repository CRAN

Date/Publication 2023-02-25 23:40:02 UTC

R topics documented:

- data_bi_lcsm .. 2
- data_uni_lcsm .. 3
- extract_fit ... 4
- extract_param .. 5
- fit_bi_lcsm ... 6
- fit_uni_lcsm .. 8
- lcsm_data ... 10
- plot_lcsm ... 11
- plot_trajectories ... 14
- rename_lcsm_vars ... 16
- select_bi_cases .. 17
- select_uni_cases .. 18
- sim_bi_lcsm ... 18
- sim_uni_lcsm ... 22
- specify_bi_lcsm ... 24
- specify_uni_lcsm ... 26

Index 28

data_bi_lcsm

Longitudinal dataset with repeated measures of two constructs

Description

Example dataset with repeated measures of two constructs to illustrate how the package works.

Usage

```r
data(data_bi_lcsm)
```
Format

A longitudinal dataset in wide format:

- id: ID variable, unique identifier for each person
- x1: x value at time point 1
- x2: x value at time point 2
- x3: x value at time point 3
- x4: x value at time point 4
- x5: x value at time point 5
- x6: x value at time point 6
- x7: x value at time point 7
- x8: x value at time point 8
- x9: x value at time point 9
- x10: x value at time point 10
- y1: y value at time point 1
- y2: y value at time point 2
- y3: y value at time point 3
- y4: y value at time point 4
- y5: y value at time point 5
- y6: y value at time point 6
- y7: y value at time point 7
- y8: y value at time point 8
- y9: y value at time point 9
- y10: y value at time point 10

Examples

```r
# Load data into global environment
data(data_uni_lcsm)
```

Description

Example dataset with repeated measures of one constructs to illustrate how the package works.

Usage

```r
data(data_uni_lcsm)
```
Format

A longitudinal dataset in wide format:

- id: ID variable, unique identifier for each person
- x1: x value at time point 1
- x2: x value at time point 2
- x3: x value at time point 3
- x4: x value at time point 4
- x5: x value at time point 5
- x6: x value at time point 6
- x7: x value at time point 7
- x8: x value at time point 8
- x9: x value at time point 9
- x10: x value at time point 10

Examples

Load data into global environment
data(data_uni_lcsm)

extract_fit

Extract fit statistics of lavaan objects

Description

Extract fit statistics of lavaan objects

Usage

extract_fit(..., details = FALSE)

Arguments

... lavaan object(s)
details Logical, if TRUE return all fit statistics. By default this is set to FALSE, a selection (chisq, npar, aic, bic, cfi, rmsea, srmr) of fit statistics is returned.

Value

This function returns a tibble.

References

Examples

```r
# First create a lavaan object
## Not run:
bi_lcsm_01 <- fit_bi_lcsm(data = data_bi_lcsm,
                          var_x = names(data_bi_lcsm)[2:4],
                          var_y = names(data_bi_lcsm)[12:14],
                          model_x = list(alpha_constant = TRUE,
                                          beta = TRUE,
                                          phi = FALSE),
                          model_y = list(alpha_constant = TRUE,
                                          beta = TRUE,
                                          phi = TRUE),
                          coupling = list(delta_lag_xy = TRUE,
                                           xi_lag_yx = TRUE))

# Now extract fit statistics
extract_fit(bi_lcsm_01)
## End(Not run)
```

`extract_param`

Extract labelled parameters of lavaan objects

Description

Extract labelled parameters of lavaan objects

Usage

```r
eextract_param(lavaan_object, printp = FALSE)
```

Arguments

- **lavaan_object** lavaan object.
- **printp** If TRUE convert into easily readable p values.

Value

This function returns a tibble with labelled parameters.

