Package ‘lcsm’

June 5, 2020

Type Package
Title Univariate and Bivariate Latent Change Score Modeling
Date 2020-06-03
Version 0.1.1

Description Helper functions to implement univariate and bivariate latent change score models in R using the 'lavaan' package.
The package automatically generates 'lavaan' syntax for different model specifications and varying timepoints.
The 'lavaan' syntax generated by this package can be returned and further specifications can be added manually.
 Longitudinal plots as well as simplified path diagrams can be created to visualise data and model specifications.
 Estimated model parameters and fit statistics can be extracted as data frames.
 Data for different univariate and bivariate LCSM can be simulated by specifying estimates for model parameters to explore their effects.
 This package combines the strengths of other R packages like 'lavaan', 'broom', and 'semPlot' by generating 'lavaan' syntax that helps these packages work together.

Depends R (>= 3.5.0)
License GPL-3
Encoding UTF-8

URL https://milanwiedemann.github.io/lcsm/
BugReports https://github.com/milanwiedemann/lcsm/issues
LazyData true

Imports lavaan (>= 0.6.2), dplyr (>= 0.7.4), tibble (>= 1.4.2),
 magrittr (>= 1.5), rlang (>= 0.1.6), tidyr (>= 0.8.0), ggplot2
 (>= 2.2.1), broom (>= 0.5.1), semPlot (>= 1.1), stats (>=
 3.5.2), stringr (>= 1.4.0), purrr (>= 0.3.4)

RoxygenNote 7.1.0
Suggests testthat (>= 2.1.0), knitr (>= 1.22), rmarkdown (>= 1.12),
 shiny (>= 1.4.0)

VignetteBuilder knitr

NeedsCompilation no

Author Milan Wiedemann [aut, cre] (<https://orcid.org/0000-0003-1991-282X>),
 Anke Ehlers [ths] (<https://orcid.org/0000-0002-8742-0192>),
 Mental Health Research UK [fnd]

Maintainer Milan Wiedemann <milan.wiedemann@gmail.com>

Repository CRAN

Date/Publication 2020-06-05 10:40:03 UTC

R topics documented:

<table>
<thead>
<tr>
<th>topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>data_bi_lcsm</td>
<td>2</td>
</tr>
<tr>
<td>data_uni_lcsm</td>
<td>3</td>
</tr>
<tr>
<td>extract_fit</td>
<td>4</td>
</tr>
<tr>
<td>extract_param</td>
<td>5</td>
</tr>
<tr>
<td>fit_bi_lcsm</td>
<td>6</td>
</tr>
<tr>
<td>fit_uni_lcsm</td>
<td>8</td>
</tr>
<tr>
<td>plot_lcsm</td>
<td>10</td>
</tr>
<tr>
<td>plot_trajectories</td>
<td>12</td>
</tr>
<tr>
<td>rename_lcsm_vars</td>
<td>14</td>
</tr>
<tr>
<td>select_bi_cases</td>
<td>14</td>
</tr>
<tr>
<td>select_uni_cases</td>
<td>15</td>
</tr>
<tr>
<td>sim_bi_lcsm</td>
<td>16</td>
</tr>
<tr>
<td>sim_uni_lcsm</td>
<td>19</td>
</tr>
<tr>
<td>specify_bi_lcsm</td>
<td>21</td>
</tr>
<tr>
<td>specify_uni_lcsm</td>
<td>23</td>
</tr>
</tbody>
</table>

Index 25

data_bi_lcsm Longitudinal dataset with repeated measures of two constructs

Description

Example dataset with repeated measures of two constructs to illustrate how the package works.

