Package ‘lctools’

October 13, 2022

Version 0.2-8
Date 2020-04-06
Type Package
Title Local Correlation, Spatial Inequalities, Geographically Weighted
 Regression and Other Tools
Author Stamatis Kalogirou [aut, cre]
Maintainer Stamatis Kalogirou <stamatis@lctools.science>
Depends R (>= 3.6.0)
Imports sp, reshape, weights, pscl, MASS
Description Provides researchers and educators with easy-to-learn user friendly tools for calculating
 key spatial statistics and to apply simple as well as advanced methods of spatial analy-
 sis in real data.
 These include: Local Pearson and Geographically Weighted Pearson Correlation Coefficients,
 Spatial Inequality Measures (Gini, Spatial Gini, LQ, Focal LQ), Spatial Autocorrelation
 (Global and Local Moran’s I), several Geographically Weighted Regression techniques and other
 Spatial Analysis tools (other geographically weighted statistics). This package also con-
 tains functions for measuring the significance of each statistic calculated, mainly based on Monte Carlo simulations.
License GPL (>= 2)
VignetteBuilder knitr
URL http://lctools.science/
Suggests knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2020-04-06 09:42:06 UTC

R topics documented:

 lctools-package .. 2
 acc ... 4
Description

The main purpose of lctools is to assist spatial analysis researchers and educators to use simple, yet powerful, transparent and user friendly tools for calculating key spatial statistics and fitting spatial models. lctools was originally created to help testing the existence of local multi-collinearity among the explanatory variables of local regression models. The main function (lcorrel) allows for the computation of Local Pearson and Geographically Weighted Pearson Correlation Coefficients and their significance. However, the latter could also be used for examining the existence of local association between pairs of variables. As spatial analysis techniques develop, this package has other spatial statistical tools: the spatial decomposition of the Gini coefficient, the spatial/Focal LQ, global and local Moran’s I and tools that help computing variables for Spatial Interaction Models.
Since the version 0.2-4, lctools allows for the application of various Geographically Weighted Regression methods including the Geographically Weighted Zero Inflated Poisson Regression recently proposed in the literature (Kalogirou, 2016). This package also contains functions for measuring the significance level for each statistic calculated. The latter mainly refers to Monte Carlo simulations. The package comes with two datasets one of which is a spatial data frame that refers to the Municipalities in Greece.

Details

Package: lctools
Type: Package
Version: 0.2-8
Date: 2020-04-06
License: GPL (>= 2)

Note

Acknowledgement: I am grateful to the University of Luxembourg and would like to personally thank Ass. Professor Geoffrey Caruso, Professor Markus Hesse and Professor Christian Schulz for their support during my research visit at the Institute of Geography and Spatial Planning (Sept. 2013 - Feb. 2014) where this package was originally developed.

Author(s)

Stamatis Kalogirou

Maintainer: Stamatis Kalogirou <stamatis@lctools.science>

References

Spatial Interaction Models: Destination Accessibility

Description

Destination accessibility or centrality or competition is a variable that when added to a destination choice model forms the competing destinations choice model. A simple formula for this variable is:

\[A_j = \sum (W_m / D_{jm}) | m \neq j \]

where \(A_j \) is the potential accessibility of destination \(j \) to all other potential destinations \(m \), \(W_m \) is a weight generally measured by population, and \(D_{jm} \) is the distance between \(j \) and \(m \).

Usage

`acc(X, Y, Pop, Power=1)`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>X</code></td>
<td>a numeric vector of x coordinates</td>
</tr>
<tr>
<td><code>Y</code></td>
<td>a numeric vector of y coordinates</td>
</tr>
<tr>
<td><code>Pop</code></td>
<td>a numeric vector of the weights, usually a population variable</td>
</tr>
<tr>
<td><code>Power</code></td>
<td>a power of the distance; default is 1</td>
</tr>
</tbody>
</table>

Value

`AccMeasure` a single column numeric matrix of accessibility scores

Note

`X,Y` should be Cartesian coordinates for the distances to be measured in meters. In the sample dataset GR.Municipalities the projection used is the EPSG:2100 (GGRS87 / Greek Grid)

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>
References

Examples

data(GR.Municipalities)
attr<-GR.Municipalities@data
aMeasure<-acc(attr$X[1:100], attr$Y[1:100],attr$PopTot01[1:100],1)

FLQ

Focal Location Quotient

Description

This is the implementation of the Focal Location Quotients proposed by Cromley and Hanink (2012). The function calculates the standard LQ and the Focal LQ based on a kernel of nearest neighbours. Two weighted schemes are currently supported: binary and bi-square weights for a fixed number of nearest neighbours set by the user.

Usage

FLQ(Coords, Bandwidth, e, E, Denominator, WType = "Bi-square")

Arguments

Coords a numeric matrix or vector or dataframe of two columns giving the X,Y co-
ordinates of the observations (data points or geometric / population weighted centroids)

Bandwidth a positive value that defines the number of nearest neighbours for the calculation of the weights

e a numeric vector of a variable e_i as in the nominator of the Equation 1 (Cromley and Hanink, 2012) referring to the employment in a given sector for each location

E a numeric vector of a variable E_i as in the nominator of the Equation 1 (Cromley and Hanink, 2012) referring to the total employment in a given sector for each location

Denominator a ratio as in the denominator (e/E) of the Equation 1 (Cromley and Hanink, 2012), where e and E are total employment in the given sector and overall employment in the reference economy, respectively.
string giving the weighting scheme used to compute the weights matrix. Options are: "Binary", "Bi-square". Default is "Bi-square".

Binary: weight = 1 for distances less than or equal to the distance of the furthest neighbour (H), 0 otherwise;

Bi-square: weight = (1-(ndist/H)^2)^2 for distances less than or equal to H, 0 otherwise

Value

FLQ returns a list of 2 vectors:

LQ A numeric vector with the Location Quotient values

FLQ A numeric vector with the Focal Location Quotient values

Author(s)

Stamatis Kalogirou <stamatis@letools.science>

References

Examples

data(VotesGR)
res<-FLQ(cbind(VotesGR$X, VotesGR$Y),4,VotesGR$NDJune12,VotesGR$AllJune12,0.2966)
boxplot(res)

GR.Municipalities Municipalities in Greece in 2011

Description

Municipality boundaries and socioeconomic variables aggregated to the new local authority geography (Programme Kallikratis).

Usage

data(GR.Municipalities)
GR.Municipalities

Format

A data frame with 325 observations on the following 14 variables.

- **OBJECTID**: a numeric vector of area IDs
- **X**: a numeric vector of x coordinates
- **Y**: a numeric vector of y coordinates
- **Name**: a character vector of municipality names (in Greeklish)
- **CodeELSTAT**: a character vector of municipality codes to link with data from the Hellenic Statistical Authority (EL.STAT.)
- **PopM01**: a numeric vector of the total population for males in 2001 (Census)
- **PopF01**: a numeric vector of the total population for females in 2001 (Census)
- **PopTot01**: a numeric vector of the total population in 2001 (Census)
- **UnemrM01**: a numeric vector of unemployment rate for males in 2001 (Census)
- **UnemrF01**: a numeric vector of unemployment rate for females in 2001 (Census)
- **UnemrT01**: a numeric vector of total unemployment rate in 2001 (Census)
- **PrSect01**: a numeric vector of the proportion of economically active working in the primary financial sector (mainly agriculture; fishery; and forestry in 2001 (Census))
- **Foreig01**: a numeric vector of proportion of people who do not have the Greek citizenship in 2001 (Census)
- **Income01**: a numeric vector of mean recorded household income (in Euros) earned in 2001 and declared in 2002 tax forms

Details

The X,Y coordinates refer to the geometric centroids of the new 325 Municipalities in Greece (Programme Kallikratis) in 2011. The boundary data of the original shapefile have been simplified to reduce its detail and size. The polygon referring to Mount Athos has been removed as there is no data available for this politically autonomous area of Greece.

Source

The shapefile of the corresponding polygons is available from the Hellenic Statistical Authority (EL.STAT.) at http://www.statistics.gr/el/digital-cartographical-data. The population, employment, citizenship and employment sector data is available from the Hellenic Statistical Authority (EL.STAT.) at http://www.statistics.gr/en/home but were aggregated to the new municipalities by the author. The income data are available from the General Secretariat of Information Systems in Greece at http://www.gsis.gr/ at the postcode level of geography and were aggregated to the new municipalities by the author.

References

http://www.tandfonline.com/doi/abs/10.4113/jom.2010.1095

Kalogirou, S. (2013) Testing geographically weighted multicollinearity diagnostics, GISRUK 2013, Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK, 3-5 April 2013.
http://gisc.gr/?mdocs-file=1140&mdocs-url=false

Examples

data(GR.Municipalities)
boxplot(GR.Municipalities@data$Income01)

hist(GR.Municipalities@data$PrSect01)

gw.glm

Generalised Geographically Weighted Regression (GGWR)

Description

This function allows for the calibration of a local model using a Generalised Geographically Weighted Regression (GGWR). At the moment this function has been coded in order to fit a Geographically Weighted Poisson Regression (GWPR) model.

