Package ‘ldhmm’

December 5, 2019

Type Package
Title Hidden Markov Model for Financial Time-Series Based on Lambda Distribution
Version 0.5.1
Date 2019-12-05
Author Stephen H-T. Lihn [aut, cre]
Maintainer Stephen H-T. Lihn <stevelihn@gmail.com>
Description Hidden Markov Model (HMM) based on symmetric lambda distribution framework is implemented for the study of return time-series in the financial market. Major features in the S&P500 index, such as regime identification, volatility clustering, and anti-correlation between return and volatility, can be extracted from HMM cleanly. Univariate symmetric lambda distribution is essentially a location-scale family of exponential power distribution. Such distribution is suitable for describing highly leptokurtic time series obtained from the financial market. It provides a theoretically solid foundation to explore such data where the normal distribution is not adequate. The HMM implementation follows closely the book: "Hidden Markov Models for Time Series", by Zucchini, MacDonald, Langrock (2016).

 https://ssrn.com/abstract=3435667
Depends R (>= 3.5.0)
Imports stats, utils, ecd, optimx, xts (>= 0.10-0), zoo, moments, parallel, graphics, scales, ggplot2, grid, methods
Suggests knitr, testthat, depmixS4, roxygen2, R.rsp, shape
License Artistic-2.0
Encoding latin1
LazyData true
RoxygenNote 6.1.1
Collate 'ldhmm-calc_stats_from_obs.R' 'ldhmm-numericOrNull-class.R'
 'ldhmm-package.R' 'ldhmm-class.R' 'ldhmm-conditional_prob.R'
 'ldhmm-constructor.R' 'ldhmm-decode_stats_history.R'
R topics documented:

'ldhmm-decoding.R' 'ldhmm-forecast_prob.R'
'ldhmm-forecast_state.R' 'ldhmm-forecast_volatility.R'
'ldhmm-fred_data.R' 'ldhmm-gamma_init.R' 'ldhmm-ld_stats.R'
'ldhmm-log_forward.R' 'ldhmm-mle.R' 'ldhmm-mllk.R'
'ldhmm-n2w.R' 'ldhmm-oxford_man_index_list.R'
'ldhmm-oxford_man_plot_obs.R'
'ldhmm-oxford_man_realized_data.R' 'ldhmm-oxford_man_ts.R'
'ldhmm-plot_spx_vix_obs.R' 'ldhmm-pseudo_residuals.R'
'ldhmm-simulate_state_transition.R' 'ldhmm-sma.R'
'ldhmm-state_ld.R' 'ldhmm-state_pdf.R' 'ldhmm-ts_abs_acf.R'
'ldhmm-ts_log_rtn.R' 'ldhmm-viterbi.R' 'ldhmm-w2n.R'

NeedsCompilation no
Repository CRAN
Date/Publication 2019-12-05 20:20:02 UTC

R topics documented:

ldhmm-package .. 3
ldhmm .. 4
ldhmm-class ... 5
ldhmm.calc_stats_from_obs 6
ldhmm.conditional_prob 6
ldhmm.decode_stats_history 7
ldhmm.decoding .. 8
ldhmm.forecast_prob .. 8
ldhmm.forecast_state ... 9
ldhmm.forecast_volatility 9
ldhmm.fred_data .. 10
ldhmm.gamma_init ... 11
ldhmm.ld_stats ... 12
ldhmm.log_forward ... 12
ldhmm.mle .. 13
ldhmm.mllk ... 14
ldhmm.n2w ... 15
ldhmm.oxford_man_index_list 15
ldhmm.oxford_man_plot_obs 16
ldhmm.oxford_man_realized_data 17
ldhmm.oxford_man_ts .. 18
ldhmm.plot_spx_vix_obs 19
ldhmm.pseudo_residuals 20
ldhmm.read_sample_object 21
ldhmm.simulate_abs_acf 22
ldhmm.simulate_state_transition 22
ldhmm.sma .. 23
ldhmm.state_ld ... 24
ldhmm.state_pdf ... 24
ldhmm-package

ldhmm-package

ldhmm: A package for HMM using lambda distribution.