Usage

data(data_bi_lcsm)
data_uni_lcsm

Format

A longitudinal dataset in wide format:

- id: ID variable, unique identifier for each person
- x1: x value at time point 1
- x2: x value at time point 2
- x3: x value at time point 3
- x4: x value at time point 4
- x5: x value at time point 5
- x6: x value at time point 6
- x7: x value at time point 7
- x8: x value at time point 8
- x9: x value at time point 9
- x10: x value at time point 10
- y1: y value at time point 1
- y2: y value at time point 2
- y3: y value at time point 3
- y4: y value at time point 4
- y5: y value at time point 5
- y6: y value at time point 6
- y7: y value at time point 7
- y8: y value at time point 8
- y9: y value at time point 9
- y10: y value at time point 10

Examples

Load data into global environment
data(data_bi_lcsm)

<table>
<thead>
<tr>
<th>data_uni_lcsm</th>
<th>Longitudinal dataset with repeated measures of one constructs</th>
</tr>
</thead>
</table>

Description

Example dataset with repeated measures of one constructs to illustrate how the package works.

Usage

data(data_uni_lcsm)
Format

A longitudinal dataset in wide format:

- id: ID variable, unique identifier for each person
- x1: x value at time point 1
- x2: x value at time point 2
- x3: x value at time point 3
- x4: x value at time point 4
- x5: x value at time point 5
- x6: x value at time point 6
- x7: x value at time point 7
- x8: x value at time point 8
- x9: x value at time point 9
- x10: x value at time point 10

Examples

```r
# Load data into global environment
data(data_uni_lcsm)
```

<table>
<thead>
<tr>
<th>extract_fit</th>
<th>Extract fit statistics of lavaan objects</th>
</tr>
</thead>
</table>

Description

Extract fit statistics of lavaan objects

Usage

```r
extract_fit(..., details = FALSE)
```

Arguments

- `...` lavaan object(s)
- `details` Logical, if TRUE return all fit statistics. By default this is set to FALSE, a selection (chisq, npar, aic, bic, cfi, rmsea, srmr) of fit statistics is returned.

Value

This function returns a tibble.

References

Examples

First create a lavaan object
bi_lcsm_01 <- fit_bi_lcsm(data = data_bi_lcsm,
 var_x = names(data_bi_lcsm)[2:4],
 var_y = names(data_bi_lcsm)[12:14],
 model_x = list(alpha_constant = TRUE,
 beta = TRUE,
 phi = FALSE),
 model_y = list(alpha_constant = TRUE,
 beta = TRUE,
 phi = TRUE),
 coupling = list(delta_lag_xy = TRUE,
 xi_lag_yx = TRUE)
)

Now extract fit statistics
extract_fit(bi_lcsm_01)

extract_param
Extract labelled parameters of lavaan objects

Description

Extract labelled parameters of lavaan objects

Usage

`extract_param(lavaan_object, printp = FALSE)`

Arguments

- `lavaan_object` lavaan object.
- `printp` If TRUE convert into easily readable p values.

Value

This function returns a tibble with labelled parameters.

References

David Robinson and Alex Hayes (2019). broom: Convert Statistical Analysis Objects into Tidy Tibbles. R package version 0.5.2. https://CRAN.R-project.org/package=broom
Examples

First create a lavaan object
bi_lcsm_01 <- fit_bi_lcsm(data = data_bi_lcsm,
 var_x = names(data_bi_lcsm)[2:4],
 var_y = names(data_bi_lcsm)[12:14],
 model_x = list(alpha_constant = TRUE,
 beta = TRUE,
 phi = FALSE),
 model_y = list(alpha_constant = TRUE,
 beta = TRUE,
 phi = TRUE),
 coupling = list(delta_lag_xy = TRUE,
 xi_lag_yx = TRUE)
)

Now extract parameter estimates
extract_param(bi_lcsm_01)

fit_bi_lcsm

Fit bivariate latent change score models

Description

Fit bivariate latent change score models.

Usage

fit_bi_lcsm(
 data,
 var_x,
 var_y,
 model_x,
 model_y,
 coupling,
 mimic = "Mplus",
 estimator = "MLR",
 missing = "FIML",
 return_lavaan_syntax = FALSE,
 ...
)

Arguments

data Wide dataset.
var_x List of variables measuring one construct of the model.
var_y List of variables measuring another construct of the model.
model_x List of model specifications (logical) for variables specified in var_x.
• alpha_constant (Constant change factor),
• alpha_piecewise (Piecewise constant change factors),
• alpha_piecewise_num (Changepoint of piecewise constant change factors),
• alpha_linear (Linear change factor),
• beta (Proportional change factor),
• phi (Autoregression of change scores).