Usage

`gw.glm(formula, family, dframe, bw, kernel, coords)`

Arguments

- **formula**: the local model to be fitted using the same syntax used in the `glm` function in R. This is a sting that is passed to the sub-models’ `glm` function. For more details look at the class `formula`.
- **family**: a description of the error distribution and link function to be used in the local model as in the `glm` function. Currently the only option tested is "poisson".
- **dframe**: a numeric data frame of at least two suitable variables (one dependent and one independent)
- **bw**: a positive number that may be an integer in the case of an "adaptive kernel" or a real in the case of a "fixed kernel". In the first case the integer denotes the number of nearest neighbours, whereas in the latter case the real number refers to the bandwidth (in meters if the coordinates provided are Cartesian). This argument can be also the result of a bandwidth selection algorithm such as those available in the function `gw.glm.bw`
- **kernel**: the kernel to be used in the regression. Options are "adaptive" or "fixed". The weighting scheme used here is defined by the bi-square function

 \[
 weight = \left(1 - \left(\frac{ndist}{H}\right)^2\right)^2 \text{ for distances less than or equal to } H, 0 \text{ otherwise}
 \]

- **coords**: a numeric matrix or data frame of two columns giving the X,Y coordinates of the observations
Details

The Generalised Geographically Weighted Regression is a method recently proposed building on the simple GWR. It allows for the investigation of the existence of spatial non-stationarity in the relationship between a dependent and a set of independent variables in the cases in which the dependent function does not follow a normal distribution. This is possible by fitting a sub-model for each observation is space, taking into account the neighbour observations weighted by distance. A detailed description of the Geographically Weighted Poisson Regression currently supported here along with examples from internal migration modelling can be found in two publication by Kalogirou (2003, 2015). The difference of this functions to existing ones is that each time the sub-dataset is selected and the sub-model is fitted using R’s \texttt{glm} function instead of fitting the complete local model with matrix algebra. The latter approach may be faster but more prone to rounding error and code crashing.

Value

\begin{itemize}
 \item \texttt{GGLM_LEst} a numeric data frame with the local intercepts and the local parameter estimates for each independent variable in the model’s formula.
 \item \texttt{GGLM_LPvalues} a numeric data frame with the local p-value for the local intercepts and the local parameter estimates for each independent variable in the model’s formula.
 \item \texttt{GGLM_GofFit} a numeric data frame with residuals and local goodness of fit statistics (AIC, Deviance)
\end{itemize}

Warning

Large datasets may take long to calibrate.

Note

This function is under development. There should be improvements in future versions of the package lctools. Any suggestion is welcome!

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>

References

See Also

\texttt{gw.glm.bw gw.zi gwr}
Examples

```r
RDF <- random.test.data(12, 12, 3, "poisson")
gwpr <- gw.glm(dep ~ X1 + X2, "poisson", RDF, 50, kernel = 'adaptive', cbind(RDF$X, RDF$Y))
```

gw.glm.bw
Optimal bandwidth estimation for Generalised Geographically Weighted Regression (GGWR)

Description

This function helps choosing the optimal bandwidth for the Generalised Geographically Weighted Regression (GGWR). At the moment the latter refers to the Geographically Weighted Poisson Regression (GWPR).

Usage

```r
gw.glm.bw(formula, family, dframe, coords, kernel, algorithm="exhaustive", optim.method="Nelder-Mead", b.min=NULL, b.max=NULL, step=NULL)
```

Arguments

- `formula`: the local model to be fitted using the same syntax used in the glm function in R. This is a sting that is passed to the sub-models’ glm function. For more details look at the class `formula`.
- `family`: a description of the error distribution and link function to be used in the local model as in the glm function. Currently the only option tested is "poisson".
- `dframe`: a numeric data frame of at least two suitable variables (one dependent and one independent)
- `coords`: a numeric matrix or data frame of two columns giving the X,Y coordinates of the observations
- `kernel`: the kernel to be used in the regression. Options are "adaptive" or "fixed". The weighting scheme used here is defined by the bi-square function (weight = (1-(ndist/H)^2)^2 for distances less than or equal to H, 0 otherwise)
- `algorithm`: a character argument that specifies whether the function will use an exhaustive or a heuristic algorithm. In the first case all possible bandwidths within a range are being tested. In the second case the optim function is being used allowing for the choice of various optimisation methods (such as Brent or BFGS) that may find a global or local optimum. The default algorithm is "exhaustive"
- `optim.method`: the optimisation method to be used. A detailed discussion is available at the 'Details' section of the function optim (stats). Example methods are "Nelder-Mead", "Brent", "BFGS", "CG" and "L-BFGS-B". The default method is "Nelder-Mead".
- `b.min`: the minimum bandwidth. This is important for both algorithms. In the case of the exhaustive algorithm it sets the lower boundary for the range in which the function will compute the CV score for each possible bandwidth. In the case of the heuristic algorithm it provides the initial value for the bandwidth to be
optimised which is very important. In the latter case b.min and b.max should be provided if the optimisation method "L-BFGS-B" or "Brent" has been selected.

b.max the maximum bandwidth. This is important for both algorithms. In the case of the exhaustive algorithm it sets the upper boundary for the range in which the function will compute the CV score for each possible bandwidth. In the case of the heuristic algorithm b.max and b.min should be provided if the optimisation method "L-BFGS-B" or "Brent" has been selected.

step this numeric argument is used only in the case of a fixed kernel indicating the increment of the sequence of bandwidths in between the b.min and the b.max. In the case of the adaptive kernel the increment is 1 neighbour.

Details

Please carefully read the function \texttt{optim(stats)} when using a heuristic algorithm.

Value

\begin{description}
\item[bw] The optimal bandwidth (fixed or adaptive)
\item[CV] The corresponding Cross Validation score for the optimal bandwidth
\item[CVs] Available only in the case of the exhaustive algorithm. This is a numeric matrix in which the first column refers to the bandwidth in test and the second to the corresponding CV score.
\end{description}

Warning

Large datasets increase the processing time.

Note

Please select the optimisation algorithm carefully. This function needs further testing. Please report any bugs!

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>

References

See Also

gwr
Examples

```r
RDF <- random.test.data(12,12,3,"poisson")
gwpr.bw <- gw.glm.bw(dep ~ X1 + X2, "poisson", RDF, cbind(RDF$X,RDF$Y),
    kernel = 'adaptive', b.min = 48, b.max=50)
```

gw.glm.cv A specific version of the function gw.glm

Description

A specific version of the function `gw.glm` returning only the leave-one-out Cross Validation (CV) score. `gw.glm.cv` excludes the observation for which a sub-model fits.

Usage

```r
gw.glm.cv(bw, formula, family, dframe, obs, kernel, dmatrix)
```

Arguments

- `bw` a positive number that may be an integer in the case of an "adaptive kernel" or a real in the case of a "fixed kernel". In the first case the integer denotes the number of nearest neighbours, whereas in the latter case the real number refers to the bandwidth (in meters if the coordinates provided are Cartesian).
- `formula` the local model to be fitted using the same syntax used in the `glm` function in R. This is a sting that is passed to the sub-models’ `glm` function. For more details look at the class `formula`.
- `family` a description of the error distribution and link function to be used in the local model as in the `glm` function. Currently the only option tested is "poisson".
- `dframe` a numeric data frame of at least two suitable variables (one dependent and one independent)
- `obs` number of observations in the global dataset
- `kernel` the kernel to be used in the regression. Options are "adaptive" or "fixed". The weighting scheme used here is defined by the bi-square function `(weight = (1-(ndist/H)^2)^2` for distances less than or equal to `H`, 0 otherwise)
- `dmatrix` euclidean distance matrix between the observations

Details

Only used by `gw.glm.bw`

Value

Leave-one-out Cross Validation (CV) score
Author(s)

Stamatis Kalogirou <stamatis@lctools.science>

References

See Also

gw.glm.bw

gw.glm.light

A light version of the Generalised Geographically Weighted Regression (GGWR)

Description

This function allows for the calibration of a local model using the Generalised Geographically Weighted Regression (GGWR) but reports and returns fewer results compared to the function gw.glm.

Usage

gw.glm.light(formula, family, dframe, bw, kernel, coords)

Arguments

formula

the local model to be fitted using the same syntax used in the glm function in R. This is a sting that is passed to the sub-models' glm function. For more details look at the class formula.

family

da description of the error distribution and link function to be used in the local model as in the glm function. Currently the only option tested is "poisson".

dframe

a numeric data frame of at least two suitable variables (one dependent and one independent)

bw

a positive number that may be an integer in the case of an "adaptive kernel" or a real in the case of a "fixed kernel". In the first case the integer denotes the number of nearest neighbours, whereas in the latter case the real number refers to the bandwidth (in meters if the coordinates provided are Cartesian). This argument can be also the result of a bandwidth selection algorithm such as those available in the function gw.glm.bw
kernel the kernel to be used in the regression. Options are "adaptive" or "fixed". The weighting scheme used here is defined by the bi-square function (weight = (1-(ndist/H)^2)^2 for distances less than or equal to H, 0 otherwise)

coords a numeric matrix or data frame of two columns giving the X,Y coordinates of the observations

Details
For more details look at the function gw.glm. gw.glm.light is only used by the function gw.glm.mc.test in order to assess if the local parameter estimates of the Generalised Geographically Weighted Regression (GGWR) exhibit a significant spatial variation.

Value
A numeric data frame with the local intercepts and the local parameter estimates for each independent variable in the model’s formula.