Description

The ldhmm package provides the core class and functions to calculate Hidden Markov Model (HMM) using lambda distribution framework. The main goal is to provide a theoretically solid foundation to explore the return time-series in the financial market, where the normal distribution is not adequate due to the leptokurtic nature of the data. Major features in the S&P 500 index, such as regime identification, volatility clustering, and anti-correlation between return and volatility, can be extracted from HMM cleanly. Univariate symmetric lambda distribution is essentially a location-scale family of power-exponential distribution. Such distribution is suitable for describing highly leptokurtic time series obtained from the financial market.

Details

The main change compared to a normal-distribution based HMM is to add the third parameter \(\lambda \) to describe the kurtosis level of the distribution. When \(\lambda \) is one, the model converges back to a normal-distribution based HMM (e.g. using depmixS4 package). The ability to optimize kurtosis brings the model output to be more consistent with the data. In particular, for daily data, the level of kurtosis is quite high. This puts the normal distribution in great disadvantage. This problem is solved by using the lambda distribution.

Author(s)

Stephen H-T. Lihn

References

ldhmm

Constructor of ldhmm class

Description

Construct an ldhmm class by providing the required parameters.

Usage

ldhmm(m, param, gamma, delta = NULL, stationary = TRUE, mle.optimizer = "nlm")

Arguments

m numeric, number of states
param matrix, the ecll parameters of states.
gamma numeric or matrix, the transition probability matrix, must be conformed to m by m. if provided as vector, it will be converted to a matrix with byrow=TRUE.
delta numeric, the initial distribution for each state, default is NULL.
stationary logical, specify whether the initial distribution is stationary or not, default is TRUE.
mle.optimizer character, specify alternative optimizer, default is nlm.

Value

An object of ldhmm class

Author(s)

Stephen H. Lihn

Examples

param0 <- matrix(c(0.003, 0.02, 1, -0.006, 0.03, 1.3), 2, 3, byrow=TRUE)
gamma0 <- matrix(c(0.9, 0.1, 0.1, 0.9), 2, 2, byrow=TRUE)
d <- ldhmm(m=2, param=param0, gamma=gamma0)
The ldhmm class

Description

This S4 class is the major object class for ldhmm package

Slots

call The match.call slot

m_numeric, length 1, number of states

param.nbr_numeric, number of parameters (2 or 3) for each ecld object

param_matrix, natural parameters for ecld objects, size of states times param.nbr. Each row can be
 2-parameter sequences, or 3-parameter sequences. Three-parameter unit (mu,sigma,lambda)
 forms an ecld object representing a leptokurtic symmetric lambda distribution. On the other
 hand, to provide compatibility to a normal distribution HMM, two-parameter unit (mu,sigma)
 forms an ecld object with lambda=1.

gamma_matrix, the transition probability matrix, must be m by m.

delta_numeric, the initial distribution for each state, default is NULL.

stationary_logical, specify whether the initial distribution is stationary or not, default is TRUE.

mle.optimizer_character, the MLE optimizer. Currently it is just set to "nlm".

return.code_numeric, the return code from the MLE optimizer.

iterations_numeric, number of iterations MLE optimizer takes.

mllk_numeric, the final mllk value.

AIC_numeric, the final AIC.

BIC_numeric, the final BIC.

observations_numeric, stores the observations post optimization

states.prob_matrix, stores the state probabilities post optimization

states.local_numeric, stores the local decoding states post optimization

states.global_numeric, stores the global decoding states post optimization (Viterbi)

states.local.stats_matrix, stores the statistics of local states post optimization

states.global.stats_matrix, stores the statistics of global states post optimization
ldhmm.calc_stats_from_obs

Computing the statistics for each state

Description

This utility computes the statistics (mean, sd, kurtosis, length) for each state. It can be based on the local or global decoding result. The concept of asymptotic statistics can be applied by which the largest N observations (in absolute term) can be dropped to avoid distortion from outliers. It is assumed the object already has come with filled data in observations, states.prob, states.local, states.global slots.

Usage

ldhmm.calc_stats_from_obs(object, drop = 0, use.local = TRUE)

ldhmm.drop_outliers(x, drop = 1)

Arguments

object an ldhmm object that contains the observations.
drop numeric, an integer to drop the largest N observations, default is zero.
use.local logical, use local decoding result, default is TRUE. Otherwise, use global decoding result.
x numeric, the observations.