References

David Robinson and Alex Hayes (2019). broom: Convert Statistical Analysis Objects into Tidy Tibbles. R package version 0.5.2. https://CRAN.R-project.org/package=broom/
Examples

```r
# First create a lavaan object
bi_lcsm_01 <- fit_bi_lcsm(data = data_bi_lcsm,
                          var_x = names(data_bi_lcsm)[2:4],
                          var_y = names(data_bi_lcsm)[12:14],
                          model_x = list(alpha_constant = TRUE,
                                          beta = TRUE,
                                          phi = FALSE),
                          model_y = list(alpha_constant = TRUE,
                                          beta = TRUE,
                                          phi = TRUE),
                          coupling = list(delta_lag_xy = TRUE,
                                           xi_lag_yx = TRUE))

# Now extract parameter estimates
extract_param(bi_lcsm_01)
```

fit_bi_lcsm
Fit bivariate latent change score models

Description

Fit bivariate latent change score models.

Usage

```r
fit_bi_lcsm(
  data,
  var_x,
  var_y,
  model_x,
  model_y,
  coupling,
  add = NULL,
  mimic = "Mplus",
  estimator = "MLR",
  missing = "FIML",
  return_lavaan_syntax = FALSE,
  ...
)
```

Arguments

- **data**
 Wide dataset.

- **var_x**
 List of variables measuring one construct of the model.

- **var_y**
 List of variables measuring another construct of the model.
model_x List of model specifications (logical) for variables specified in var_x.
 • alpha_constant (Constant change factor),
 • alpha_piecewise (Piecewise constant change factors),
 • alpha_piecewise_num (Changepoint of piecewise constant change factors. In an example with 10 repeated measurements, setting alpha_piecewise_num to 5 would estimate two separate constant change factors, a first one for changes up to timepoint 5, and a second one for changes from timepoint 5 onwards (in this example timepoint 10),
 • alpha_linear (Linear change factor),
 • beta (Proportional change factor),
 • phi (Autoregression of change scores).

model_y List of model specifications for variables specified in var_y.
 • alpha_constant (Constant change factor),
 • alpha_piecewise (Piecewise constant change factors),
 • alpha_piecewise_num (Changepoint of piecewise constant change factors. In an example with 10 repeated measurements, setting alpha_piecewise_num to 5 would estimate two separate constant change factors, a first one for changes up to timepoint 5, and a second one for changes from timepoint 5 onwards (in this example timepoint 10),
 • alpha_linear (Linear change factor),
 • beta (Proportional change factor),
 • phi (Autoregression of change scores).

coupling List of model specifications (logical) for coupling parameters.
 • coupling_piecewise (Piecewise coupling parameters),
 • coupling_piecewise_num (Changepoint of piecewise coupling parameters),
 • delta_xy (True score y predicting subsequent change score x),
 • delta_yx (True score x predicting subsequent change score y),
 • xi_xy (Change score y predicting subsequent change score x),
 • xi_yx (Change score x predicting subsequent change score y).

add String, lavaan syntax to be added to the model
mimic See mimic argument in lavOptions.
estimator See estimator argument in lavOptions.
missing See missing argument in lavOptions.
return_lavaan_syntax Logical, if TRUE return the lavaan syntax used for simulating data. To make it look beautiful use the function cat.

Value

This function returns a lavaan class object.
References

Examples

```r
# Fit
fit_bi_lcsm(data = data_bi_lcsm,
             var_x = names(data_bi_lcsm)[2:4],
             var_y = names(data_bi_lcsm)[12:14],
             model_x = list(alpha_constant = TRUE,
                              beta = TRUE,
                              phi = FALSE),
             model_y = list(alpha_constant = TRUE,
                              beta = TRUE,
                              phi = TRUE),
             coupling = list(delta_lag_xy = TRUE,
                              xi_lag_yx = TRUE)
)
```

fit_uni_lcsm Fit univariate latent change score models

Description

Fit univariate latent change score models.

Usage

```r
fit_uni_lcsm(
  data,
  var,
  model,
  add = NULL,
  mimic = "Mplus",
  estimator = "MLR",
  missing = "FIML",
  return_lavaan_syntax = FALSE,
  ...
)
```
Arguments

data A data frame in "wide" format, i.e. one column for each measurement point and one row for each observation.

var Vector, specifying the variable names of each measurement point sequentially.

model List of model specifications (logical) for variables specified in var.