Author(s)
Stamatis Kalogirou <stamatis@lctools.science>

References

See Also
gw.glm, gw.glm.mc.test

gw.glm.mc.test Significance test for the spatial variation of the Generalised Geographically Weighted Regression local parameter estimates

Description
This function provides one approach for testing the significance of the spatial variation of the local parameter estimates resulted in by fitting a Generalised Geographically Weighted Regression (GGWR) model. The approach consists of a Monte Carlo simulation according to which: a) the data are spatially reallocated in a random way; b) GGWR models fit for the original and simulated spatial data sets; c) the variance of each variable for the original and simulated sets is then calculated; d) a pseudo p-value for each variable V is calculated as p = (1+C)/(1+M) where C is the number of cases in which the simulated data sets generated variances of the local parameter estimates of the variable V that were as extreme as the observed local parameter estimates variance of the variable in question and M is the number of permutations. If p <= 0.05 it can be argued that the spatial variation of the local parameters estimates for a variable V is statistically significant. For this approach, a minimum of 19 simulations is required.
Usage

```r
gw.glm.mc.test(Nsim = 19, formula, family, dframe, bw, kernel, coords)
```

Arguments

- **Nsim**: a positive integer that defines the number of the simulation's iterations.
- **formula**: the local model to be fitted using the same syntax used in the `glm` function in R. This is a sting that is passed to the sub-models’ `glm` function. For more details look at the class `formula`.
- **family**: a description of the error distribution and link function to be used in the local model as in the `glm` function. Currently the only option tested is "poisson".
- **dframe**: a numeric data frame of at least two suitable variables (one dependent and one independent).
- **bw**: a positive number that may be an integer in the case of an "adaptive kernel" or a real in the case of a "fixed kernel". In the first case the integer denotes the number of nearest neighbours, whereas in the latter case the real number refers to the bandwidth (in meters if the coordinates provided are Cartesian). This argument can be also the result of a bandwidth selection algorithm such as those available in the function `gw.glm.bw`.
- **kernel**: the kernel to be used in the regression. Options are "adaptive" or "fixed". The weighting scheme used here is defined by the bi-square function (weight = \((1-(ndist/H)^2)^2\) for distances less than or equal to \(H\), 0 otherwise).
- **coords**: a numeric matrix or data frame of two columns giving the X,Y coordinates of the observations.

Details

For 0.05 level of significance in social sciences, a minimum number of 19 simulations (Nsim >= 19) is required. We recommend at least 99 and at best 999 iterations.

Value

Returns a list of the simulated values, the observed the pseudo p-value of significance

- **var.lpest.obs**: a vector with the variances of the observed local parameter estimates for each variable in the model.
- **var.SIM**: a matrix with the variance of the simulated local parameter estimates for each variable in the model.
- **var.SIM.c**: a matrix with the number of cases in which the simulated data set generated variances of the local parameter estimates of a variable \(V\) that were as extreme as the observed local parameter estimates variance of the variable in question.
- **pseudo.p**: a vector of pseudo p-values for all the parameters in the model (constant and variables).

Warning

Large datasets may take way too long to perform this test.
Note
This function will be developed along with gw.glm.

Author(s)
Stamatis Kalogirou <stamatis@lctools.science>

References

See Also
gw.glm.bw gw.glm gw

Description
This function allows for the calibration of a local model using the Geographically Weighted Zero Inflated Poisson Regression (GWZIPR).

Usage
gw.zi(formula, family, dframe, bw, kernel, coords)

Arguments
formula the local model to be fitted using the same syntax used in the zeroinf1 function of the R package pscl. This is a sting (a symbolic description of the model) that is passed to the sub-models’ zeroinf1 function. For more details look at the details of the zeroinf1 function.

family a specification of the count model family to be used in the local model as in the zeroinf1 function. Currently the only option tested is "poisson".

dframe a numeric data frame of at least two suitable variables (one dependent and one independent)

bw a positive number that may be an integer in the case of an "adaptive kernel" or a real in the case of a "fixed kernel". In the first case the integer denotes the number of nearest neighbours, whereas in the latter case the real number refers to the bandwidth (in meters if the coordinates provided are Cartesian). This argument can be also the result of a bandwidth selection algorithm such as those available in the function gw.zi.bw
kernel

the kernel to be used in the regression. Options are "adaptive" or "fixed". The weighting scheme used here is defined by the bi-square function (weight = (1-(ndist/H)^2)^2 for distances less than or equal to H, 0 otherwise)

coords

a numeric matrix or data frame of two columns giving the X,Y coordinates of the observations

Details

The Geographically Weighted Zero Inflated Poisson Regression (GWZIPR) is a method recently proposed by Kalogirou(2015). It can be used with count data that follow a Poisson distribution and contain many zero values. The GWZIPR allows for the investigation of the existence of spatial non-stationarity in the relationship between a dependent and a set of independent variables while accounting for excess zeros. This is possible by fitting two separate sub-models for each observation is space, taking into account the neighbour observations weighted by distance. The first sub-model (count) models the non-zero values of the dependent variable while the second sub-model (zero) models the zero values of the dependent variable. A detailed description of the GWZIPR along with examples from internal migration modelling is presented in the paper mentioned above (Kalogirou, 2015).

Value

ZI_LEst_count

a numeric data frame with the local intercepts and the local parameter estimates for each independent variable in the model’s formula for the count part of the Zero Inflated model.

ZI_LEst_zero

a numeric data frame with the local intercepts and the local parameter estimates for each independent variable in the model’s formula for the zero part of the Zero Inflated model.

ZI_LPvalues_count

a numeric data frame with the local p-value for the local intercepts and the local parameter estimates for each independent variable in the model’s formula for the count part of the Zero Inflated model.

ZI_LPvalues_zero

a numeric data frame with the local p-value for the local intercepts and the local parameter estimates for each independent variable in the model’s formula for the zero part of the Zero Inflated model.

ZI_GofFit

a numeric data frame with residuals and local goodness of fit statistics (AIC)

Warning

Large datasets may take long to calibrate.

Note

This function is under development. There should be improvements in future versions of the package lctools. Any suggestion is welcome!

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>
References

See Also

gw.zi.bw gw.glm gwr

Examples

RDF <- random.test.data(10,10,3,"zip")
gw.zip <- gw.zi(dep ~ X1 + X2, "poisson", RDF, 60, kernel = 'adaptive', cbind(RDFX,RDFY))

gw.zi.bw

Optimal bandwidth estimation for Geographically Weighted Zero Inflated Poisson Regression (GWZIPR)

Description

This function helps choosing the optimal bandwidth for the Geographically Weighted Zero Inflated Poisson Regression (GWZIPR).

Usage

gw.zi.bw(formula, family, dframe, coords, kernel, algorithm="exhaustive", optim.method="Nelder-Mead", b.min=NULL, b.max=NULL, step=NULL)

Arguments

formula the local model to be fitted using the same syntax used in the zeroInfl function of the R package pscl. This is a sting (a symbolic description of the model) that is passed to the sub-models' zeroInfl function. For more details look at the details of the zeroInfl function.
family a specification of the count model family to be used in the local model as in the zeroInfl function. Currently the only option tested is "poisson".
dframe a numeric data frame of at least two suitable variables (one dependent and one independent)
coords a numeric matrix or data frame of two columns giving the X,Y coordinates of the observations
kernel the kernel to be used in the regression. Options are "adaptive" or "fixed". The weighting scheme used here is defined by the bi-square function (weight = \((1-(ndist/H)^2)^2\) for distances less than or equal to \(H\), 0 otherwise)
algorithm
a character argument that specifies whether the function will use an exhaustive or a heuristic algorithm. In the first case all possible bandwidths within a range are being tested. In the second case the optim function is being used allowing for the choice of various optimisation methods (such as Brent or BFGS) that may find a global or local optimum. The default algorithm is "exhaustive" optim.method
the optimisation method to be used. A detailed discussion is available at the 'Details' section of the function optim (stats). Example methods are "Nelder-Mead", "Brent", "BFGS", "CG" and "L-BFGS-B". The default method is "Nelder-Mead". b.min
the minimum bandwidth. This is important for both algorithms. In the case of the exhaustive algorithm it sets the lower boundary for the range in which the function will compute the CV score for each possible bandwidth. In the case of the heuristic algorithm it provides the initial value for the bandwidth to be optimised which is very important. In the latter case b.min and b.max should be provided if the optimisation method "L-BFGS-B" or "Brent" has been selected. b.max
the maximum bandwidth. This is important for both algorithms. In the case of the exhaustive algorithm it sets the upper boundary for the range in which the function will compute the CV score for each possible bandwidth. In the case of the heuristic algorithm b.max and b.min should be provided if the optimisation method "L-BFGS-B" or "Brent" has been selected. step
this numeric argument is used only in the case of a fixed kernel indicating the increment of the sequence of bandwidths in between the b.min and the b.max. In the case of the adaptive kernel the increment is 1 neighbour.

Details

Please carefully read the function optim(stats) when using a heuristic algorithm.

Value

bw
The optimal bandwidth (fixed or adaptive)
CV
The corresponding Cross Validation score for the optimal bandwidth
CVs
Available only in the case of the exhaustive algorithm. This is a numeric matrix in which the first column refers to the bandwidth in test and the second to the corresponding CV score.

Warning

Large datasets increase the processing time.

Note

Please select the optimisation algorithm carefully. This function needs further testing. Please report any bugs!

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>
References

See Also

gwr

Examples

RDF <- random.test.data(9,9,3,"zip")
gw.zip.bw <- gw.zi.bw(dep ~ X1 + X2, "poisson", RDF, cbind(RDFX,RDFY),
 kernel = 'adaptive', b.min = 54, b.max=55)

gw.zi.cv

A specific version of the function gw.zi

Description

A specific version of the function gw.zi returning only the leave-one-out Cross Validation (CV) score. gw.zi.cv excludes the observation for which a sub-model fits.