model_y List of model specifications for variables specified in var_y.
• alpha_constant (Constant change factor),
• alpha_piecewise (Piecewise constant change factors),
• alpha_piecewise_num (Changepoint of piecewise constant change factors),
• alpha_linear (Linear change factor),
• beta (Proportional change factor),
• phi (Autoregression of change scores).

coupling List of model specifications (logical) for coupling parameters.
• coupling_piecewise (Piecewise coupling parameters),
• coupling_piecewise_num (Changepoint of piecewise coupling parameters),
• delta_xy (True score y predicting subsequent change score x),
• delta_yx (True score x predicting subsequent change score y),
• xi_xy (Change score y predicting subsequent change score x),
• xi_yx (Change score x predicting subsequent change score y).

mimic See lavaan.
estimator See lavaan.
missing See lavaan.
return_lavaan_syntax Logical, if TRUE return the lavaan syntax used for simulating data. To make it look beautiful use the function cat.
... Additional arguments to be passed to lavaan.

Value
This function returns a lavaan class object.

References

Examples

```r
# Fit
fit_bi_lcsm(data = data_bi_lcsm,
             var_x = names(data_bi_lcsm)[2:4],
             var_y = names(data_bi_lcsm)[12:14],
             model_x = list(alpha_constant = TRUE,
                             beta = TRUE,
                             phi = FALSE),
             model_y = list(alpha_constant = TRUE,
                             beta = TRUE,
                             phi = TRUE),
             coupling = list(delta_lag_xy = TRUE,
                              xi_lag_yx = TRUE))

fit_uni_lcsm(data = data_uni_lcsm,
              var = names(data_uni_lcsm),
              model = list(alpha_constant = TRUE,
                            beta = TRUE,
                            phi = TRUE))
```

Description

Fit univariate latent change score models.

Usage

```r
fit_uni_lcsm(
  data, var, model,
  mimic = "Mplus",
  estimator = "MLR",
  missing = "FIML",
  return_lavaan_syntax = FALSE,
  ...)
```

Arguments

- **data**: A data frame in "wide" format, i.e. one column for each measurement point and one row for each observation.
- **var**: Vector, specifying the variable names of each measurement point sequentially.
- **model**: List of model specifications (logical) for variables specified in `var`.

• alpha_constant (Constant change factor),
• alpha_piecewise (Piecewise constant change factors),
• alpha_piecewise_num (Changepoint of piecewise constant change factors),
• alpha_linear (Linear change factor),
• beta (Proportional change factor),
• phi (Autoregression of change scores).

mimic See lavaan.
estimator See lavaan.
missing See lavaan.
return_lavaan_syntax Logical, if TRUE return the lavaan syntax used for simulating data. To make it look beautiful use the function cat.
... Additional arguments to be passed to lavaan.

Value
This function returns a lavaan class object.

References

Examples

Fit univariate latent change score model
fit_uni_lcsm(data = data_uni_lcsm,
var = names(data_uni_lcsm)[2:4],
model = list(alpha_constant = TRUE,
beta = FALSE,
phi = FALSE))
plot_lcsm

Plot simplified path diagram of univariate and bivariate latent change score models

Description

Plot simplified path diagram of univariate and bivariate latent change score models

Usage

```r
plot_lcsm(
  lavaan_object,
  layout = NULL,
  lavaan_syntax = NULL,
  return_layout_from_lavaan_syntax = FALSE,
  lcsm = c("univariate", "bivariate"),
  lcsm_colours = FALSE,
  curve_covar = 0.5,
  what = "path",
  whatLabels = "est",
  edge.width = 1,
  node.width = 1,
  border.width = 1,
  fixedStyle = 1,
  freeStyle = 1,
  residuals = FALSE,
  label.scale = FALSE,
  sizeMan = 3,
  sizeLat = 5,
  intercepts = FALSE,
  fade = FALSE,
  nCharNodes = 0,
  nCharEdges = 0,
  edge.label.cex = 0.5,
  ...)
```