Value

an ldhmm object containing results of decoding

Author(s)

Stephen H. Lihn

ldhmm.conditional_prob

Computing the conditional probabilities

Description

This utility computes the conditional probabilities that observation at time t equals xc, given all observations other than that at time t being the same.
ldhmm.decode_stats_history

Usage

 ldhmm.conditional_prob(object, x, xc)

Arguments

 object an ldhmm object
 x numeric, the observations.
 xc numeric, the conditional observations.

Value

matrix of probabilities, size of xc times size of x.

Author(s)

Stephen H. Lihn

ldhmm.decode_stats_history

Estimating historical statistics (mean, volatility and kurtosis)

Description

This utility estimates historical statistics (mean, volatility and kurtosis) according to the state probabilities. The ldhmm object must have been decoded by running through ldhmm.decoding function. Note that kurtosis is naively implemented as the linear sum from each state weighted by state probabilities. It is subject to change to more rigorous formula in future releases.

Usage

 ldhmm.decode_stats_history(object, ma.order = 0, annualize = FALSE,
 days.pa = 252)

Arguments

 object a decoded ldhmm object
 ma.order a positive integer or zero, specifying order of moving average. Default is zero.
 annualize logical, to annualize the sd and mean to V (xsqrt(days.pa)x100) and R (xdays.pa). Default is FALSE.
 days.pa a positive integer, specifying number of days per year, default is 252.

Value

an matrix of statistics history, size of observations times size of 3

Author(s)

Stephen H. Lihn
ldhmm.decoding Computing the minus log-likelihood (MLLK)

Description
This utility computes the state probabilities, uses local and global decoding to calculate the states. The results are saved to the returned ldhmm object.

Usage
ldhmm.decoding(object, x)

Arguments
 object an ldhmm object
 x numeric, the observations.

Value
an ldhmm object containing results of decoding

Author(s)
Stephen H. Lihn

ldhmm.forecast_prob Computing the forecast probability distribution

Description
This utility computes the forecast probability distribution (Zucchini, 5.3)

Usage
ldhmm.forecast_prob(object, x, xf, h = 1)

Arguments
 object an ldhmm object
 x numeric, the observations.
 xf numeric, the future observations to be forecasted.
 h integer, time steps to forecast.

Value
matrix of probabilities, size of h times size of xf.
ldhmm.forecast_state

Description
This utility computes the state forecast, given the sequence of observations in the past.

Usage
ldhmm.forecast_state(object, x, h = 1)

Arguments

object an ldhmm object
x numeric, the observations.
h integer, time steps to forecast.

Value
matrix of probabilities per state (even if h=1), number of states times size of h

Author(s)
Stephen H. Lihn

ldhmm.forecast_volatility

Computing the volatility forecast for next one period

Description
This utility computes the volatility forecast based on the given future observations for next one period.

Usage
ldhmm.forecast_volatility(object, x, xf, ma.order = 0, days.pa = 252)
ldhmm.fred_data

Arguments

- **object**: an ldhmm object
- **x**: numeric, the observations.
- **xf**: numeric, the future observations to be forecasted.
- **ma.order**: a positive integer or zero, specifying order of moving average. Default is zero.
- **days.pa**: a positive integer specifying trading days per year, default is 252.

Value

- matrix of future observations and volatilities, size of 2 times length of xf.

Author(s)

Stephen H. Lihn

ldhmm.fred_data
Utility to download time series from FRED

Description

This utility downloads time series from FRED. It serves as a data source for daily data, e.g. SP500 for S&P 500, and VIXCLS for CBOE VIX index. This can be concatenated to the static data to provide daily updates.

Usage

```r
ldhmm.fred_data(symbol, col_out = "Close", do.logr = TRUE)
```

Arguments

- **symbol**: character, the name of the time series
- **col_out**: character, the name of the output closing price column. Default: "Close"
- **do.logr**: logical, if TRUE (default), produce xts object of logr; otherwise, just the col_out column. Be aware that, because logr uses diff, the first day close will be deleted.

