Package ‘lddmm’

Type Package
Title Longitudinal Drift-Diffusion Mixed Models (LDDMM)
Version 0.4.0
Date 2023-06-03
Depends R (>= 4.1.0)
Language en-US
License MIT + file LICENSE
Encoding UTF-8
Imports Rcpp (>= 1.0.6), RcppProgress, rgen, gtools, LaplacesDemon, dplyr, plyr, tidyr, ggplot2, latex2exp, reshape2, RColorBrewer
LazyData true
LinkingTo Rcpp, RcppArmadillo, RcppProgress, rgen
RoxygenNote 7.2.3
Suggests rmarkdown, knitr
VignetteBuilder knitr
NeedsCompilation yes
Author Giorgio Paulon [aut, cre], Abhra Sarkar [aut, ctb]
Maintainer Giorgio Paulon <giorgio.paulon@utexas.edu>
Repository CRAN
Date/Publication 2023-06-06 13:20:05 UTC

R topics documented:

B_basis ... 2
compute_WAIC ... 2
data ... 3
B_basis

Spline Basis Functions

Description

Construct the J basis functions for the splines evaluated on a grid.

Usage

```r
B_basis(xgrid, knots)
```

Arguments

- `xgrid`: grid where we want to evaluate the spline functions (vector of length n)
- `knots`: vector of knots for the splines (vector of length K)

Value

n x (K+1) - matrix representing the value of each basis function evaluated on xgrid

compute_WAIC

Calculate WAIC

Description

Function to compute the Watanabe-Akaike information criterion (Gelman, Hwang, Vehtari, 2014), which estimates the expected out-of-sample-prediction error using a bias-corrected adjustment of within-sample error.

Usage

```r
compute_WAIC(model_fit)
```
data

Arguments

- **model_fit**: results of a model fit from the lddmm function

Value

A scalar indicating the WAIC (smaller WAIC denotes better fit)

Example dataset

Description

A toy dataset in the correct format for the LDDMM function call. This dataset has two possible response categories.

Usage

data

Format

A data frame with 24,254 rows and 6 columns

Details

- **subject**: vector of size n containing the participant labels
- **block**: vector of size n containing the training blocks (longitudinal units)
- **s**: vector of size n containing the stimuli
- **d**: vector of size n containing the decisions
- **r_time**: vector of size n containing the response times (log transformed)
- **cens**: vector of size n containing the censoring indicators (1 censored, 0 non censored)

extract_post_draws

Parameter posterior draws

Description

Function to extract the posterior draws of the parameters of interest from a lddmm fit object.

Usage

extract_post_draws(data, fit, par = c("drift", "boundary"))
extract_post_mean

Arguments

data dataframe with the following columns:
 • subject: vector of size n containing the participant labels
 • block: vector of size n containing the training blocks (longitudinal units)
 • s: vector of size n containing the stimuli
 • d: vector of size n containing the decisions
 • r_time: vector of size n containing the response times
 • cens: vector of size n containing the censoring indicators (1 censored, 0 non censored)

fit fit from the lddmm function

par parameter to output ("drift", or "boundary")

Value

Matrix with the following columns:
 • subject: participant labels
 • block: training blocks
 • draw: iteration of the MCMC estimates
 • par_s_d, ...: posterior draws for the requested parameters

Description

Function to extract the posterior means of the parameters of interest from a lddmm fit object.

Usage

extract_post_mean(data, fit, par = c("drift", "boundary"))

Arguments

data dataframe with the following columns:
 • subject: vector of size n containing the participant labels
 • block: vector of size n containing the training blocks (longitudinal units)
 • s: vector of size n containing the stimuli
 • d: vector of size n containing the decisions
 • r_time: vector of size n containing the response times
 • cens: vector of size n containing the censoring indicators (1 censored, 0 non censored)

fit fit from the lddmm function

par parameter to output ("drift", or "boundary")
\textbf{Value}

Matrix with the following columns:

- subject: participant labels
- block: training blocks
- par_s_d, \ldots: posterior means for the requested parameters

\begin{tabular}{ll}
\textbf{H_ball} & \textit{Hamming Ball} \\
\end{tabular}

\section*{Description}

Computes the Hamming Ball centered at \(x \) with radius \(r \).

\section*{Usage}

\texttt{H_ball(x, S, r)}

\section*{Arguments}

- \(x \) \quad \text{center of the Hamming Ball}
- \(S \) \quad \text{number of states}
- \(r \) \quad \text{radius of the Hamming Ball}

\section*{Value}

Hamming Ball

\begin{tabular}{ll}
\textbf{LDDMM} & \textit{Drift Diffusion Model Fit} \\
\end{tabular}

\section*{Description}

Main function for the Gibbs sampler for the drift-diffusion model. Note that priors are noninformative and calibrated so that, for the most stable performance, the response times (variable \texttt{r_time} in the \texttt{data} dataframe) should lie between 0 and 10.