Arguments

- `lavaan_object` lavaan object of a univariate or bivariate latent change score model.
- `layout` Matrix, specifying number and location of manifest and latent variables of LCS model specified in `lavaan_object`.
- `lavaan_syntax` String, lavaan syntax of the lavaan object specified in `lavaan_object`. If `lavaan_syntax` is provided a layout matrix will be generated automatically.
- `return_layout_from_lavaan_syntax` Logical, if TRUE and `lavaan_syntax` is provided, the layout matrix generated for semPaths will be returned for inspection of further customisation.
plot_lcsm

lcsm String, specifying whether lavaan_object represent a "univariate" or "bivariate" LCS model.
lcsm_colours Logical, if TRUE the following colours will be used to highlight different parts of the model: Observed variables (White); Latent true scores (Green); Latent change scores (Blue); Change factors (Yellow).
curve_covar See semPaths.
what See semPlot. "path" to show unweighted gray edges, "par" to show parameter estimates as weighted (green/red) edges
whatLabels See semPaths. "label" to show edge names as label, "est" for parameter estimates, "hide" to hide edge labels.
edge.width See semPaths.
node.width See semPaths.
border.width See semPaths.
fixedStyle See semPaths.
freeStyle See semPaths.
residuals See semPaths.
label.scale See semPaths.
sizeMan See semPaths.
sizeLat See semPaths.
intercepts See semPaths.
fade See semPaths.
nCharNodes See semPaths.
nCharEdges See semPaths.
edge.label.cex See semPaths.
... Other arguments passed on to semPaths.

Value
Plot

References

Examples
lavaan_syntax_uni <- fit_uni_lcsm(data = data_bi_lcsm,
var = c("x1", "x2", "x3", "x4", "x5"),
model = list(alpha_constant = TRUE,
beta = TRUE,
phi = TRUE),
return_lavaan_syntax = TRUE,
return_lavaan_syntax_string = TRUE)
lavaan_object_uni <- fit_uni_lcsm(data = data_bi_lcsm,
 var = c("x1", "x2", "x3", "x4", "x5"),
 model = list(alpha_constant = TRUE,
 beta = TRUE,
 phi = TRUE))

plot_lcsm(lavaan_object = lavaan_object_uni,
 what = "cons", whatLabels = "invisible",
 lavaan_syntax = lavaan_syntax_uni,
 lcsm = "univariate")

plot_trajectories
Plot individual trajectories

Description

Plot individual trajectories

Usage

```r
plot_trajectories(
  data,
  id_var,
  var_list,
  line_colour = "blue",
  group_var = NULL,
  point_colour = "black",
  line_alpha = 0.2,
  point_alpha = 0.2,
  point_size = 1,
  smooth = FALSE,
  smooth_method = "loess",
  smooth_se = FALSE,
  xlab = "X",
  ylab = "Y",
  scale_x_num = FALSE,
  scale_x_num_start = 1,
  random_sample_frac = 1,
  seed = 1234,
  title_n = FALSE,
  connect_missing = TRUE
)
```
Arguments

data Dataset in wide format.
id_var String, specifying id variable.
var_list Vector, specifying variable names to be plotted in sequential order.
line_colour String, specifying colour of lines.
group_var String, specifying variable name of group, each group will get individual colour
 lines. This overwrites the line_colour argument. Also consider other options to
 look at trajectories like facet_wrap which may be more appropriate.
point_colour String, specifying colour of points.
line_alpha Numeric, specifying alpha of lines.
point_alpha Numeric, specifying alpha of points.
point_size Numeric, size of point
smooth Logical, add smoothed conditional means using geom_smooth.
smooth_method String, specifying method to be used for calculating average line, see geom_smooth.
smooth_se Logical, specifying whether to add standard error of average line or not.
xlab String for x axis label.
ylab String for y axis label.
scale_x_num Logical, if TRUE print sequential numbers starting from 1 as x axis labels, if
 FALSE use variable names.
scale_x_num_start Numeric, if scale_x_num = TRUE this is the starting value of the x axis.
random_sample_frac The fraction of rows to select (from wide dataset), default is set to 1 (100 per-
 cent) of the sample.
seed Set seed for random sample if random_sample_frac argument is used.
title_n Logical, specifying whether to print title with number and percentage of cases
 used for the plot.
connect_missing Logical, specifying whether to connect points by id_var across missing values.