Value

- The xts object for the time series

Examples

```r
## Not run:
ldhmm.fred_data("VIXCLS")

## End(Not run)
```
Description

This utility has multiple purposes. It can generate a simple transition probability matrix, using p1 and p2, if prob is left as NULL. The generated gamma is raw and not normalized. If prob is provided as a vector, the utility converts it into a matrix as gamma. Furthermore, if prob is provided as a vector or matrix, the utility applies min.gamma, and normalize the sum of t.p.m. rows to 1. This is mainly an internal function used by MLE, not be concerned by external users.

Usage

```r
ldhmm.gamma_init(m, p1 = 0.04, p2 = 0.01, prob = NULL, min.gamma = 0)
```

Arguments

- `m` numeric, number of states
- `p1` numeric, the first-neighbor transition probability, default is 0.04.
- `p2` numeric, the second-neighbor transition probability, default is 0.01.
- `prob` numeric or matrix, a fully specified transition probability by user, default is NULL. If this is specified, p1, p2 would be ignored.
- `min.gamma` numeric, a minimum transition probability added to gamma to avoid singularity, default is 0. This is only used when prob is not NULL.

Value

a matrix as gamma

Author(s)

Stephen H. Lihn

Examples

```r
gamma0 <- ldhmm.gamma_init(m=3)
prob=c(0.9, 0.1, 0.1,
      0.1, 0.9, 0.0,
      0.1, 0.1, 0.8)
gamma1 <- ldhmm.gamma_init(m=3, prob=prob)
gamma2 <- ldhmm.gamma_init(m=2, prob=gamma1, min.gamma=1e-6)
```
ldhmm.ld_stats

Description

This utility computes the statistics (mean, sd, kurtosis) based on the lambda distribution. This is used to compare to the statistics from observations for each state.

Usage

ldhmm.ld_stats(object, annualize = FALSE, days.pa = 252)

Arguments

- object: an ldhmm object
- annualize: logical, to annualize the sd and mean to V (xsqrt(days.pa)x100) and R (xdays.pa). Default is FALSE.
- days.pa: a positive integer, specifying number of days per year, default is 252.

Value

a matrix of statistics for each state, size of states times 3

Author(s)

Stephen H. Lihn

ldhmm.log_forward

Description

This utility computes the logarithms of the forward and backward probabilities, aka alpha and beta. The logarithm keeps the computation away from floating point under/over-flow. (Zucchini, 5.4)

Usage

ldhmm.log_forward(object, x)

ldhmm.log_backward(object, x)

Arguments

- object: an ldhmm object
- x: numeric, the observations.
ldhmm.mle

Value

numeric, the log probabilities

Author(s)

Stephen H. Lihn

ldhmm.mle Computing the MLEs

Description

Computing the MLEs using nlm package

Usage

ldhmm.mle(object, x, min.gamma = 1e-06, decode = FALSE,
plot.fn = NULL, plot.interval = 200, ssm.fn = NULL,
print.level = 0, iterlim = 1000, ...)

Arguments

object an ldhmm object that can supply m, param.nbr and stationary.
x numeric, the observations.
min.gamma numeric, a minimum transition probability added to gamma to avoid singularity, default is 1e-6.
decode logical, run decoding after optimization, default is FALSE.
plot.fn name of the function that takes ldhmm object. It will be called occasionally to track the progress of the fit, mainly by plotting the time series and states. E.g. When one fits the SPX index, the function ldhmm.oxford_man_plot_obs can be used to show the expected volatility vs Oxford-Man realized volatility. Default is NULL.
plot.interval a positive integer, specifying how often to invoke plot function, default is 200 iterations.
ssm.fn name of the function that takes ldhmm object. This function is called after the MLLK call. The purpose is to generate an additional score for optimization. E.g. It can be used to separate the states into predefined intervals, modeling a state space model. Default is NULL.
print.level numeric, this argument determines the level of printing which is done during the minimization process. The default value of 0 means that no printing occurs, a value of 1 means that initial and final details are printed and a value of 2 means that full tracing information is printed.
iterlim numeric, a positive integer specifying the maximum number of iterations to be performed before the program is terminated.
...