Usage

gw.zi.cv(bw, formula, family, dframe, obs, kernel, dmatrix)

Arguments

bw a positive number that may be an integer in the case of an "adaptive kernel" or a real in the case of a "fixed kernel". In the first case the integer denotes the number of nearest neighbours, whereas in the latter case the real number refers to the bandwidth (in meters if the coordinates provided are Cartesian). This argument can be also the result of a bandwidth selection algorithm such as those available in the function gw.zi.bw

formula the local model to be fitted using the same syntax used in the zeroinfl function of the R package pscl. This is a sting (a symbolic description of the model) that is passed to the sub-models' zeroinfl function. For more details look at the details of the zeroinfl function.

family a specification of the count model family to be used in the local model as in the zeroinfl function. Currently the only option tested is "poisson".

dframe a numeric data frame of at least two suitable variables (one dependent and one independent)

obs number of observations in the global dataset
kernel the kernel to be used in the regression. Options are "adaptive" or "fixed". The weighting scheme used here is defined by the bi-square function (weight = (1-(ndist/H)^2)^2 for distances less than or equal to H, 0 otherwise)

dmatrix eucledian distance matrix between the observations

Details

Only used by gw.zi.bw

Value

Leave-one-out Cross Validation (CV) score

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>

References

See Also

gw.zi.bw

Description

A light version of the Geographically Weighted Zero Inflated Poisson Regression (GWZIPR)

Usage

gw.zi.light(formula, family, dframe, bw, kernel, coords)
Arguments

- **formula**: the local model to be fitted using the same syntax used in the `zeroinfl` function of the R package `pscl`. This is a sting (a symbolic description of the model) that is passed to the sub-models’ `zeroinfl` function. For more details look at the details of the `zeroinfl` function.

- **family**: a specification of the count model family to be used in the local model as in the `zeroinfl` function. Currently the only option tested is "poisson".

- **dframe**: a numeric data frame of at least two suitable variables (one dependent and one independent)

- **bw**: a positive number that may be an integer in the case of an "adaptive kernel" or a real in the case of a "fixed kernel". In the first case the integer denotes the number of nearest neighbours, whereas in the latter case the real number refers to the bandwidth (in meters if the coordinates provided are Cartesian). This argument can be also the result of a bandwidth selection algorithm such as those available in the function `gw.zi.bw`.

- **kernel**: the kernel to be used in the regression. Options are "adaptive" or "fixed". The weighting scheme used here is defined by the bi-square function (weight = \((1-|ndist/H|^2)^2\) for distances less than or equal to \(H\), 0 otherwise).

- **coords**: a numeric matrix or data frame of two columns giving the X,Y coordinates of the observations.

Details

For more details look at the function `gw.zi`. `gw.zi.light` is only used by the function `gw.zi.mc.test` in order to asses if the local parameter estimates of the Geographically Weighted Zero Inflated Poisson Regression (GWZIPR) exhibit a significant spatial variation.

Value

- **ZI_LEst_count**: a numeric data frame with the local intercepts and the local parameter estimates for each independent variable in the model’s formula for the count part of the Zero Inflated model.

- **ZI_LEst_zero**: a numeric data frame with the local intercepts and the local parameter estimates for each independent variable in the model’s formula for the zero part of the Zero Inflated model.

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>

References

See Also
gw.zi gw.zi.mc.test

gw.zi.mc.test
Significance test for the spatial variation of the GWZIPR local parameter estimates

Description

This function provides one approach for testing the significance of the spatial variation of the local parameter estimates resulted in by fitting a Geographically Weighted Zero Inflated Poisson Regression (GWZIPR) model. The approach consists of a Monte Carlo simulation according to which:
a) the data are spatially reallocated in a random way; b) GWZIPR models fit for the original and simulated spatial data sets; c) the variance of each variable for the original and simulated sets is then calculated; d) a pseudo p-value for each variable V is calculated as $p = \frac{1+C}{1+M}$ where C is the number of cases in which the simulated data sets generated variances of the local parameter estimates of the variable V that were as extreme as the observed local parameter estimates variance of the variable in question and M is the number of permutations. If $p \leq 0.05$ it can be argued that the spatial variation of the local parameters estimates for a variable V is statistically significant. For this approach, a minimum of 19 simulations is required.

Usage

gw.zi.mc.test(Nsim = 19, formula, family, dframe, bw, kernel, coords)

Arguments

- **Nsim**
a positive integer that defines the number of the simulation’s iterations

- **formula**
the local model to be fitted using the same syntax used in the zeroinfl function of the R package pscl. This is a sting (a symbolic description of the model) that is passed to the sub-models' zeroinfl function. For more details look at the details of the zeroinfl function.

- **family**
a specification of the count model family to be used in the local model as in the zeroinfl function. Currently the only option tested is "poisson".

- **dframe**
a numeric data frame of at least two suitable variables (one dependent and one independent)

- **bw**
a positive number that may be an integer in the case of an "adaptive kernel" or a real in the case of a "fixed kernel". In the first case the integer denotes the number of nearest neighbours, whereas in the latter case the real number refers to the bandwidth (in meters if the coordinates provided are Cartesian). This argument can be also the result of a bandwidth selection algorithm such as those available in the function gw.zi.bw

- **kernel**
the kernel to be used in the regression. Options are "adaptive" or "fixed". The weighting scheme used here is defined by the bi-square function (weight = $(1-(ndist/H)^2)^2$ for distances less than or equal to H, 0 otherwise)

- **coords**
a numeric matrix or data frame of two columns giving the X,Y coordinates of the observations
Details

For 0.05 level of significance in social sciences, a minimum number of 19 simulations (Nsim >= 19) is required. We recommend at least 99 and at best 999 iterations.

Value

Returns a list of the simulated values, the observed the pseudo p-value of significance

var. lpest.obs	a vector with the variances of the observed local parameter estimates for each variable in the model.
var.SIM	a matrix with the variance of the simulated local parameter estimates for each variable in the model
var.SIM.c	a matrix with the number of cases in which the simulated data set generated variances of the local parameter estimates of a variable V that were as extreme as the observed local parameter estimates variance of the variable in question
pseudo.p	a vector of pseudo p-values for all the parameters in the model (constant and variables).

Warning

Large datasets may take way too long to perform this test.

Note

This function will be developed along with gw.zi.

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>

References

See Also

gw.zi.bw gw.glm gwr
Geographically Weighted Regression (GWR)

Description

This function allows for the calibration of a local model using a simple Geographically Weighted Regression (GWR)

Usage

gwr(formula, dframe, bw, kernel, coords)

Arguments

- formula: the local model to be fitted using the same syntax used in the lm function in R. This is a sting that is passed to the sub-models’ lm function. For more details look at the class formula.
- dframe: a numeric data frame of at least two suitable variables (one dependent and one independent)
- bw: a positive number that may be an integer in the case of an "adaptive kernel" or a real in the case of a "fixed kernel". In the first case the integer denotes the number of nearest neighbours, whereas in the latter case the real number refers to the bandwidth (in meters if the coordinates provided are Cartesian). This argument can be also the result of a bandwidth selection algorithm such as those available in the function gwr.bw
- kernel: the kernel to be used in the regression. Options are "adaptive" or "fixed". The weighting scheme used here is defined by the bi-square function (weight = (1-(ndist/H)^2)^2 for distances less than or equal to H, 0 otherwise)
- coords: a numeric matrix or data frame of two columns giving the X,Y coordinates of the observations

Details

The Geographically Weighted Regression (GWR) is a method of local regression introduced in the late 1990s. It allows for the investigation of the existence of spatial non-stationarity in the relationship between a dependent and a set of independent variables. This is possible by fitting a sub-model for each observation is space, taking into account the neighbour observations weighted by distance. A detailed description of the GWR method along with examples from the real estate market can be found in the book by Fotheringham et al. (2000). An application of GWR in internal migration modelling has been presented by Kalogirou (2003). The difference of this functions to existing ones is that each time the sub-dataset is selected and the sub-model is fitted using R’s lm function instead of fitting the complete GWR model with matrix algebra. The latter approach may be faster but more prone to rounding error and code crashing.
Value

- **LM_LEst**: A numeric data frame with the local intercepts and the local parameter estimates for each independent variable in the model's formula.
- **LM_LPvalues**: A numeric data frame with the local p-value for the local intercepts and the local parameter estimates for each independent variable in the model's formula.
- **LM_GofFit**: A numeric data frame with residuals and local goodness of fit statistics (AIC, Deviance)

Warning

Large datasets may take long to calibrate.

Note

This function is under development. There should be improvements in future versions of the package lctools. Any suggestion is welcome!

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>

References

See Also

gwr.bw, gw.glm, gw.zi

Examples

data(GR.Municipalities)
Coords<-cbind(GR.Municipalities@data$X, GR.Municipalities@data$Y)
local.model<-gwr(Income01 ~ UnemrT01, GR.Municipalities@data, 50, kernel = 'adaptive', Coords)
gwr.bw

Optimal bandwidth estimation for Geographically Weighted Regression (GWR)

Description

This function helps choosing the optimal bandwidth for the simple Geographically Weighted Regression (GWR).