Value

ggplot2 object

Examples

Create plot for construct x
plot_trajectories(data = data_bi_lcs,
 id_var = "id",
 var_list = c("x1", "x2", "x3", "x4", "x5",
 "x6", "x7", "x8", "x9", "x10")
)

Create plot for construct y specifying some other arguments
plot_trajectories(data = data_bi_lcs,
 id_var = "id",
 var_list = c("x1", "x2", "x3", "x4", "x5",
 "x6", "x7", "x8", "x9", "x10")
)
rename_lcsm_vars

Description

Rename variables for univariate and bivariate latent change score models

Usage

```r
rename_lcsm_vars(data, var_x, var_y)
```

Arguments

- `data`: Dataframe in wide format
- `var_x`: List of variables measuring first construct
- `var_y`: List of variables measuring second construct

Value

Dataframe in wide format with renamed variables

select_bi_cases

Description

Select cases based on minimum number of available session scores on two longitudinal measures

Usage

```r
select_bi_cases(data, id_var, var_list_x, var_list_y, min_count_x, min_count_y)
```
select_uni_cases

Select cases based on minimum number of available session scores on one longitudinal measure

Description

Select cases based on minimum number of available session scores on one longitudinal measure

Usage

```r
select_uni_cases(data, id_var, var_list, min_count, return_id_only = FALSE)
```

Arguments

- **data**: Dataset in wide format.
- **id_var**: String, specifying id variable.
- **var_list**: Vector, specifying variable names in sequential order.
- **min_count**: Numeric, specifying minimum number of available scores
- **return_id_only**: Logical, if TRUE only return ID. This is needed for select_bi_cases

Value

tibble
Examples

```r
select_uni_cases(data_uni_lcsm,
    id_var = "id",
    var_list = names(data_uni_lcsm)[-1],
    min_count = 7)
```

sim_bi_lcsm

Simulate data from bivariate latent change score model parameter estimates

Description

This function simulate data from bivariate latent change score model parameter estimates using `simulateData`.

Usage

```r
sim_bi_lcsm(
    timepoints,
    model_x,
    model_x_param = NULL,
    model_y,
    model_y_param = NULL,
    coupling,
    coupling_param = NULL,
    sample.nobs = 500,
    na_x_pct = 0,
    na_y_pct = 0,
    ...
    var_x = "x",
    var_y = "y",
    change_letter_x = "g",
    change_letter_y = "j",
    return_lavaan_syntax = FALSE
)
```

Arguments

- **timepoints**: See `specify_bi_lcsm`
- **model_x**: See `specify_bi_lcsm`
- **model_x_param**: List, specifying parameter estimates for the LCS model that has been specified in the argument `model_x`:
 - `gamma_lx1`: Mean of latent true scores x (Intercept),
 - `sigma2_lx1`: Variance of latent true scores x,
 - `sigma2_ux`: Variance of observed scores x,
sim_bi_lcsms

- α_{g2}: Mean of change factor (g2),
- α_{g3}: Mean of change factor (g3),
- $\sigma2_{g2}$: Variance of change factor (g2),
- $\sigma2_{g3}$: Variance of change factor (g3),
- σ_{g2lx1}: Covariance of change factor (g2) with the initial true score x (lx1),
- σ_{g3lx1}: Covariance of change factor (g3) with the initial true score x (lx1),
- σ_{g2g3}: Covariance of change factors (g2 and g3),
- ϕ_x: Autoregression of change scores x.

model_y

See specify_bi_lcsms

- γ_{ly1}: Mean of latent true scores y (Intercept),
- $\sigma2_{ly1}$: Variance of latent true scores y,
- $\sigma2_{uy}$: Variance of observed scores y,
- α_{j2}: Mean of change factor (j2),
- α_{j3}: Mean of change factor (j3),
- $\sigma2_{j2}$: Variance of change factor (j2),
- $\sigma2_{j3}$: Variance of change factor (j3),
- σ_{j2ly1}: Covariance of change factor (j2) with the initial true score x (ly1),
- σ_{j3ly1}: Covariance of change factor (j3) with the initial true score x (ly1),
- σ_{j2j3}: Covariance of change factors (j2 and j3),
- ϕ_y: Autoregression of change scores y.