• alpha_constant (Constant change factor)
• alpha_piecewise (Piecewise constant change factors)
• alpha_piecewise_num (Changepoint of piecewise constant change factors. In an example with 10 repeated measurements, setting alpha_piecewise_num to 5 would estimate two separate constant change factors, a first one for changes up to timepoint 5, and a second one for changes from timepoint 5 onwards (in this example timepoint 10).)
• alpha_linear (Linear change factor)
• beta (Proportional change factor)
• phi (Autoregression of change scores)

add String, lavaan syntax to be added to the model

mimic See mimic argument in lavOptions.

estimator See estimator argument in lavOptions.

missing See missing argument in lavOptions.

return_lavaan_syntax Logical, if TRUE return the lavaan syntax used for simulating data. To make it look beautiful use the function cat.

... Additional arguments to be passed to lavOptions.

Value

This function returns a lavaan class object.

References

Examples

Fit univariate latent change score model
fit_uni_lcsm(data = data_uni_lcsm,
 var = names(data_uni_lcsm)[2:4],
 model = list(alpha_constant = TRUE,
 beta = FALSE,
 phi = FALSE))

lcsm_data

Longitudinal dataset with repeated measures of two constructs

Description

Example dataset with 5 repeated measures of two constructs to illustrate how the package works.

Usage

data(lcsm_data)

Format

A longitudinal dataset in wide format:

- id: ID variable, unique identifier for each person
- x1: x value at time point 1
- x2: x value at time point 2
- x3: x value at time point 3
- x4: x value at time point 4
- x5: x value at time point 5
- y1: y value at time point 1
- y2: y value at time point 2
- y3: y value at time point 3
- y4: y value at time point 4
- y5: y value at time point 5

Examples

Load data into global environment
data(lcsm_data)
plot_lcsm

Plot simplified path diagram of univariate and bivariate latent change score models

Description

Note that the following three arguments are needed to create a plot (see below for more details):

- lavaan_object: the lavaan fit object needs to be specified together with a
- lcsm: a string indicating whether the latent change score model is "univariate" or "bivariate", and
- lavaan_syntax: a separate object with the lavaan syntax as a string

Usage

plot_lcsm(
 lavaan_object,
 layout = NULL,
 lavaan_syntax = NULL,
 return_layout_from_lavaan_syntax = FALSE,
 lcsm = c("univariate", "bivariate"),
 lcsm_colours = FALSE,
 curve_covar = 0.5,
 what = "path",
 whatLabels = "est",
 edge.width = 1,
 node.width = 1,
 border.width = 1,
 fixedStyle = 1,
 freeStyle = 1,
 residuals = FALSE,
 label.scale = FALSE,
 sizeMan = 3,
 sizeLat = 5,
 intercepts = FALSE,
 fade = FALSE,
 nCharNodes = 0,
 nCharEdges = 0,
 edge.label.cex = 0.5,
 ...
)

Arguments

lavaan_object lavaan object of a univariate or bivariate latent change score model.
layout Matrix, specifying number and location of manifest and latent variables of LCS model specified in lavaan_object.
lavaan_syntax String, lavaan syntax of the lavaan object specified in lavaan_object. If lavaan_syntax is provided a layout matrix will be generated automatically.

return_layout_from_lavaan_syntax
Logical, if TRUE and lavaan_syntax is provided, the layout matrix generated for semPaths will be returned for inspection of further customisation.

lcsm String, specifying whether lavaan_object represent a "univariate" or "bivariate" LCS model.

lcsm_colours Logical, if TRUE the following colours will be used to highlight different parts of the model: Observed variables (White); Latent true scores (Green); Latent change scores (Blue) ; Change factors (Yellow).

curve_covar See semPaths.
what See semPlot. "path" to show unweighted grey edges, "par" to show parameter estimates as weighted (green/red) edges

whatLabels See semPaths. "label" to show edge names as label, "est" for parameter estimates, "hide" to hide edge labels.

dge.width See semPaths.
node.width See semPaths.
border.width See semPaths.
fixedStyle See semPaths.
freeStyle See semPaths.
residuals See semPaths.
label.scale See semPaths.
sizeMan See semPaths.
sizeLat See semPaths.
intercepts See semPaths.
fade See semPaths.
nCharNodes See semPaths.
nCharEdges See semPaths.
edge.label.cex See semPaths.
...
Other other arguments passed on to semPaths.