Usage

```r
gwr.bw(formula, dframe, coords, kernel, algorithm="exhaustive",
       optim.method="Nelder-Mead", b.min=NULL, b.max=NULL, step=NULL)
```

Arguments

- **formula**: the local model formula using the same syntax used in the `lm` function in R. This is a string that is passed to the sub-models' `lm` function. For more details look at the class `formula`.
- **dframe**: a numeric data frame of at least two suitable variables (one dependent and one independent)
- **coords**: a numeric matrix or data frame of two columns giving the X,Y coordinates of the observations
- **kernel**: the kernel to be used in the regression. Options are "adaptive" or "fixed". The weighting scheme used here is defined by the bi-square function \(\text{weight} = (1-(ndist/H)^2)^2 \) for distances less than or equal to \(H \), 0 otherwise
- **algorithm**: a character argument that specifies whether the function will use an exhaustive or a heuristic algorithm. In the first case all possible bandwidths within a range are being tested. In the second case the `optim` function is being used allowing for the choice of various optimisation methods (such as Brent or BFGS) that may find a global or local optimum. The default algorithm is "exhaustive".
- **optim.method**: the optimisation method to be used. A detailed discussion is available at the 'Details' section of the function `optim` (stats). Example methods are "Nelder-Mead", "Brent", "BFGS", "CG" and "L-BFGS-B". The default method is "Nelder-Mead".
- **b.min**: the minimum bandwidth. This is important for both algorithms. In the case of the exhaustive algorithm it sets the lower boundary for the range in which the function will compute the CV score for each possible bandwidth. In the case of the heuristic algorithm it provides the initial value for the bandwidth to be optimised which is very important. In the latter case b.min and b.max should be provided if the optimisation method "L-BFGS-B" or "Brent" has been selected.
- **b.max**: the maximum bandwidth. This is important for both algorithms. In the case of the exhaustive algorithm it sets the upper boundary for the range in which the function will compute the CV score for each possible bandwidth. In the case of the heuristic algorithm b.max and b.min should be provided if the optimisation method "L-BFGS-B" or "Brent" has been selected.
step

this numeric argument is used only in the case of a fixed kernel indicating the increment of the sequence of bandwidths in between the b.min and the b.max. In the case of the adaptive kernel the increment is 1 neighbour.

Details

Please carefully read the optim (stats) when using a heuristic algorithm.

Value

bw

The optimal bandwidth (fixed or adaptive)

CV

The corresponding Cross Validation score for the optimal bandwidth

CVs

Available only in the case of the exhaustive algorithm. This is a numeric matrix in which the first column refers to the bandwidth in test and the second to the corresponding CV score.

Warning

Large datasets increase the processing time.

Note

Please select the optimisation algorithm carefully. To be on safe grounds use the "Brent" optim.method with well defined b.min and b.max. This function needs further testing. Please report any bugs!

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>

References

See Also

gwr

Examples

RDF <- random.test.data(9,9,3,"normal")
bw <- gwr.bw(dep ~ X1 + X2, RDF, cbind(RDFX,RDFY), kernel = 'adaptive', b.min = 54, b.max=55)
gwr.cv

A specific version of the function gwr

Description

A specific version of the function gwr returning only the leave-one-out Cross Validation (CV) score. gwr.cv excludes the observation for which a sub-model fits.

Usage

gwr.cv(bw, formula, dframe, obs, kernel, dmatrix)

Arguments

bw a positive number that may be an integer in the case of an "adaptive kernel" or a real in the case of a "fixed kernel". In the first case the integer denotes the number of nearest neighbours, whereas in the latter case the real number refers to the bandwidth (in meters if the coordinates provided are Cartesian). This argument can be also the result of a bandwidth selection algorithm such as those available in the function gwr.bw

formula the local model to be fitted using the same syntax used in the lm function in R. This is a sting that is passed to the sub-models' lm function. For more details look at the class formula.

dframe a numeric data frame of at least two suitable variables (one dependent and one independent)

obs number of observations in the global dataset

kernel the kernel to be used in the regression. Options are "adaptive" or "fixed". The weighting scheme used here is defined by the bi-square function (weight = (1-(ndist/H)^2)^2 for distances less than or equal to H, 0 otherwise)

dmatrix eucledian distance matrix between the observations

Details

Only used by gwr.bw

Value

Leave-one-out Cross Validation (CV) score

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>
References

See Also

gwr.bw gwr

gw_variable

Spatial Interaction Models: gw / regional variable

Description

Regional variables are meant to capture the possible pull effects on internal out-migration caused by conditions elsewhere in the country (Fotheringham et al., 2002; 2004). For example (see code below), the regional variable of the total population is calculated as an index that compares the total population in a zone with the total population of the surrounding zones weighted by a second power of distance. It is used to capture a pull effect produced when an origin is surrounded by very populous zones that draw migrants from the origin (Kalogirou, 2013). Nearby locations are weighted more heavily in the calculation than more distant ones, adopting the idea of the Tobler’s first law of Geography. Thus, this variable could be referred to as gw (geographically weighted) variable.

Usage

gw_variable(Coords, InputVariable)

Arguments

Coords a numeric matrix or vector or dataframe of two columns giving the X,Y coordinates of the observations (data points or geometric / population weighted centroids)

InputVariable a numeric vector of a variable

Value

Regional a single column numeric matrix of the regional variable

Note

This code has been tested with Cartesian coordinates for the distances to be measured in meters. In the sample dataset GR.Municipalities the projection used is the EPSG:2100 (GGRS87 / Greek Grid)
Author(s)
Stamatis Kalogirou <stamatis@lctools.science>

References

Examples

data(GR.Municipalities)
GrCoords<-cbind(GR.Municipalities@data$X[1:100], GR.Municipalities@data$Y[1:100])
Regional_Population <-gw_variable(GrCoords,GR.Municipalities@data$PopTot01[1:100])

1.moransI

Local Moran’s I classic statistic for assessing spatial autocorrelation

Description
The local Moran’s I proposed by Anselin (1995). The formula to calculate the local I_i which is now used in most textbooks and software is:

$$I_i = \frac{(x_i - \text{mean}(x))}{m_2} \cdot (\Sigma w_{ij} \cdot z_j)$$

where n is number of observations, w_{ij} are the weights, $z_j = x_j - \text{mean}(x)$, x being the value of the variable at location i and $\text{mean}(x)$ being the mean value of the variable in question, and $m_2 = (\Sigma(x_i - \text{mean}(x))^2)/n$. This function calculates the local Moran’s I values for each observation along with goodness of fit statistics, it classifies the observations into five classes (High-High, Low-Low, Low-High, High-Low, and Not Significant) and optionally plots a Moran’s I Scatter Plot.

Usage
1.moransI(Coords, Bandwidth, x, WType='Binary', scatter.plot = TRUE, family = “adaptive”)
Arguments

Coords
a numeric matrix or vector or data frame of two columns giving the X,Y coordinates of the observations (data points or geometric/population weighted centroids)

Bandwidth
a positive integer that defines the number of nearest neighbours for the calculation of the weights

x
a numeric vector of a variable

WType
string giving the weighting scheme used to compute the weights matrix. Options are: "Binary" and "Bi-square". Default is "Binary".

- Binary: weight = 1 for distances less than or equal to the distance of the furthest neighbour (H), 0 otherwise;
- Bi-square: \[\text{weight} = (1 - \left(\frac{\text{ndist}}{H}\right)^2)^2 \] for distances less than or equal to H, 0 otherwise.

scatter.plot
a logical value that controls if the Moran's I Scatter Plot will be displayed (TRUE) or not. Default is TRUE.

family
a string giving the weighting scheme used to compute the weights matrix. Options are: "adaptive" and "fixed". The default value is "adaptive".

- adaptive: the number of nearest neighbours (integer).
- fixed: a fixed distance around each observation's location (in meters).

Details

The interpretation of the local \(I_i \) is similar to that of the global Moran's I.

Value

Returns the calculated local Moran's I and a list of statistics for the latter's inference: the expected \(E_i \), the variance \(V_i \), the \(X_i \) scores and the p-values for the randomization null hypotheses. It also returns the standardized value and the standardized lagged value of the variable to allow creating the Moran's I scatter plot and the classified values for creating the cluster map similar to those available in GeoDa (Anselin et al., 2006).

ID
Numeric index from 1 to n

I_i
Classic lobal Moran's I_i statistic

E_i
The expected local Moran's I_i

V_i
The variance of I_i

Z_i
The z score calculated for the randomization null hypotheses test

p.value
The p-value (two-tailed) calculated for the randomization null hypotheses test

X_i
The standardised value of the variable x

wX_j
The standardised value of the lagged x (weighted some of nearest neighbours)

Cluster
The class each observation belongs based on the sign of \(X_i \) and \(wX_j \) as well as the non-significant local Moran's I values
Note

Please note that the weights are row standardised.

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>

References

Examples

data(GR.Municipalities)
l.moran<-l.moransI(cbind(GR.Municipalities$X, GR.Municipalities$Y),6,GR.Municipalities$Income01)

lat2w

Contiguity-based weights matrix for a regular grid

Description

This function creates a contiguity-based (Rook or Queen) weights matrix for a regular grid with equal number of rows and columns

Usage

lat2w(nrows=5, ncols=5, rook=TRUE)

Arguments

nrows number of rows
ncols number of columns (identical to the number of rows)
rook a TRUE/FALSE option. TRUE refers to a rook contiguity and FALSE to queen contiguity

Details

This function may also serve in simulations.
Value

Returns a list of neighbours for each cell of the grid as well as a weights matrix.

\textit{nbs} \quad \text{a list of neighbours for each observation}

\textit{w} \quad \text{a matrix of weights}

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>

References

See Also

\textit{w.matrix, moransI.w, spGini.w}

Examples

```r
# rook weights matrix for a 5 by 5 grid
w.mat <- lat2w(nrows=5, ncols=5)
```

\textit{lcorrel} \quad \textit{Local Pearson and GW Pearson Correlation}

Description

This function computes Local Pearson and Geographically Weighted Pearson Correlation Coefficients and tests for their statistical significance. Because the local significant tests are not independent, under the multiple hypotheses testing theory, a Bonferroni correction of the local coefficients takes place. The function results in tables with results for all possible pairs of the input variables.