coupling

See specify_bi_lcsms

coupling_param

- σ_{su}: Covariance of residuals x and y,
- σ_{ly1lx1}: Covariance of intercepts x and y,
- σ_{g2ly1}: Covariance of change factor x (g2) with the initial true score y (ly1),
- σ_{g3ly1}: Covariance of change factor x (g3) with the initial true score y (ly1),
- σ_{j2lx1}: Covariance of change factor y (j2) with the initial true score x (lx1),
- σ_{j3lx1}: Covariance of change factor y (j3) with the initial true score x (lx1),
- σ_{j2g2}: Covariance of change factors y (j2) and x (g2),
- σ_{j2g3}: Covariance of change factors y (j2) and x (g3),
- σ_{j3g2}: Covariance of change factors y (j3) and x (g2),
- δ_{con_xy}: Change score x (t) determined by true score y (t),
• \(\delta_{\text{con}, \text{yx}} \): Change score \(y(t) \) determined by true score \(x(t) \),
• \(\delta_{\text{lag}, \text{xy}} \): Change score \(x(t) \) determined by true score \(y(t-1) \),
• \(\delta_{\text{lag}, \text{yx}} \): Change score \(y(t) \) determined by true score \(x(t-1) \),
• \(x_{\text{con}, \text{xy}} \): Change score \(x(t) \) determined by change score \(y(t) \),
• \(x_{\text{con}, \text{yx}} \): Change score \(y(t) \) determined by change score \(x(t) \),
• \(x_{\text{lag}, \text{xy}} \): Change score \(x(t) \) determined by change score \(y(t-1) \),
• \(x_{\text{lag}, \text{yx}} \): Change score \(y(t) \) determined by change score \(x(t-1) \)

sample.nobs
Numeric, number of cases to be simulated, see **specify_uni_lcsm**

na_x_pct
Numeric, percentage of random missing values in the simulated dataset [0,1]

na_y_pct
Numeric, percentage of random missing values in the simulated dataset [0,1]

... Arguments to be passed on to **simulateData**

var_x
See **specify_bi_lcsm**

var_y
See **specify_bi_lcsm**

change_letter_x
See **specify_bi_lcsm**

change_letter_y
See **specify_bi_lcsm**

return_lavaan_syntax
Logical, if TRUE return the lavaan syntax used for simulating data. To make it look beautiful use the function **cat**.

Value
tibble

References

Simulate data from bivariate LCS model parameters

```r
sim_bi_lcsm(timepoints = 12,
             na_x_pct = .05,
             na_y_pct = .1,
             model_x = list(alpha_constant = TRUE, beta = TRUE, phi = FALSE),
             model_x_param = list(gamma_lx1 = 21,
                                    sigma2_lx1 = .5,
                                    sigma2_ux = .2,
                                    alpha_g2 = -.4,
                                    sigma2_g2 = .4,
                                    sigma_g2lx1 = .2,
                                    beta_x = -.1),
             model_y = list(alpha_constant = TRUE, beta = TRUE, phi = TRUE),
             model_y_param = list(gamma_ly1 = 5,
                                   sigma2_ly1 = .2,
                                   sigma2_uy = .2,
                                   alpha_j2 = -.2,
                                   sigma2_j2 = .1,
                                   sigma_j2ly1 = .02,
                                   beta_y = -.2,
                                   phi_y = .1),
             coupling = list(delta_lag_xy = TRUE,
                              xi_lag_yx = TRUE),
             coupling_param = list(sigma_su = .01,
                                    sigma_ly1lx1 = .2,
                                    sigma_g2ly1 = .1,
                                    sigma_j2lx1 = .1,
                                    sigma_j2g2 = .01,
                                    delta_lag_xy = .13,
                                    xi_lag_yx = .4),
             return_lavaan_syntax = FALSE)
```

sim_uni_lcsm

Simulate data from univariate latent change score model parameter estimates

Description

This function simulate data from univariate latent change score model parameter estimates using `simulateData`.