Value

Plot

References

Examples

Simplified plot of univariate lcsm
lavaan_syntax_uni <- fit_uni_lcsm(
 data = data_bi_lcsm,
 var = c("x1", "x2", "x3", "x4", "x5"),
 model = list(
 alpha_constant = TRUE,
 beta = TRUE,
 phi = TRUE
),
 return_lavaan_syntax = TRUE,
 return_lavaan_syntax_string = TRUE
)
lavaan_object_uni <- fit_uni_lcsm(
 data = data_bi_lcsm,
 var = c("x1", "x2", "x3", "x4", "x5"),
 model = list(
 alpha_constant = TRUE,
 beta = TRUE,
 phi = TRUE
)
)

plot_lcsm(
 lavaan_object = lavaan_object_uni,
 what = "cons", whatLabels = "invisible",
 lavaan_syntax = lavaan_syntax_uni,
 lcsm = "univariate"
)

Not run:
Simplified plot of bivariate lcsm
lavaan_syntax_bi <- fit_bi_lcsm(
 data = data_bi_lcsm,
 var_x = c("x1", "x2", "x3", "x4", "x5"),
 var_y = c("y1", "y2", "y3", "y4", "y5"),
 model_x = list(
 alpha_constant = TRUE,
 beta = TRUE,
 phi = TRUE
),
 model_y = list(
 alpha_constant = TRUE,
 beta = TRUE,
 phi = TRUE
),
 coupling = list(
 delta_lag_xy = TRUE,
 delta_lag_yx = TRUE
),
 return_lavaan_syntax = TRUE,
 return_lavaan_syntax_string = TRUE
lavaan_object_bi <- fit_bi_lcsm(
 data = data_bi_lcsm,
 var_x = c("x1", "x2", "x3", "x4", "x5"),
 var_y = c("y1", "y2", "y3", "y4", "y5"),
 model_x = list(
 alpha_constant = TRUE,
 beta = TRUE,
 phi = TRUE
),
 model_y = list(
 alpha_constant = TRUE,
 beta = TRUE,
 phi = TRUE
),
 coupling = list(
 delta_lag_xy = TRUE,
 delta_lag_yx = TRUE
)
)

plot_lcsm(
 lavaan_object = lavaan_object_bi,
 what = "cons", whatLabels = "invisible",
 lavaan_syntax = lavaan_syntax_bi,
 lcsm = "bivariate"
)
End(Not run)

plot_trjectories

Plot individual trajectories

Description

Plot individual trajectories

Usage

plot_trjectories(
 data,
 id_var,
 var_list,
 line_colour = "blue",
 group_var = NULL,
 point_colour = "black",
 line_alpha = 0.2,
plot_trajectories

```r
point_alpha = 0.2,
point_size = 1,
smooth = FALSE,
smooth_method = "loess",
smooth_se = FALSE,
xlab = "X",
ylab = "Y",
scale_x_num = FALSE,
scale_x_num_start = 1,
random_sample_frac = 1,
seed = 1234,
title_n = FALSE,
connect_missing = TRUE
```

Arguments

- **data**: Dataset in wide format.
- **id_var**: String, specifying id variable.
- **var_list**: Vector, specifying variable names to be plotted in sequential order.
- **line_colour**: String, specifying colour of lines.
- **group_var**: String, specifying variable name of group, each group will get individual colour lines. This overwrites the line_colour argument. Also consider other options to look at trajectories like `facet_wrap` which may be more appropriate.
- **point_colour**: String, specifying colour of points.
- **line_alpha**: Numeric, specifying alpha of lines.
- **point_alpha**: Numeric, specifying alpha of points.
- **point_size**: Numeric, size of points.
- **smooth**: Logical, add smoothed conditional means using `geom_smooth`.
- **smooth_method**: String, specifying method to be used for calculating average line, see `geom_smooth`.
- **smooth_se**: Logical, specifying whether to add standard error of average line or not.
- **xlab**: String for x axis label.
- **ylab**: String for y axis label.
- **scale_x_num**: Logical, if TRUE print sequential numbers starting from 1 as x axis labels, if FALSE use variable names.
- **scale_x_num_start**: Numeric, if scale_x_num = TRUE this is the starting value of the x axis.
- **random_sample_frac**: Numeric, set seed for random sample if random_sample_frac argument is used.
- **seed**: The fraction of rows to select (from wide dataset), default is set to 1 (100 percent) of the sample.
- **title_n**: Logical, specifying whether to print title with number and percentage of cases used for the plot.
- **connect_missing**: Logical, specifying whether to connect points by id_var across missing values.
rename_lcsm_vars