\section*{Usage}

\texttt{LDDMM(}
\begin{verbatim}
 data,
 hypers,
 boundaries = "flexible",
 Niter = 5000,
 burnin = 2000,
 thin = 5
\end{verbatim}
\texttt{)}
Arguments
dataframe with the following columns:

- subject: vector of size n containing the participant labels
- block: vector of size n containing the training blocks (longitudinal units)
- s: vector of size n containing the stimuli
- d: vector of size n containing the decisions
- r_time: vector of size n containing the response times. To avoid numerical
 issues, the unit of measurement should be such that the numerical values of
 most response times should lie between 0 and 10
- cens: vector of size n containing the censoring indicators (1 censored, 0
 non censored)

hypers hyperparameters of the MCMC: list containing "s_sigma_mu" and "s_sigma_b",
which are the smoothness parameters for drifts and boundaries, respectively)

boundaries whether to fit the unrestricted model (flexible), assume constant boundaries over
time (constant) or fix the boundaries to the same level across predictors (fixed)

Niter total number of iterations

burnin burnin of the chain
thin thinning factor

Value
List with the following MCMC posterior samples:

- post_mean_delta: posterior samples for the population offset parameters
- post_mean_mu: posterior samples for the population drift parameters
- post_mean_b: posterior samples for the population boundary parameters
- post_ind_delta: posterior samples for the individual offset parameters
- post_ind_mu: posterior samples for the individual drift parameters
- post_ind_b: posterior samples for the individual boundary parameters
- sigma2_mu_us: posterior samples for the random effects drift smoothness parameters
- sigma2_mu_ua: posterior samples for the random effects drift variance parameters
- sigma2_b_us: posterior samples for the random effects boundary smoothness parameters
- sigma2_b_ua: posterior samples for the random effects boundary variance parameters
- sigma2_1_mu: posterior samples for the drift smoothness parameters
- sigma2_1_b: posterior samples for the boundary smoothness parameters
- pred_ans: predicted population-level categories
- pred_time: predicted population-level response times
- pred_ans_ind: predicted individual-level categories
- pred_time_ind: predicted individual-level response times
log_likelihood

Log-likelihood computation

Description
Compute the log-likelihood for the drift-diffusion model, including the censored data contribution.

Usage
```
log_likelihood(tau, mu, b, delta, cens, D, log)
```

Arguments
- **tau**: vector of size n containing the response times
- **mu**: matrix of size (n x d1) containing the drift parameters corresponding to the n response times for each possible d1 decision
- **b**: matrix of size (n x d1) containing the boundary parameters corresponding to the n response times for each possible d1 decision
- **delta**: vector of size n containing the offset parameters corresponding to the n response times
- **cens**: vector of size n containing censoring indicators (1 censored, 0 not censored) corresponding to the n response times
- **D**: (n x 2) matrix whose first column has the n input stimuli, and whose second column has the n decision categories
- **log**: should the results be returned on the log scale?

log_likelihood_ind

Log-likelihood computation for a single observation

Description
Compute the log-likelihood for the drift-diffusion model, including the censored data contribution, for a single observation.

Usage
```
log_likelihood_ind(tau, mu, b, delta, cens, D)
```
Arguments

\textit{tau} vector of size \(n \) containing the response times

\textit{mu} matrix of size \((n \times d1)\) containing the drift parameters corresponding to the \(n \) response times for each possible \(d1 \) decision

\textit{b} matrix of size \((n \times d1)\) containing the boundary parameters corresponding to the \(n \) response times for each possible \(d1 \) decision

\textit{delta} vector of size \(n \) containing the offset parameters corresponding to the \(n \) response times

\textit{cens} vector of size \(n \) containing censoring indicators (1 censored, 0 not censored) corresponding to the \(n \) response times

\textit{D} \((n \times 2)\) matrix whose first column has the \(n \) input stimuli, and whose second column has the \(n \) decision categories

plot_accuracy Descriptive plots

Description

Plot the accuracy of the raw data.

Usage

\textit{plot_accuracy(data)}

Arguments

data dataframe with the following columns:

- subject: vector of size \(n \) containing the participant labels
- block: vector of size \(n \) containing the training blocks (longitudinal units)
- s: vector of size \(n \) containing the stimuli
- d: vector of size \(n \) containing the decisions
- r_time: vector of size \(n \) containing the response times
- cens: vector of size \(n \) containing the censoring indicators (1 censored, 0 non censored)

Value

Individual and population level raw accuracies
plot_post_pars
Plot posterior estimates

Description

Function to plot the posterior mean and credible intervals of the parameters of interest from a lddmm fit object.

Usage

```r
plot_post_pars(data, fit, par = c("drift", "boundary"))
```

Arguments

- `data`: dataframe with the following columns:
 - `subject`: vector of size n containing the participant labels
 - `block`: vector of size n containing the training blocks (longitudinal units)
 - `s`: vector of size n containing the stimuli
 - `d`: vector of size n containing the decisions
 - `r_time`: vector of size n containing the response times
 - `cens`: vector of size n containing the censoring indicators (1 censored, 0 non censored)
- `fit`: fit from the lddmm function
- `par`: parameter to output (`'drift', or 'boundary'`)

Value

Posterior mean and 95% CI

plot_RT
Descriptive plots

Description

Plot the mean response times of the raw data.

Usage

```r
plot_RT(data)
```
Arguments

data dataframe with the following columns:

• subject: vector of size n containing the participant labels
• block: vector of size n containing the training blocks (longitudinal units)
• s: vector of size n containing the stimuli
• d: vector of size n containing the decisions
• r_time: vector of size n containing the response times
• cens: vector of size n containing the censoring indicators (1 censored, 0 non censored)

Value

Population level raw response times

P_smooth1 Spline Penalty Matrix

Description

Construct the covariance matrix P of the smoothness inducing prior for the spline coefficients

Usage

P_smooth1(K)

Arguments

K Number of spline knots

Value

Covariance of the smoothness inducing prior (penalizing first differences in the spline coefficients)
Index

* datasets
 data, 3
B_basis, 2
compute_WAIC, 2
data, 3
extract_post_draws, 3
extract_post_mean, 4
H_ball, 5
LDDMM, 5
log_likelihood, 7
log_likelihood_ind, 7
P_smooth1, 10
plot_accuracy, 8
plot_post_pars, 9
plot_RT, 9