additional parameters passed to the MLE optimizer
ldhmm.mllk

Computing the minus log-likelihood (MLLK)

Description
This utility computes the MLLK. It is typically invoked by the MLE optimizer. (Zucchini, 3.2)

Usage
```r
ldhmm.mllk(object, x, mllk.print.level = 0)
```

Arguments
- `object` an input ldhmm object to provide static reference, such as `m`, `param.nbr`, stationary.
- `x` numeric, the observations.
- `mllk.print.level` numeric, this argument determines the level of printing which is done during the minimization process. The default value of 0 means that no printing occurs, a value of 1 or greater means some tracing information is printed.

Value
an ldhmm object containing results of MLE optimization

Author(s)
Stephen H. Lihn
ldhmm.n2w

Transforming natural parameters to a linear working parameter array

Description

This utility linearizes the natural parameters and transforms the constrained parameters to unconstrained parameters. (Zucchini, 3.3.1)

Usage

```r
ldhmm.n2w(object, mu.scale = 1)
```

Arguments

- `object`: an ldhmm object
- `mu.scale`: numeric, if provided, e.g. `mean(abs(x))`, it is used to scale up mu so that the scale is more friendly to the optimizer. Default is 1.

Value

numeric, linear working parameter array

Author(s)

Stephen H. Lihn

Examples

```r
param0 <- matrix(c(0.003, 0.02, 1, -0.006, 0.03, 1.3), 2, 3, byrow=TRUE)
gamma0 <- matrix(c(0.9, 0.1, 0.1, 0.9), 2, 2, byrow=TRUE)
d <- ldhmm(m=2, param=param0, gamma=gamma0)
v <- ldhmm.n2w(d)
```

ldhmm.oxford_man_index_list

Get the index list from Oxford-Man

Description

This utility shows the index list within the Oxford-Man data set.

Usage

```r
ldhmm.oxford_man_index_list()
```
Value

character, list of indices

Author(s)

Stephen H. Lihn

References

Examples

```r
## Not run:
ldhmm.oxford_man_index_list()

## End(Not run)
```

ldhmm.oxford_man_plot_obs

Plotting Oxford-Man realized volatility overlaid with HMM expected volatility

Description

This utility plots the Oxford-Man realized volatility (from SPX2.rv) and overlays with the HMM expected volatility with the observations set up SPX2.r. This graph is to show that the HMM is capable of reproducing the realized volatility. Optionally the insert shows the relation between the return and volatility indicated by each state. This plot is also called "volatility yield curve".

Usage

```r
ldhmm.oxford_man_plot_obs(object, days.pa = 252, start.date = NULL, 
end.date = NULL, index.symbol = ".SPX", index.rv = "rv5", 
index.px = "close_price", index.px.scale = 15, 
index.px.origin = NULL, index.vol.ma.order = 5, 
vix.adj.ratio = NULL, insert.plot = TRUE, insert.viewport = NULL)
```

Arguments

- **object**: an ldhmm object with a stationary solution. If this is set to NULL, an internal 10-state HMM object will be used.
- **days.pa**: a positive integer specifying trading days per year, default is 252.
- **start.date**: Date or character of ISO format (YYYY-MM-DD), specifying the start date of the plot, default is NULL.
- **end.date**: Date or character of ISO format (YYYY-MM-DD), specifying the end date of the plot, default is NULL.
ldhmm.oxford_man_realized_data

Description

This utility fetches the realized data from Oxford-Man and stores the data frame in local memory. It can be retrieved as getOption("ldhmm.oxford.rv"). Since the data is updated on a daily basis, the user can optionally force the utility to fetch the new file in the same R-session. Note that the download is network intensive. The size of file is about 10-20 MB and growing daily. In addition, VIX daily data is downloaded as getOption("ldhmm.oxford.vix").

Examples

```r
## Not run:
ldhmm.oxford_man_plot_obs(NULL)
## End(Not run)
```

Author(s)

Stephen H. Lihn
ldhmm.oxford_man_realized_data

Usage

 ldhmm.oxford_man_realized_data(force = FALSE, debug = FALSE)

Arguments

force logical, force the utility to fetch the new file. Default is FALSE.
debug logical, print debug information. Could be very verbose. Default is FALSE.