Description

Rename variables for univariate and bivariate latent change score models

Usage

rename_lcsm_vars(data, var_x, var_y)

Arguments

- **data**
 Dataset in wide format
- **var_x**
 List of variables measuring first construct
- **var_y**
 List of variables measuring second construct

Value

Dataset in wide format with renamed variables
select_bi_cases

Select cases based on minimum number of available session scores on two longitudinal measures

Description

Select cases based on minimum number of available session scores on two longitudinal measures

Usage

select_bi_cases(data, id_var, var_list_x, var_list_y, min_count_x, min_count_y)

Arguments

data A data frame in "wide" format, i.e. one column for each measurement point and one row for each observation.
id_var String, specifying id variable.
var_list_x Vector, specifying variable names of construct X in sequential order.
var_list_y Vector, specifying variable names of construct Y in sequential order.
min_count_x Numeric, specifying minimum number of available scores for construct X.
min_count_y Numeric, specifying minimum number of available scores for construct Y.

Value

tibble

Examples

select_bi_cases(data_bi_lcsim,
 id_var = "id",
 var_list_x = names(data_bi_lcsim)[2:11],
 var_list_y = names(data_bi_lcsim)[12:21],
 min_count_x = 7,
 min_count_y = 7
)
select_uni_cases

Select cases based on minimum number of available session scores on one longitudinal measure

Description

Select cases based on minimum number of available session scores on one longitudinal measure

Usage

```r
select_uni_cases(data, id_var, var_list, min_count, return_id_only = FALSE)
```

Arguments

- `data`: Dataset in wide format.
- `id_var`: String, specifying id variable.
- `var_list`: Vector, specifying variable names in sequential order.
- `min_count`: Numeric, specifying minimum number of available scores
- `return_id_only`: Logical, if TRUE only return ID. This is needed for select_bi_cases

Value

tibble

Examples

```r
select_uni_cases(data_uni_lcsm, 
                      id_var = "id", 
                      var_list = names(data_uni_lcsm)[-1], 
                      min_count = 7 
                  )
```

sim_bi_lcsm

Simulate data from bivariate latent change score model parameter estimates

Description

This function simulate data from bivariate latent change score model parameter estimates using simulateData.
Usage

```r
sim_bi_lcsms(
  timepoints,
  model_x,
  model_x_param = NULL,
  model_y,
  model_y_param = NULL,
  coupling,
  coupling_param = NULL,
  sample.nobs = 500,
  na_x_pct = 0,
  na_y_pct = 0,
  seed = NULL,
  ...
)
```