Usage

```r
sim_uni_lcsm(  
    timepoints,  
    model,  
    model_param = NULL,  
    return_lavaan_syntax = FALSE)
```

Examples

```r
# Simulate data from bivariate LCS model parameters
sim_bi_lcsm(timepoints = 12,
             na_x_pct = .05,
             na_y_pct = .1,
             model_x = list(alpha_constant = TRUE, beta = TRUE, phi = FALSE),
             model_x_param = list(gamma_lx1 = 21,
                                    sigma2_lx1 = .5,
                                    sigma2_ux = .2,
                                    alpha_g2 = -.4,
                                    sigma2_g2 = .4,
                                    sigma_g2lx1 = .2,
                                    beta_x = -.1),
             model_y = list(alpha_constant = TRUE, beta = TRUE, phi = TRUE),
             model_y_param = list(gamma_ly1 = 5,
                                   sigma2_ly1 = .2,
                                   sigma2_uy = .2,
                                   alpha_j2 = -.2,
                                   sigma2_j2 = .1,
                                   sigma_j2ly1 = .02,
                                   beta_y = -.2,
                                   phi_y = .1),
             coupling = list(delta_lag_xy = TRUE,
                              xi_lag_yx = TRUE),
             coupling_param = list(sigma_su = .01,
                                    sigma_ly1lx1 = .2,
                                    sigma_g2ly1 = .1,
                                    sigma_j2lx1 = .1,
                                    sigma_j2g2 = .01,
                                    delta_lag_xy = .13,
                                    xi_lag_yx = .4),
             return_lavaan_syntax = FALSE)
```
Functions

sim_uni_lcsm

Arguments

timepoints See specify_uni_lcsm

model See specify_uni_lcsm

model_param List, specifying parameter estimates for the LCS model that has been specified in the argument 'model'

• gamma_lx1: Mean of latent true scores x (Intercept),
• sigma2_lx1: Variance of latent true scores x,
• sigma2_ux: Variance of observed scores x,
• alpha_g2: Mean of change factor (g2),
• alpha_g3: Mean of change factor (g3),
• sigma2_g2: Variance of constant change factor (g2),
• sigma2_g3: Variance of constant change factor (g3),
• sigma_g2lx1: Covariance of constant change factor (g2) with the initial true score x (lx1),
• sigma_g3lx1: Covariance of constant change factor (g3) with the initial true score x (lx1),
• sigma_g2g3: Covariance of change factors (g2 and g2),
• phi_x: Autoregression of change scores x.

var See specify_uni_lcsm

change_letter See specify_uni_lcsm

sample.nobs Numeric, number of cases to be simulated, see specify_uni_lcsm

na_pct Numeric, percentage of random missing values in the simulated dataset [0,1]

... Arguments to be passed on to simulateData

return_lavaan_syntax Logical, if TRUE return the lavaan syntax used for simulating data. To make it look beautiful use the function cat.

Value
tibble

Examples

Simulate data from univariate LCS model parameters
sim_uni_lcsm(timepoints = 10,
 model = list(alpha_constant = TRUE, beta = FALSE, phi = TRUE),
 var = "x",
 change_letter = "g",
 sample.nobs = 500,
 na_pct = 0,
 return_lavaan_syntax = FALSE
)
Description
Specify lavaan model for bivariate latent change score models

Usage
```r
specify_bi_lcsm(
  timepoints,
  var_x,  
  model_x,  
  var_y,  
  model_y,  
  coupling,  
  change_letter_x = "g",  
  change_letter_y = "j"
)
```