Value

data.frame containing the raw data from Oxford-Man.

Author(s)

Stephen H. Lihn

References

Examples

Not run:
 ldhmm.oxford_man_realized_data()

End(Not run)

ldhmm.oxford_man_ts Get time series from Oxford-Man Realized data set

Description

This utility returns the time series from the specific column in Oxford-Man Realized data set.

Usage

 ldhmm.oxford_man_ts(symbol, column, log = FALSE, to.vol = FALSE, days.pa = 252)

Arguments

symbol character, specify the index name, e.g. ".SPX".
column character, the column name, e.g. "rv5".
log logical, take one plus log to convert return to log-return. Default is FALSE.
to.vol logical, take \(\sqrt{x \times 252} \times 100\) to convert variance to annualized volatility. Default is FALSE.
days.pa a positive integer specifying number of days to annualize volatility. Default is 252.
ldhmm.plot_spx_vix_obs

Plotting HMM expected volatility for SPX overlaid with adjusted VIX

Description

This utility plots the HMM expected volatility of SPX overlaid with the VIX index adjusted by a ratio. The expected volatility is shown to have a long-term ratio of 0.79 relative to the VIX index. This plot will show how HMM deviates from VIX in a shorter time window. Optionally the insert shows the relation between the return and volatility indicated by each state. This plot is also called "volatility yield curve".

Usage

```r
ldhmm.plot_spx_vix_obs(object, days.pa = 252, start.date = NULL, end.date = NULL, px.origin = NULL, px.scale = NULL, vix.adj.ratio = NULL, insert.plot = TRUE, insert.viewport = NULL)
```

Arguments

- `object`: an ldhmm object with a stationary solution. If this is set to NULL, an internal 10-state HMM object will be used.
- `days.pa`: a positive integer specifying trading days per year, default is 252.
- `start.date`: Date or character of ISO format (YYYY-MM-DD), specifying the start date of the plot, default is NULL, which is converted to 1.5 years ago.
- `end.date`: Date or character of ISO format (YYYY-MM-DD), specifying the end date of the plot, default is NULL, which means the latest date.
- `px.origin`: numeric, specifying the starting value of the index price line, the default is NULL, which will start the index price line from the middle of y-axis.
- `px.scale`: numeric, specifying the scaling factor when plotting price trend, default is 15. The closing price is converted to cumulative return by the price of the first date. Then plot from the mid-point of volatility axis with this scale.

Examples

```r
## Not run:
vol <- ldhmm.oxford_man_ts(".SPX", "rv5", to.vol=TRUE)
## End(Not run)
```
ldhmm.pseudo_residuals

Computing pseudo-residuals

Description
This utility computes pseudo-residuals. (Zucchini, 6.2)

Usage
ldhmm.pseudo_residuals(object, x, xc.length = 1000)

Arguments
object an ldhmm object
x numeric, the observations.
xc.length a positive integer specifying the length of xc when calculating conditional probabilities, default is 1000.

Value
a vector of normal quantiles

Author(s)
Stephen H. Lihn
ldhmm.read_sample_object

Description

This utility is used to read sample ldhmm object so that the user doesn’t need to go through lengthy optimization process to obtain a trained HMM for advanced features.

Usage

ldhmm.read_sample_object(symbol = "spx-daily-m10", extdata_dir = NULL)

Arguments

symbol Character for the symbol of the time series. Default is spx-daily-m10
extdata_dir optionally specify user’s own extdata folder

Value

The ldhmm object

Author(s)

Stephen H-T. Lihn

Examples

hs <- ldhmm.read_sample_object() # SPX daily 10-state HMM
ldhmm.simulate_abs_acf

Simulating auto-correlation (ACF)

Description
This utility simulates the auto-correlation. The first few lag of ACF should match the ACF from the market data fairly well. This is a major validation of a successful HMM. Be aware this is a CPU intensive calculation. It uses the multi-core functionality.