Arguments

- **timepoints**: See `specify_bi_lcsms`
- **model_x**: See `specify_bi_lcsms`
- **model_x_param**: List, specifying parameter estimates for the LCSM that has been specified in the argument 'model_x':
 - `gamma lx1`: Mean of latent true scores x (Intercept),
 - `sigma2 lx1`: Variance of latent true scores x,
 - `sigma2 ux`: Variance of observed scores x,
 - `alpha g2`: Mean of change factor (g2),
 - `alpha g3`: Mean of change factor (g3),
 - `sigma2 g2`: Variance of change factor (g2),
 - `sigma2 g3`: Variance of change factor (g3),
 - `sigma_g2lx1`: Covariance of change factor (g2) with the initial true score x (lx1),
 - `sigma_g3lx1`: Covariance of change factor (g3) with the initial true score x (lx1),
 - `sigma_g2g3`: Covariance of change factors (g2 and g2),
 - `phi x`: Autoregression of change scores x.
- **model_y**: See `specify_bi_lcsms`
- **model_y_param**: List, specifying parameter estimates for the LCSM that has been specified in the argument 'model_y':
 - `gamma ly1`: Mean of latent true scores y (Intercept),
 - `sigma2 ly1`: Variance of latent true scores y,
• \(\sigma^2_{uy} \): Variance of observed scores \(y \),
• \(\alpha_{j2} \): Mean of change factor (j2),
• \(\alpha_{j3} \): Mean of change factor (j3),
• \(\sigma^2_{j2} \): Variance of change factor (j2),
• \(\sigma^2_{j3} \): Variance of change factor (j3),
• \(\sigma_{j2ly1} \): Covariance of change factor (j2) with the initial true score \(x \) (ly1),
• \(\sigma_{j3ly1} \): Covariance of change factor (j3) with the initial true score \(x \) (ly1),
• \(\sigma_{j2j3} \): Covariance of change factors (j2 and j2),
• \(\phi_{y} \): Autoregression of change scores \(y \).

coupling See specify_bi_lcsms
coupling_param List, specifying parameter estimates coupling parameters that have been specified in the argument 'coupling':
• \(\sigma_{su} \): Covariance of residuals \(x \) and \(y \),
• \(\sigma_{ly1lx1} \): Covariance of intercepts \(x \) and \(y \),
• \(\sigma_{g2ly1} \): Covariance of change factor \(x \) (g2) with the initial true score \(y \) (ly1),
• \(\sigma_{g3ly1} \): Covariance of change factor \(x \) (g3) with the initial true score \(y \) (ly1),
• \(\sigma_{j2lx1} \): Covariance of change factor \(y \) (j2) with the initial true score \(x \) (lx1),
• \(\sigma_{j3lx1} \): Covariance of change factor \(y \) (j3) with the initial true score \(x \) (lx1),
• \(\sigma_{j2g2} \): Covariance of change factors \(y \) (j2) and \(x \) (g2),
• \(\sigma_{j2g3} \): Covariance of change factors \(y \) (j2) and \(x \) (g3),
• \(\sigma_{j3g2} \): Covariance of change factors \(y \) (j3) and \(x \) (g2),
• \(\delta_{con_{xy}} \): Change score \(x \) (t) determined by true score \(y \) (t),
• \(\delta_{con_{yx}} \): Change score \(y \) (t) determined by true score \(x \) (t),
• \(\delta_{lag_{xy}} \): Change score \(x \) (t) determined by true score \(y \) (t-1),
• \(\delta_{lag_{yx}} \): Change score \(y \) (t) determined by true score \(x \) (t-1),
• \(xi_{con_{xy}} \): Change score \(x \) (t) determined by change score \(y \) (t),
• \(xi_{con_{yx}} \): Change score \(y \) (t) determined by change score \(x \) (t),
• \(xi_{lag_{xy}} \): Change score \(x \) (t) determined by change score \(y \) (t-1),
• \(xi_{lag_{yx}} \): Change score \(y \) (t) determined by change score \(x \) (t-1)
sample.nobs Numeric, number of cases to be simulated, see specify_uni_lcsms
na_x_pct Numeric, percentage of random missing values in the simulated dataset (0 to 1)
na_y_pct Numeric, percentage of random missing values in the simulated dataset (0 to 1)
seed Set seed for data simulation, see simulateData
... Arguments to be passed on to simulateData
var_x See specify_bi_lcsms
var_y See specify_bi_lcsms
change_letter_x
See specify_bi_lcsms
change_letter_y
See specify_bi_lcsms
return_lavaan_syntax
Logical, if TRUE return the lavaan syntax used for simulating data. To make it look beautiful use the function cat.