Usage

\texttt{lcorrel(DFrame, bw, Coords)}
lcorrel

Arguments

DFrame
A numeric Data Frame of at least two variables

bw
A positive value between 0 and 1 to define the proportion of the total observations for the local sample for which each time the local coefficients are calculated for. This can be also the result of bandwidth selection algorithms of local regression techniques such as the Geographically Weighted Regression (GWR)

Coords
A numeric matrix or vector or data frame of two columns giving the X,Y coordinates of the observations (data points or geometric centroids)

Details

The degrees of freedom for the local t-student test is \(\text{Round}(bw \times \text{Number of Observations}) - 2 \).

Value

lcorrel returns a list of 7 Data Frames

LPCC
A numeric data frame with the Local Pearson Correlation Coefficients (LPCCs) for each possible pair of the input variables in DFrame

LPCC_t
A numeric data frame with the t-student test statistics for all LPCCs

LPCC_sig
A numeric data frame with level of significance (p-value) for all LPCCs

LPCC_sig_BF
A numeric data frame with level of significance (p-value) for all LPCCs adjusted using the conservative Bonferroni correction to account for false positives under the multiple hypothesis testing theory

GWPCC
A numeric data frame with the Geographically Weighted Pearson Correlation Coefficients (GWPCCs) for each possible pair of the input variables in DFrame

GWPCC_sig
A numeric data frame with level of significance (p-value) for all GWPCCs

GWPCC_sig_BF
A numeric data frame with level of significance (p-value) for all GWPCCs adjusted using the conservative Bonferroni correction to account for false positives under the multiple hypothesis testing theory

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>

References

Examples

```r
data(VotesGR)
local.cor<-lcorrel(VotesGR[5:6],0.1,cbind(VotesGR$X, VotesGR$Y))
plot(local.cor$LPCC[,2],local.cor$GWPCC[,2])
```

mc.lcorrel

Monte Carlo simulation for the significance of the local correlation coefficients

Description

In order to assess if the spatial variation of the local correlation coefficients is statistically significant this function computes original and simulated statistics. LPCCs and GWPCCs can be calculated for a fixed bandwidth for the original locations of the observations as well as for a user-defined number of geographical reallocations of the observations. The latter is a simple Monte Carlo simulation proposed by Hope (1968) and adopted by Fotheringham et al. (2002) who assess if local parameter estimates in a Geographically Weighted Regression model exhibit spatial non-stationarity. First, the variances of LPCCs and GWPCCs, respectively, are computed for observed and simulated local correlation coefficients. Then, a pseudo p-value is calculated as \(p = \frac{1+C}{1+M} \) where \(C \) is the number of cases in which the variance of the simulated LPCCs and GWPCCs is equal to or higher than the variance of the observed LPCCs and GWPCCs, respectively of each test, and \(M \) is the number of permutations. If \(p \leq 0.05 \) it can be argued that the spatial variation of the local correlation coefficients is statistically significant. For this approach, a minimum of 19 permutations is required.

Usage

```r
mc.lcorrel(Nsim=99,bwSIM,CorVars,Coord.X,Coord.Y)
```

Arguments

- **Nsim**
 a positive integer that defines the number of the simulation’s iterations

- **bwSIM**
 A positive value between 0 and 1 to define the proportion of the total observations for the local sample for which each time the local correlation coefficients will be calculated for.

- **CorVars**
 A data frame of two variables for which observed and simulated local correlation coefficients (LPCCs and GWPCCs) will be calculated for.

- **Coord.X**
 a numeric vector giving the X coordinates of the observations (data points or geometric centroids)

- **Coord.Y**
 a numeric vector giving the Y coordinates of the observations (data points or geometric centroids)

Details

For 0.05 level of significance in social sciences, a minimum number of 19 simulations (Nsim>=19) is required. We recommend at least 99 and at best 999 iterations.
mc.lcorrel

Value

Returns a list of summary statistics for the simulated values of LPCCs and GWPCCs, the observed LPCCs and GWPCCs and the pseudo p-value of significance for the spatial variation of the LPCCs and GWPCCs, respectively.

- **SIM**: a dataframe with simulated values: SIM.ID is the simulation ID, SIM.gwGini is the simulated Gini of neighbours, SIM.nsGini is the simulated Gini of non-neighbours, SIM.SG is the simulated share of the overall Gini that is associated with non-neighbour pairs of locations, SIM.Extr = 1 if the simulated SG is greater than or equal to the observed SG.

- **LC.Obs**: list of 7 Data Frames as in lcorrel.

- **pseudo.p.lpcc**: pseudo p-value for the significance of the spatial variation of the LPCCs: if this is lower than or equal to 0.05 it can be argued that the spatial variation of the LPCCs is statistically significant.

- **pseudo.p.gwpcc**: pseudo p-value for the significance of the spatial variation of the GWPCCs: if this is lower than or equal to 0.05 it can be argued that the spatial variation of the GWPCCs is statistically significant.

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>

References

Examples

```r
X<-rep(11:14, 4)
Y<-rev(rep(1:4, each=4))
var1<-c(1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,5)
var2<-rev(var1)
Nsim=19
bwSIM<-0.5

SIM20<-mc.lcorrel(Nsim,bwSIM, cbind(var1,var2),X,Y)

SIM20$pseudo.p.lpcc
SIM20$pseudo.p.gwpcc
```
Description

This function provides one approach for inference on the spatial Gini inequality measure. This is a small Monte Carlo simulation according to which: a) the data are spatially reallocated in a random way; b) the share of overall inequality that is associated with non-neighbour pairs of locations - SG (Eq. 5 in Rey & Smith, 2013) - is calculated for the original and simulated spatial data sets; c) a pseudo p-value is calculated as \(p = \frac{(1+C)}{(1+M)} \) where \(C \) is the number of the permutation data sets that generated SG values that were as extreme as the observed SG value for the original data (Eq. 6 in Rey & Smith, 2013). If \(p \leq 0.05 \) it can be argued that the component of the Gini for non-neighbour inequality is statistically significant. For this approach, a minimum of 19 simulations is required.

Usage

\[
mc.spGini(Nsim=99,Bandwidth,x,Coord.X,Coord.Y,WType='Binary')
\]

Arguments

- **Nsim**: a positive integer that defines the number of the simulation's iterations
- **Bandwidth**: a positive integer that defines the number of nearest neighbours for the calculation of the weights
- **x**: a numeric vector of a variable
- **Coord.X**: a numeric vector giving the X coordinates of the observations (data points or geometric centroids)
- **Coord.Y**: a numeric vector giving the Y coordinates of the observations (data points or geometric centroids)
- **WType**: string giving the weighting scheme used to compute the weights matrix. Options are: "Binary", "Bi-square", "RSBi-square". Default is "Binary".

 Binary: weight = 1 for distances less than or equal to the distance of the furthest neighbour (H), 0 otherwise;
 Bi-square: weight = \((1-(ndist/H)^2)^2\) for distances less than or equal to H, 0 otherwise;
 RSBi-square: weight = Bi-square weights / sum (Bi-square weights) for each row in the weights matrix

Details

For 0.05 level of significance in social sciences, a minimum number of 19 simulations (Nsim>=19) is required. We recommend at least 99 and at best 999 iterations.
mc.spGini

Value

Returns a list of the simulated values, the observed Gini and its spatial decomposition, the pseudo p-value of significance

SIM = a dataframe with simulated values: SIM.ID is the simulation ID, SIM.gwGini is the simulated Gini of neighbours, SIM.nsGini is the simulated Gini of non-neighbours, SIM.SG is the simulated share of the overall Gini that is associated with non-neighbour pairs of locations, SIM.Extr = 1 if the simulated SG is greater than or equal to the observed SG

spGini.Observed = Observed Gini (Gini) and its spatial components (gwGini, nsGini)

pseudo.p = pseudo p-value: if this is lower than or equal to 0.05 it can be argued that the component of the Gini for non-neighbour inequality is statistically significant.

Note

Acknowledgement: I would like to thank LI Zai-jun, PhD student at Nanjing Normal University, China for encouraging me to develop this function and for testing this package.

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>

References

Examples

data(GR.Municipalities)
Nsim=19
Bd1<-4
x1<-GR.Municipalities@data$Income01[1:45]
WType1<-"Binary"

SIM20<-mc.spGini(Nsim,Bd1,x1,GR.Municipalities@data$X[1:45], GR.Municipalities@data$Y[1:45],WType1)
SIM20

hist(SIM20SIMSIM.nsGini,col = "lightblue", main = "Observed and simulated nsGini", xlab = "Simulated nsGini", ylab = "Frequency",xlim = c(min(SIM20SIMSIM.nsGini), SIM20$spGini.Observed[[3]]))
abline(v=SIM20$spGini.Observed[[3]], col = 'red')
Moran’s I is one of the oldest statistics used to examine spatial autocorrelation. This global statistic was first proposed by Moran (1948, 1950). Later, Cliff and Ord (1973, 1981) present a comprehensive work on spatial autocorrelation and suggested a formula to calculate the I which is now used in most textbooks and software:

$$I = \left(\frac{n}{W} \right) \times \left(\sum \sum w_{ij} \times z_i \times z_j / \sum z_i^2 \right)$$

where n is number of observations, W is the sum of the weights w_{ij} for all pairs in the system, $z_i = x_i - \text{mean}(x)$ where x is the value of the variable at location i and $\text{mean}(x)$ the mean value of the variable in question (Eq. 5.2 Kalogirou, 2003). The implementation here allows only nearest neighbour weighting schemes. Resampling and randomization null hypotheses have been tested following the discussion of Goodchild (1986, pp. 24-26).