Usage
ldhmm.simulate_abs_acf(object, n = 10000, lag.max = 5, debug = FALSE)

Arguments
object an ldhmm object that can supply m, param.nbr and stationary.
n a positive integer specifying number of observations to simulate.
lag.max a positive integer, specifying number of lags to be computed.
debug logical, specifying to print progress message or not. Default is FALSE.

Value
a vector of ACF

Author(s)
Stephen H. Lihn

ldhmm.simulate_state_transition

Simulating state transition

Description
This utility allows to simulate the states and observations over time. Be aware this is a CPU intensive calculation. It uses the multi-core functionality.

Usage
ldhmm.simulate_state_transition(object, init = NULL)
ldhmm.sma

Arguments

- **object**
 an ldhmm object that can supply m, param.nbr and stationary.

- **init**
 a positive integer specifying number of observations to simulate initially. The default is NULL, indicating that the simulation should use the (local) states and observations from within the object, and simulate the next set of random states and observations according to gamma. When init is an integer, the utility will generate random states and observations according to delta.

Value

an ldhmm object containing the simulated states and observations. The observations are stored in the observations slot. The states are stored in the states.local slot.

Author(s)

Stephen H. Lihn

ldhmm.sma
Simple moving average of a time series

Description

This utility calculates simple moving average, with option to backfill for NA.

Usage

```r
ldhmm.sma(x, order, na.backfill = TRUE)
```

Arguments

- **x**
 numeric, the time series.

- **order**
 a positive integer to specify order of moving average.

- **na.backfill**
 logical, specify whether to backfill for NA. Default is TRUE.

Value

numeric, simple moving average, same length as x.

Author(s)

Stephen H. Lihn

Examples

```r
x <- 1:100
a <- ldhmm.sma(x, 10)
```
ldhmm.state_ld
Constructing the ecld objects per state

Description

This utility constructs the ecld objects per state and return them in a list of easy query.

Usage

`ldhmm.state_ld(object, state = NULL)`

Arguments

- `object`
an ldhmm object
- `state`
numeric, the states.

Value

a list of ecld objects

Author(s)

Stephen H. Lihn

ldhmm.state_pdf
Computing the PDF per state given the observations

Description

Computing the PDF per state given the observations. Only one of state or x can be a vector per call.

Usage

`ldhmm.state_pdf(object, state, x)`

Arguments

- `object`
an ldhmm object
- `state`
numeric, the states.
- `x`
numeric, the observations.

Value

a vector or matrix of PDF. The dimension of matrix is state times x

Author(s)

Stephen H. Lihn
ldhmm.ts_abs_acf

Computing ACF of the absolute value of a time series

Description

This utility computes the ACF of the absolute value of a time series as a proxy of the auto-correlation of the volatility. It allows to drop the largest N outliers so that they would not skew the ACF calculation.

Usage

```r
ldhmm.ts_abs_acf(x, drop = 0, lag.max = 100)
```

Arguments

- `x`: numeric, the observations.
- `drop`: a positive integer, specifying number of outliers to be dropped.
- `lag.max`: a positive integer, specifying number of lags to be computed.

Value

a vector of ACF

Author(s)

Stephen H. Lihn

ldhmm.ts_log_rtn

Get log-returns from historic prices of an index

Description

This utility returns the dates and log-returns of an index available in ecd package. Note that the data from ecd package is static. A limited set of live daily time series can be appended from FRED, e.g. SPX, VIX, DJIA.

Usage

```r
ldhmm.ts_log_rtn(symbol = "spx", start.date = "1950-01-01", end.date = "2015-12-31", on = "weeks", fred.data = FALSE)
```
Arguments
symbol character, specify the symbol of the index, default is spx.

start.date, end.date
Date or character of ISO format (YYYY-MM-DD), to specify the date range, default is from 1950-01-01 to 2015-12-31. Set start.date and end.date to NULL or "" if you wish to get the entire time series.

on character, specify the interval, days, weeks, months. Default is weeks.

fred.data logical, specify whether to append daily time series data from FRED, default is FALSE.

Value
list of three vectors: d is the dates and x is log-returns and p is prices

Author(s)
Stephen H. Lihn

Examples
a <- ldhmm.ts_log_rtn()

ldhmm.viterbi Computing the global decoding by the Viterbi algorithm

Description
This utility computes the global decoding by the Viterbi algorithm.