Value
tibble

References

Examples
Simulate data from bivariate LCSM parameters
sim_bi_lcsms(timepoints = 12,
aa_x_pct = .05,
aa_y_pct = .1,
model_x = list(alpha_constant = TRUE, beta = TRUE, phi = FALSE),
model_x_param = list(gamma_lx1 = 21,
sigma2_lx1 = .5,
sigma2_ux = .2,
alpha_g2 = -.4,
sigma2_g2 = .4,
sigma_g2lx1 = .2,
beta_x = -.1),
model_y = list(alpha_constant = TRUE, beta = TRUE, phi = TRUE),
model_y_param = list(gamma_ly1 = 5,
sigma2_ly1 = .2,
sigma2_uy = .2,
alpha_j2 = -.2,
sigma2_j2 = .1,
sigma_j2ly1 = .02,
sim_uni_lcsm

Simulate data from univariate latent change score model parameter estimates

Description

This function simulate data from univariate latent change score model parameter estimates using simulateData.

Usage

sim_uni_lcsm(
 timepoints,
 model,
 model_param = NULL,
 var = "x",
 change_letter = "g",
 sample.nobs = 500,
 na.pct = 0,
 seed = NULL,
 ...,
 return_lavaan_syntax = FALSE
)

Arguments

- **timepoints**: See `specify_uni_lcsm`
- **model**: See `specify_uni_lcsm`
- **model_param**: List, specifying parameter estimates for the LCSM that has been specified in the argument `model`
 - `gamma_lx1`: Mean of latent true scores x (Intercept),
 - `sigma2_lx1`: Variance of latent true scores x,
 - `sigma2_ux`: Variance of observed scores x,
sim_uni_lcsm

- \(\alpha_{g2} \): Mean of change factor (g2),
- \(\alpha_{g3} \): Mean of change factor (g3),
- \(\sigma^2_{g2} \): Variance of constant change factor (g2),
- \(\sigma^2_{g3} \): Variance of constant change factor (g3),
- \(\sigma_{g2x1} \): Covariance of constant change factor (g2) with the initial true score x (lx1),
- \(\sigma_{g3x1} \): Covariance of constant change factor (g3) with the initial true score x (lx1),
- \(\sigma_{g2g3} \): Covariance of change factors (g2 and g2),
- \(\phi_x \): Autoregression of change scores x.

var See specify_uni_lcsm
change_letter See specify_uni_lcsm
sample.nobs Numeric, number of cases to be simulated, see specify_uni_lcsm
na_pct Numeric, percentage of random missing values in the simulated dataset (0 to 1)
seed Set seed for data simulation, see simulateData
... Arguments to be passed on to simulateData
return_lavaan_syntax Logical, if TRUE return the lavaan syntax used for simulating data. To make it look beautiful use the function cat.

Value
tibble

Examples

Simulate data from univariate LCSM parameters
sim_uni_lcsm(timepoints = 10,
model = list(alpha_constant = TRUE, beta = FALSE, phi = TRUE),
model_param = list(gamma_lx1 = 21,
sigma2_lx1 = 1.5,
sigma2_ux = .2,
alpha_g2 = -.93,
sigma2_g2 = .1,
sigma_g2lx1 = .2,
phi_x = .2),
return_lavaan_syntax = FALSE,
sample.nobs = 1000,
na_pct = .3)
specify_bi_lcsm

Specify lavaan model for bivariate latent change score models

Description

Specify lavaan model for bivariate latent change score models

Usage

specify_bi_lcsm(
 timepoints,
 var_x,
 model_x,
 var_y,
 model_y,
 coupling,
 add = NULL,
 change_letter_x = "g",
 change_letter_y = "j"
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timepoints</td>
<td>Number of timepoints.</td>
</tr>
<tr>
<td>var_x</td>
<td>Vector, specifying variables measuring one construct of the model.</td>
</tr>
<tr>
<td>model_x</td>
<td>List, specifying model specifications (logical) for variables specified in var_x.</td>
</tr>
<tr>
<td>var_y</td>
<td>Vector, specifying variables measuring another construct of the model.</td>
</tr>
<tr>
<td>model_y</td>
<td>List, specifying model specifications (logical) for variables specified in var_y.</td>
</tr>
<tr>
<td>coupling</td>
<td>List, specifying coupling parameters.</td>
</tr>
<tr>
<td>add</td>
<td>Specifies additional model parameters.</td>
</tr>
<tr>
<td>change_letter_x</td>
<td>Change letter for variables in var_x.</td>
</tr>
<tr>
<td>change_letter_y</td>
<td>Change letter for variables in var_y.</td>
</tr>
</tbody>
</table>
• coupling_piecewise (Piecewise coupling parameters),
• coupling_piecewise_num (Changepoint of piecewise coupling parameters),
• delta_con_xy (True score y predicting concurrent change score x),
• delta_lag_xy (True score y predicting subsequent change score x),
• delta_con_yx (True score x predicting concurrent change score y),
• delta_lag_yx (True score x predicting subsequent change score y),
• xi_con_xy (Change score y predicting concurrent change score x),
• xi_lag_xy (Change score y predicting subsequent change score x),
• xi_con_yx (Change score x predicting concurrent change score y),
• xi_lag_yx (Change score x predicting subsequent change score y).