Arguments
- **timepoints**: Number of timepoints.
- **var_x**: Vector, specifying variables measuring one construct of the model.
- **model_x**: List, specifying model specifications (logical) for variables specified in var_x.
 - `alpha_constant` (Constant change factor),
 - `alpha_piecewise` (Piecewise constant change factors),
 - `alpha_piecewise_num` (Changepoint of piecewise constant change factors),
 - `alpha_linear` (Linear change factor),
 - `beta` (Proportional change factor),
 - `phi` (Autoregression of change scores).
- **var_y**: Vector, specifying variables measuring another construct of the model.
- **model_y**: List, specifying model specifications (logical) for variables specified in var_y.
- `alpha_constant` (Constant change factor),
- `alpha_piecewise` (Piecewise constant change factors),
- `alpha_piecewise_num` (Changepoint of piecewise constant change factors),
- `alpha_linear` (Linear change factor),
- `beta` (Proportional change factor),
- `phi` (Autoregression of change scores).

coupling
List, specifying coupling parameters.
- `coupling_piecewise` (Piecewise coupling parameters),
- `coupling_piecewise_num` (Changepoint of piecewise coupling parameters),
- `delta_con_xy` (True score y predicting concurrent change score x),
- `delta_lag_xy` (True score y predicting subsequent change score x),
- `delta_con_yx` (True score x predicting concurrent change score y),
- `delta_lag_yx` (True score x predicting subsequent change score y),
- `xi_con_xy` (Change score y predicting concurrent change score x),
- `xi_lag_xy` (Change score y predicting subsequent change score x),
- `xi_con_yx` (Change score x predicting concurrent change score y),
- `xi_lag_yx` (Change score x predicting subsequent change score y).

c change_letter_x
String, specifying letter to be used as change factor for construct x in lavaan syntax.

c change_letter_y
String, specifying letter to be used as change factor for construct y in lavaan syntax.

Value
Lavaan model syntax including comments.

References

Examples

Specify bivariate LCS model
lavaan_bi_lcsm_01 <- specify_bi_lcsm(timepoints = 10,
 var_x = "x",
 model_x = list(alpha_constant = TRUE,
 beta = TRUE,
 phi = TRUE),
 var_y = "y",
 model_y = list(alpha_constant = TRUE,
 beta = TRUE,
 phi = TRUE),
 coupling = list(delta_lag_xy = TRUE,
 delta_lag_yx = TRUE),
 change_letter_x = "g",
 change_letter_y = "j")

To look at string simply return the object
lavaan_bi_lcsm_01

To get a readable output use cat() function
cat(lavaan_bi_lcsm_01)

specify_uni_lcsm

Specify lavaan model for univariate latent change score models

Description

Specify lavaan model for univariate latent change score models

Usage

specify_uni_lcsm(timepoints, model, var, change_letter = "g")

Arguments

timepoints Number if timepoints.
model List of model specifications (logical) for the variables specified in variable.
 • alpha_constant: Constant change factor,
 • alpha_piecewise: Piecewise constant change factors,
 • alpha_piecewise_num: Changepoint of piecewise constant change factors,
 • alpha_linear: Linear change factor,
 • beta: Proportional change factor,
 • phi: Autoregression of change scores.
var String, specifying letter to be used for variables (Usually x or y).
change_letter String, specifying letter to be used for change factor (Usually g or j).
specify_uni_lcsm

Value

Lavaan model syntax including comments.

References

Examples

Specify univariate LCS model
lavaan_uni_lcsm_01 <- specify_uni_lcsm(timepoints = 10,
model = list(alpha_constant = TRUE,
beta = TRUE,
phi = TRUE),
var = "x",
change_letter = "g")

#' # To look at string simply return the object
lavaan_uni_lcsm_01

To get a readable output use cat() function
cat(lavaan_uni_lcsm_01)
Index

*Topic dataset
 data_bi_lcsm, 2
 data_uni_lcsm, 3

cat, 7, 9, 18, 20

data_bi_lcsm, 2
data_uni_lcsm, 3

extract_fit, 4
extract_param, 5

facet_wrap, 13
fit_bi_lcsm, 6
fit_uni_lcsm, 8

ggeom_smooth, 13

lavaan, 7, 9

plot_lcsm, 10
plot_trajectories, 12

rename_lcsm_vars, 14

select_bi_cases, 14
select_uni_cases, 15

semPaths, 10, 11
sim_bi_lcsm, 16
sim_uni_lcsm, 19
simulateData, 16, 18–20
specify_bi_lcsm, 16–18, 21
specify_uni_lcsm, 18, 20, 23