Usage

```r
moransI(Coords, Bandwidth, x, WType = 'Binary')
```

Arguments

- **Coords**: a numeric matrix or vector or data frame of two columns giving the X,Y coordinates of the observations (data points or geometric / population weighted centroids)
- **Bandwidth**: a positive integer that defines the number of nearest neighbours for the calculation of the weights
- **x**: a numeric vector of a variable
- **WType**: a string giving the weighting scheme used to compute the weights matrix. Options are: "Binary" and "Bi-square". Default is "Binary".
 - **Binary**: weight = 1 for distances less than or equal to the distance of the furthest neighbour (H), 0 otherwise;
 - **Bi-square**: $weight = (1 - (ndist/H)^2)^2$ for distances less than or equal to H, 0 otherwise.

Details

The Moran’s I statistic ranges from -1 to 1. Values in the interval (-1, 0) indicate negative spatial autocorrelation (low values tend to have neighbours with high values and vice versa); values near 0 indicate no spatial autocorrelation (no spatial pattern - random spatial distribution) and values in the interval (0,1) indicate positive spatial autocorrelation (spatial clusters of similarly low or high values between neighbour municipalities should be expected.)
moransI

Value

Returns the weights matrix, the calculated Moran’s I and a list of statistics for the latter’s inference: the expected I (E[I]), z scores and p values for both resampling and randomization null hypotheses.

- **W**
 - Weights Matrix
- **Morans.I**
 - Classic global Moran’s I statistic
- **Expected.I**
 - The Expected Moran’s I (E[I] = −1/(n − 1))
- **z.resampling**
 - The z score calculated for the resampling null hypotheses test
- **z.randomization**
 - The z score calculated for the randomization null hypotheses test
- **p.value.resampling**
 - The p-value (two-tailed) calculated for the resampling null hypotheses test
- **p.value.randomization**
 - The p-value (two-tailed) calculated for the randomization null hypotheses test

Note

This function has been compared to the function Moran.I within the file MoranI.R of package ape version 3.1-4 (Paradis et al., 2014). This function results in the same Moran’s I statistic as the one in package ape. The statistical inference in the latter refers to the randomization null hypotheses test discussed above. It is necessary to acknowledge that the code of this function has been assisted by the one in ape package: this is the calculation of statistics S1 and S2 (lines 67 and 69 of the source code) in this function. Another R package with functions for calculating and testing the Moran’s I statistic is the spdep package (Bivand et al. 2014). The Moran’s I statistic calculated using this function is not the same as the one in OpenGeoDa (Anselin et al., 2006). The latter is another very popular software for calculating spatial autocorrelation statistics.

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>

References

moransI.v

Examples

data(GR.Municipalities)
attr<-GR.Municipalities@data
m.I<-moransI(cbind(attr$X, attr$Y),6,attr$UnemrT01)

t(as.matrix(m.I[2:7]))

moransI.v Computes a vector of Moran’s I statistics.

Description

Moran’s I is one of the oldest statistics used to examine spatial autocorrelation. This global statistic was first proposed by Moran (1948, 1950). Later, Cliff and Ord (1973, 1981) present a comprehensive work on spatial autocorrelation and suggested a formula to calculate the I which is now used in most textbooks and software:

\[I = \left(\frac{n}{W} \right) \left(\frac{\sum \sum w_{ij} z_i z_j}{\sum z_i^2} \right) \]

where \(n \) is number of observations, \(W \) is the sum of the weights \(w_{ij} \) for all pairs in the system, \(z_i = x_i - \text{mean}(x) \) where \(x \) is the value of the variable at location \(i \) and \(\text{mean}(x) \) the mean value of the variable in question (Eq. 5.2 Kalogirou, 2003).

This function allows the computation of an number of Moran’s I statistics of the same family (fixed or adaptive) with different kernel size. To achieve this it first computes the weights matrix using the w.matrix function and then computes the Moran’s I using the moransI.w function for each kernel. The function returns a table with the results and a simple scatter plot with the Moran’s I and the kernel size. The latter can be disabled by the user.

Usage

moransI.v(Coords, Bandwidths, x, WType='Binary', family='adaptive', plot = TRUE)

Arguments

- **Coords**: a numeric matrix or vector or data frame of two columns giving the X,Y coordinates of the observations (data points or geometric / population weighted centroids)
- **Bandwidths**: a vector of positive integers that defines the number of nearest neighbours for the calculation of the weights or a vector of Bandwidths relevant to the coordinate systems the spatial analysis refers to.
x

a numeric vector of a variable

WType

a string giving the weighting function used to compute the weights matrix. Options are: "Binary", "Bi-square", and "RSBi-square". The default value is "Binary".

Binary: weight = 1 for distances less than or equal to the distance of the furthest neighbour (H), 0 otherwise;

Bi-square: weight = (1-(ndist/H)^2)^2 for distances less than or equal to H, 0 otherwise;

RSBi-square: weight = Bi-square weights / sum (Bi-square weights) for each row in the weights matrix

family

a string giving the weighting scheme used to compute the weights matrix. Options are: "adaptive" and "fixed". The default value is "adaptive".

adaptive: the number of nearest neighbours (integer).

fixed: a fixed distance around each observation’s location (in meters).

plot

a logical value (TRUE/FALSE) denoting whether a scatter plot with the Moran’s I and the kernel size will be created (if TRUE) or not.

Details

The Moran’s I statistic ranges from -1 to 1. Values in the interval (-1, 0) indicate negative spatial autocorrelation (low values tend to have neighbours with high values and vice versa), values near 0 indicate no spatial autocorrelation (no spatial pattern - random spatial distribution) and values in the interval (0,1) indicate positive spatial autocorrelation (spatial clusters of similarly low or high values between neighbour municipalities should be expected.)

Value

Returns a matrix with 8 columns and plots a scatter plot. These columns present the following statistics for each kernel size:

ID

an integer in the sequence 1:m, where m is the number of kernel sizes in the vector Bandwidths

k

the kernel size (number of neighbours or distance)

Moran’s I

Classic global Moran’s I statistic

Expected I

The Expected Moran’s I (E[I]=-1/(n-1))

Z resampling

The z score calculated for the resampling null hypotheses test

P-value resampling

The p-value (two-tailed) calculated for the resampling null hypotheses test

Z randomization

The z score calculated for the randomization null hypotheses test

P-value randomization

The p-value (two-tailed) calculated for the randomization null hypotheses test

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>
moransI.w

Moran’s I classic statistic for assessing spatial autocorrelation using a ready made weights matrix.

Description

Moran’s I is one of the oldest statistics used to examine spatial autocorrelation. This global statistic was first proposed by Moran (1948, 1950). Later, Cliff and Ord (1973, 1981) present a comprehensive work on spatial autocorrelation and suggested a formula to calculate the I which is now used in most textbooks and software:

\[I = \frac{n}{W} \ast \left(\frac{\sum w_{ij} \ast z_i \ast z_j}{\sum z_i^2} \right) \]

where \(n \) is number of observations, \(W \) is the sum of the weights \(w_{ij} \) for all pairs in the system, \(z_i = x_i - \text{mean}(x) \) where \(x \) is the value of the variable at location \(i \) and \(\text{mean}(x) \) the mean value of the variable in question (Eq. 5.2 Kalogirou, 2003).

The implementation here allows for the use of a weights matrix that could use any weighting scheme created either within lctools (using the w.matrix function) or other R packages. Resampling and randomization null hypotheses have been tested following the discussion of Goodchild (1986, pp. 24-26).

References

See Also

moransI.w, w.matrix

Examples

```r
data(GR.Municipalities)
Coords<-cbind(GR.Municipalities@data$X, GR.Municipalities@data$Y)

#using an adaptive kernel
bws <- c(3, 4, 6, 9, 12, 18, 24)
moransI.v(Coords, bws, GR.Municipalities@data$Income01)
```
Usage

moransI.w(x, w)

Arguments

x a numeric vector of a variable
w Weights Matrix usin w.matrix or other R function

Details

The Moran’s I statistic ranges from -1 to 1. Values in the interval (-1, 0) indicate negative spatial autocorrelation (low values tend to have neighbours with high values and vice versa), values near 0 indicate no spatial autocorrelation (no spatial pattern - random spatial distribution) and values in the interval (0,1) indicate positive spatial autocorrelation (spatial clusters of similarly low or high values between neighbour municipalities should be expected.)

Value

Returns the calculated Moran’s I and a list of statistics for the latter’s inference: the expected I (E[I]), z scores and p values for both resampling and randomization null hypotheses.

Morans.I Classic global Moran’s I statistic
Expected.I The Expected Moran’s I (E[I]=-1/(n-1))
z.resampling The z score calculated for the resampling null hypotheses test
z.randomization The z score calculated for the randomization null hypotheses test
p.value.resampling The p-value (two-tailed) calculated for the resampling null hypotheses test
p.value.randomization The p-value (two-tailed) calculated for the randomization null hypotheses test

Note

I would like to acknowledge the use of some lines of code from the file MoranI.R of the package ape and I would like to thank Paradis et al. (2016) and all authors involved in the Moran’s I function for this.

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>

References

random.test.data

Generates datasets with random data for modelling including a dependent variable, independent variables and X,Y coordinates.

Usage

random.test.data(nrows = 10, ncols = 10, vars.no = 3, dep.var.dis = "normal", xycoords = TRUE)
spGini

Arguments

nrows an integer referring to the number of rows for a regular grid
ncols an integer referring to the number of columns for a regular grid
vars.no an integer referring to the number of independent variables
dep.var.dis a character referring to the distribution of the dependent variable. Options are "normal" (default), "poisson", and "zip"
xycoords a logical value indicating whether X,Y coordinates will be created (default) or not.