add String, lavaan syntax to be added to the model
change_letter_x String, specifying letter to be used as change factor for construct x in lavaan syntax.
change_letter_y String, specifying letter to be used as change factor for construct y in lavaan syntax.

Value
Lavaan model syntax including comments.

References

Examples
Specify bivariate LCSM
lavaan_bi_lcsm_01 <- specify_bi_lcsm(timepoints = 10,
 var_x = "x",
 model_x = list(alpha_constant = TRUE,
 beta = TRUE,
 phi = TRUE),
 var_y = "y",
 model_y = list(alpha_constant = TRUE,
 beta = TRUE,
 phi = TRUE),
 add = String, lavaan syntax to be added to the model,
 change_letter_x = String, specifying letter to be used as change factor for construct x in lavaan syntax,
 change_letter_y = String, specifying letter to be used as change factor for construct y in lavaan syntax)
coupling = list(delta_lag_xy = TRUE,
 delta_lag_yx = TRUE),
 change_letter_x = "g",
 change_letter_y = "j")

To look at string simply return the object
lavaan_bi_lcsm_01

To get a readable output use cat() function
cat(lavaan_bi_lcsm_01)

specify_uni_lcsm
Specify lavaan model for univariate latent change score models

Description

Specify lavaan model for univariate latent change score models

Usage

```r
specify_uni_lcsm(timepoints, var, model, add = NULL, change_letter = "g")
```

Arguments

- `timepoints` Number if timepoints.
- `var` String, specifying letter to be used for of variables (Usually x or y).
- `model` List of model specifications (logical) for the variables specified in variable.
 - `alpha_constant`: Constant change factor,
 - `alpha_piecewise`: Piecewise constant change factors,
 - `alpha_piecewise_num`: Changepoint of piecewise constant change factors,
 - `alpha_linear`: Linear change factor,
 - `beta`: Proportional change factor,
 - `phi`: Autoregression of change scores.
- `add` String, lavaan syntax to be added to the model
- `change_letter` String, specifying letter to be used for change factor (Usually g or j).

Value

Lavaan model syntax including comments.
References

Examples

Specify univariate LCSM
lavaan_uni_lcsm_01 <- specify_uni_lcsm(timepoints = 10,
 model = list(alpha_constant = TRUE,
 beta = TRUE,
 phi = TRUE),
 var = "x",
 change_letter = "g")

#' # To look at string simply return the object
lavaan_uni_lcsm_01

To get a readable output use cat() function
cat(lavaan_uni_lcsm_01)
Index

* **dataset**
 - data_bi_lcsm, 2
 - data_uni_lcsm, 3
 - lcsm_data, 10

 cat, 7, 9, 21, 23

 data_bi_lcsm, 2
 data_uni_lcsm, 3

 extract_fit, 4
 extract_param, 5

 facet_wrap, 15
 fit_bi_lcsm, 6
 fit_uni_lcsm, 8

 geom_smooth, 15

 lavOptions, 7, 9
 lcsm_data, 10

 plot_lcsm, 11
 plot_trajectories, 14

 rename_lcsm_vars, 16

 select_bi_cases, 17
 select_uni_cases, 18

 semPaths, 12
 sim_bi_lcsm, 18
 sim_uni_lcsm, 22

 simulateData, 18, 20, 22, 23
 specify_bi_lcsm, 19–21, 24
 specify_uni_lcsm, 20, 22, 23, 26