Usage
ldhmm.viterbi(object, x)

Arguments
object an ldhmm object
x numeric, the observations.

Value
a vector of states

Author(s)
Stephen H. Lihn
ldhmm.w2n

Transforming working parameter array to natural parameters

Description
This utility transforms the working parameter array back to the vectors and matrix of the contrained parameters. (Zucchini, 3.3.1)

Usage

`ldhmm.w2n(object, par.vector, mu.scale = 1)`

Arguments
- `object` an ldhmm object that can supply m, param.nbr and stationary.
- `par.vector` numeric, linear working parameter array. See `ldhmm.n2w`.
- `mu.scale` numeric, it should mirror what is provided to `ldhmm.n2w`. Default is 1.

Value
an ldhmm object

Author(s)
Stephen H. Lihn

numericOrNull-class
The numericOrNull class

Description
The S4 class union of numeric and NULL, primarily used for detla
Index

*Topic VIX
 ldhmm.plot_spx_vix_obs, 19
*Topic acf
 ldhmm.simulate_abs_acf, 22
 ldhmm.ts_abs_acf, 25
*Topic class
 ldhmm-class, 5
*Topic constructor
 ldhmm, 4
 ldhmm-class, 5
 ldhmm.gamma_init, 11
*Topic data
 ldhmm.fred_data, 10
 ldhmm.read_sample_object, 21
 ldhmm.sma, 23
 ldhmm.ts_log_rtn, 25
*Topic forecast
 ldhmm.decode_stats_history, 7
 ldhmm.forecast_prob, 8
 ldhmm.forecast_state, 9
 ldhmm.forecast_volatility, 9
*Topic mle
 ldhmm.mle, 13
*Topic mllk
 ldhmm.calc_stats_from_obs, 6
 ldhmm.decoding, 8
 ldhmm.mllk, 14
*Topic oxford
 ldhmm.oxford_man_index_list, 15
 ldhmm.oxford_man_plot_obs, 16
 ldhmm.oxford_man_realized_data, 17
 ldhmm.oxford_man_ts, 18
*Topic parameter
 ldhmm.n2w, 15
 ldhmm.w2n, 27
*Topic pdf
 ldhmm.conditional_prob, 6
 ldhmm.ld_stats, 12
 ldhmm.log_forward, 12
 ldhmm.state_ld, 24
 ldhmm.state_pdf, 24
*Topic residuals
 ldhmm.pseudo_residuals, 20
*Topic simulation
 ldhmm.simulate_state_transition, 22
*Topic viterbi
 ldhmm.viterbi, 26
 ldhmm, 4
 ldhmm-class, 5
 ldhmm-package, 3
 ldhmm.calc_stats_from_obs, 6
 ldhmm.conditional_prob, 6
 ldhmm.decode_stats_history, 7
 ldhmm.decoding, 8
 ldhmm.drop_outliers (ldhmm.calc_stats_from_obs), 6
 ldhmm.forecast_prob, 8
 ldhmm.forecast_state, 9
 ldhmm.forecast_volatility, 9
 ldhmm.fred_data, 10
 ldhmm.gamma_init, 11
 ldhmm.ld_stats, 12
 ldhmm.log_backward (ldhmm.log_forward), 12
 ldhmm.log_forward, 12
 ldhmm.mle, 13
 ldhmm.mllk, 14
 ldhmm.n2w, 15
 ldhmm.oxford_man_index_list, 15
 ldhmm.oxford_man_plot_obs, 16
 ldhmm.oxford_man_realized_data, 17
 ldhmm.oxford_man_ts, 18
 ldhmm.plot_spx_vix_obs, 19
 ldhmm.pseudo_residuals, 20
 ldhmm.read_sample_object, 21
 ldhmm.simulate_abs_acf, 22
 ldhmm.simulate_state_transition, 22
INDEX

ldhmm.sma, 23
ldhmm.state_ld, 24
ldhmm.state_pdf, 24
ldhmm.ts_abs_acf, 25
ldhmm.ts_log_rtn, 25
ldhmm.viterbi, 26
ldhmm.w2n, 27

numericOrBeNull-class, 27