Details

The creation of a random dataset was necessary here to provide examples to some functions. However, random datasets may be used in simulation studies.

Value

a dataframe

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>

Examples

RDF <- random.test.data(12,12,3,"poisson")

spGini Spatial Gini coefficient

Description

This is the implementation of the spatial decomposition of the Gini coefficient introduced by Rey and Smith (2013). The function calculates the global Gini and the two components of the spatial Gini: the inequality among nearest (geographically) neighbours and the inequality of non-neighbours. Three weighted schemes are currently supported: binary, bi-square and row standardised bi-square.

Usage

spGini(Coords, Bandwidth, x, WType = 'Binary')
Arguments

Coords: a numeric matrix or vector or data frame of two columns giving the X,Y coordinates of the observations (data points or geometric / population weighted centroids).

Bandwidth: a positive integer that defines the number of nearest neighbours for the calculation of the weights.

x: a numeric vector of a variable.

WType: a string giving the weighting scheme used to compute the weights matrix. Options are: "Binary", "Bi-square", "RSBi-square". Default is "Binary". Binary: weight = 1 for distances less than or equal to the distance of the furthest neighbour (H), 0 otherwise; Bi-square: weight = (1-(ndist/H)^2)^2 for distances less than or equal to H, 0 otherwise; RSBi-square: weight = Bi-square weights / sum (Bi-square weights) for each row in the weights matrix.

Value

Returns a list of five values Gini, gwGini, nsGini, gwGini.frac, nsGini.frac:

- Gini: Global Gini
- gwGini: First component of the spatial Gini: the inequality among nearest (geographically) neighbours.
- nsGini: Second component of the spatial Gini: the inequality among non-neighbours.
- gwGini.frac: The fraction of the first component of the spatial Gini.
- nsGini.frac: The fraction of the second component of the spatial Gini.

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>

References

Examples

data(GR.Municipalities)
Coords1<-cbind(GR.Municipalities@data$X, GR.Municipalities@data$Y)
Bandwidth1<-12
x1<-GR.Municipalities@data$Income01
WType1<-"Binary"
spGini(Coords1,Bandwidth1,x1,WType1)
spGini.w

Spatial Gini coefficient with a given weights matrix

Description

This is the implementation of the spatial decomposition of the Gini coefficient introduced by Rey and Smith (2013) as in the function spGini. In this function, the calculation of the global Gini and the two components of the spatial Gini is performed using matrix algebra and a ready made weights matrix. Thus, it is possible to use weighting schemes other than those currently supported in spGini.

Usage

spGini.w(x, w)

Arguments

x a numeric vector of a variable
w Weights Matrix using w.matrix or other R function

Value

Returns a list of five values Gini, gwGini, nsGini, gwGini.frac, nsGini.frac

Gini Global Gini
gwGini First component of the spatial Gini: the inequality among nearest (geographically) neighbours
nsGini Second component of the spatial Gini: the inequality among non-neighbours
gwGini.frac The fraction of the first component of the spatial Gini
nsGini.frac The fraction of the second component of the spatial Gini

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>

References

Examples

data(GR.Municipalities)
w<-w.matrix(cbind(GR.Municipalities@data$X, GR.Municipalities@data$Y),12,WType='Binary')
spGini.w(GR.Municipalities@data$Income01,w)
Description

New Democracy and Total Votes per prefecture in the double parliamentary elections in Greece in May and June 2012, respectively.

Usage

```r
data(VotesGR)
```

Format

A data frame with 51 observations on the following 8 variables.

- **MapCode2**: a numeric vector of codes for joining this data to a map
- **NAME_ENG**: a alphanumeric vector of prefecture names in greeklish
- **X**: a numeric vector of x coordinates
- **Y**: a numeric vector of y coordinates
- **NDJune12**: a numeric vector of votes for New Democracy in June 2012 parliamentary elections
- **NDMay12**: a numeric vector of votes for New Democracy in May 2012 parliamentary elections
- **AllJune12**: a numeric vector of total valid votes in June 2012 parliamentary elections
- **AllMay12**: a numeric vector of total valid votes in May 2012 parliamentary elections

Details

The X,Y coordinates refer to the geometric centroids of the 51 Prefectures in Greece in 2011. All electoral districts in the Attica Region have been merged to one. The two electoral regions in Thessaloniki have also been merged to a single region matching the NUTS II regions geography.

Source

References

w.matrix

Examples

```r
data(VotesGR)
plot(VotesGR$NDJune12, VotesGR$NDMay12)
abline(0,1)
```

w.matrix

Weights Matrix based on a number of nearest neighbours or a fixed distance

Description

This function constructs an n by n weights matrix for a geography with n geographical elements (e.g. points or polygons) using a number of nearest neighbours or a fixed distance.

Usage

```r
w.matrix(Coords, Bandwidth, WType = "Binary", family = "adaptive")
```

Arguments

- **Coords**: a numeric matrix or vector or data frame of two columns giving the X,Y co-ordinates of the geographical elements (data points or geometric / population weighted centroids for polygons)
- **Bandwidth**: either a positive integer that defines the number of nearest neighbours for the calculation of the weights of an adaptive kernel (family = 'adaptive') or a fixed distance in meters for a fixed kernel (family = 'fixed').
- **WType**: a string giving the weighting function used to compute the weights matrix. Options are: "Binary", "Bi-square", and "RSBi-square". The default value is "Binary".
 - Binary: weight = 1 for distances less than or equal to the distance of the furthest neighbour (H), 0 otherwise;
 - Bi-square: weight = (1-(ndist/H)^2)^2 for distances less than or equal to H, 0 otherwise;
 - RSBi-square: weight = Bi-square weights / sum (Bi-square weights) for each row in the weights matrix
- **family**: a string giving the weighting scheme used to compute the weights matrix. Options are: "adaptive" and "fixed". The default value is "adaptive".
 - adaptive: the number of nearest neighbours (integer).
 - fixed: a fixed distance around each observation's location (in meters).

Value

A matrix of weights

Author(s)

Stamatis Kalogirou <stamatis@lctools.science>
References

See Also

moransI.w, spGini.w

Examples

data(GR.Municipalities)
attr <- GR.Municipalities@data

#adaptive kernel
w.adapt <- w.matrix(cbind(attr$X, attr$Y), 6, WType='Binary', family='adaptive')

#fixed kernel
w.fixed <- w.matrix(cbind(attr$X, attr$Y), 50000, WType='Binary', family='fixed')
Index

* Competing Destinations Model
 acc, 4
* FLQ
 FLQ, 5
* Focal Location Quotient
 FLQ, 5
* GGWR
 gw.glm.light, 13
 gw.glm.mc.test, 14
* GWPCCs inference
 mc.lcorrel, 36
* GWPCC
 lcorrel, 34
* GWPR
 gw.glm, 8
 gw.glm.cv, 12
* GWR
 gw.glm.bw, 10
 gw.zi.bw, 18
 gwr, 25
 gwr.bw, 27
 gwr.cv, 29
 lctools-package, 2
* GWZIPR
 gw.zi, 16
 gw.zi.cv, 20
 gw.zi.light, 21
 gw.zi.mc.test, 23
* Gini
 spGini, 47
 spGini.w, 49
* Greek Municipalities
 GR.Municipalities, 6
* Inference
 gw.glm.mc.test, 14
 gw.zi.mc.test, 23
 mc.spGini, 38
* LISA
 l.moransI, 31
* LPCCs inference
 mc.lcorrel, 36
* LPCC
 lcorrel, 34
* LQ
 FLQ, 5
* Location Quotient
 FLQ, 5
* Monte Carlo Simulation
 gw.glm.mc.test, 14
 gw.zi.mc.test, 23
 mc.lcorrel, 36
 mc.spGini, 38
* Moran's I Clusters
 l.moransI, 31
* Moran's I significance test
 moransI, 40
 moransI.v, 42
 moransI.w, 44
* Moran's I
 moransI, 40
 moransI.v, 42
 moransI.w, 44
* Regular Grid Weights Matrix
 lat2w, 33
* Spatial Analysis
 lat2w, 33
 w.matrix, 51
* Spatial Gini
 mc.spGini, 38
 spGini, 47
 spGini.w, 49
* Spatial Inequality
 mc.spGini, 38
 spGini, 47
 spGini.w, 49
* Spatial autocorrelation
 mc.spGini, 38
 moransI, 40
moransI.v, 42
moransI.w, 44
spGini, 47
spGini.w, 49
* Weights Matrix
w.matrix, 51
* accessibility
acc, 4
* centrality
acc, 4
* datasets
GR.Municipalities, 6
VotesGR, 50
* geographical boundaries
GR.Municipalities, 6
* geographically weighted variable
gw_variable, 30
* geostatistics
lctools-package, 2
* local Moran’s I
l.moransI, 31
* local multi-collinearity
lcorrel, 34
mc.lcorrel, 36
* local regression
gw.glm, 8
gw.glm.cv, 12
gw.glm.light, 13
gw.glm.mc.test, 14
gw.zi, 16
gw.zi.cv, 20
gw.zi.light, 21
gw.zi.mc.test, 23
gwr, 25
gwr.cv, 29
* optimal bandwidth
gw.glm.bw, 10
gw.zi.bw, 18
gwr.bw, 27
* package
lctools-package, 2
* random data
random.test.data, 46
* regional variable
gw_variable, 30
* spatial analysis
lctools-package, 2
* spatial inequalities
lctools-package, 2