Description

`leaps()` performs an exhaustive search for the best subsets of the variables in x for predicting y in linear regression, using an efficient branch-and-bound algorithm. It is a compatibility wrapper for `regsubsets` does the same thing better.

Since the algorithm returns a best model of each size, the results do not depend on a penalty model for model size: it doesn’t make any difference whether you want to use AIC, BIC, CIC, DIC, ...
Usage

leaps(x=, y=, wt=rep(1, NROW(x)), int=TRUE, method=c("Cp", "adjr2", "r2"), nbest=10, names=NULL, df=NROW(x), strictly.compatible=TRUE)

Arguments

x A matrix of predictors
y A response vector
wt Optional weight vector
int Add an intercept to the model
method Calculate Cp, adjusted R-squared or R-squared
nbest Number of subsets of each size to report
names vector of names for columns of x
df Total degrees of freedom to use instead of nrow(x) in calculating Cp and adjusted R-squared
strictly.compatible Implement misfeatures of leaps() in S

Value

A list with components

which logical matrix. Each row can be used to select the columns of x in the respective model
size Number of variables, including intercept if any, in the model
cp or adjr2 or r2 is the value of the chosen model selection statistic for each model
label vector of names for the columns of x

Note

With strictly.compatible=T the function will stop with an error if x is not of full rank or if it has more than 31 columns. It will ignore the column names of x even if names==NULL and will replace them with "0" to "9", "A" to "Z".

References

Alan Miller "Subset Selection in Regression" Chapman \\& Hall

See Also

regsubsets, regsubsets.formula, regsubsets.default

Examples

x<-matrix(rnorm(100),ncol=4)
y<-rnorm(25)
leaps(x,y)
Description

These functions are used internally by `regsubsets` and `leaps`. They are wrappers for Fortran routines that construct and manipulate a QR decomposition.

Usage

```r
leaps.setup(x, y, wt = rep(1, length(y)), force.in = NULL, force.out = NULL, intercept = TRUE, nvmax = 8, nbest = 1, warn.dep = TRUE)
leaps.seqrep(leaps.obj)
leaps.exhaustive(leaps.obj, really.big = FALSE)
leaps.backward(leaps.obj, nested)
leaps.forward(leaps.obj, nested)
```

Arguments

- `x`: A matrix of predictors
- `y`: A response vector
- `wt`: Optional weight vector
- `intercept`: Add an intercept to the model
- `force.in`: Vector indicating variable that must be in the model
- `force.out`: Vector indicating variable that must not be in the model
- `nbest`: Number of subsets of each size to report
- `nvmax`: Largest subset size to examine
- `warn.dep`: Warn if `x` is not of full rank
- `leaps.obj`: An object of class `leaps` as produced by `leaps.setup`
- `really.big`: Required before R gets sent off on a long uninterruptible computation
- `nested`: Use just the forward or backward selection models, not the models with variables 1:nvmax constructed for free in the setup

See Also

`regsubsets`, `leaps`
plot.regsubsets

Graphical table of best subsets

Description

Plots a table of models showing which variables are in each model. The models are ordered by the specified model selection statistic. This plot is particularly useful when there are more than ten or so models and the simple table produced by `summary.regsubsets` is too big to read.

Usage

```r
## S3 method for class 'regsubsets'
plot(x, labels=obj$xnames, main=NULL, scale=c("bic", "Cp", "adjr2", "r2"),
     col=gray(seq(0, 0.9, length = 10)),...)
```

Arguments

- `x`
 regsubsets object
- `labels`
 variable names
- `main`
 title for plot
- `scale`
 which summary statistic to use for ordering plots
- `col`
 Colors: the last color should be close to but distinct from white
- `...`
 other arguments

Value

None

Author(s)

Thomas Lumley, based on a concept by Merlise Clyde

See Also

`regsubsets`, `summary.regsubsets`

Examples

```r
data(swiss)
a<-regsubsets(Fertility~., nbest=3, data=swiss)
par(mfrow=c(1,2))
plot(a)
plot(a, scale="r2")
```
regsubsets functions for model selection

Description
Model selection by exhaustive search, forward or backward stepwise, or sequential replacement

Usage
regsubsets(x=, ...)

S3 method for class 'formula'
regsubsets(x=, data=, weights=NULL, nbest=1, nvmax=8,
 force.in=NULL, force.out=NULL, intercept=TRUE,
 method=c("exhaustive", "backward", "forward", "seqrep"),
 really.big=FALSE,
 nested=(nbest==1),...)

Default S3 method:
regsubsets(x=, y=, weights=rep(1, length(y)), nbest=1, nvmax=8,
 force.in=NULL, force.out=NULL, intercept=TRUE,
 method=c("exhaustive", "backward", "forward", "seqrep"),
 really.big=FALSE,nested=(nbest==1),...)

S3 method for class 'biglm'
regsubsets(x=, nbest=1,nvmax=8,force.in=NULL,
 method=c("exhaustive", "backward", "forward", "seqrep"),
 really.big=FALSE,nested=(nbest==1),...)

S3 method for class 'regsubsets'
summary(object,all.best=TRUE,matrix=TRUE,matrix.logical=FALSE,df=NULL,...)

S3 method for class 'regsubsets'
coef(object,id,vcov=FALSE,...)

S3 method for class 'regsubsets'
vcov(object,id,...)

Arguments

x design matrix or model formula for full model, or biglm object
data Optional data frame
y response vector
weights weight vector
nbest number of subsets of each size to record
regsubsets

nvmax maximum size of subsets to examine
force.in index to columns of design matrix that should be in all models
force.out index to columns of design matrix that should be in no models
intercept Add an intercept?
method Use exhaustive search, forward selection, backward selection or sequential replacement to search.
really.big Must be TRUE to perform exhaustive search on more than 50 variables.
nested See the Note below: if nested=FALSE, models with columns 1, 1 and 2, 1-3, and so on, will also be considered
object regsubsets object
all.best Show all the best subsets or just one of each size
matrix Show a matrix of the variables in each model or just summary statistics
matrix.logical With matrix=TRUE, the matrix is logical TRUE/FALSE or string "*"/

df Specify a number of degrees of freedom for the summary statistics. The default is n-1
id Which model or models (ordered as in the summary output) to return coefficients and variance matrix for
vcov If TRUE, return the variance-covariance matrix as an attribute
... Other arguments for future methods

Details

Since this function returns separate best models of all sizes up to nvmax and since different model selection criteria such as AIC, BIC, CIC, DIC, ... differ only in how models of different sizes are compared, the results do not depend on the choice of cost-complexity tradeoff.

When x is a biglm object it is assumed to be the full model, so force.out is not relevant. If there is an intercept it is forced in by default; specify a force.in as a logical vector with FALSE as the first element to allow the intercept to be dropped.

The model search does not actually fit each model, so the returned object does not contain coefficients or standard errors. Coefficients and the variance-covariance matrix for one or model models can be obtained with the coef and vcov methods.

Value

regsubsets returns an object of class "regsubsets" containing no user-serviceable parts. It is designed to be processed by summary.regsubsets.

summary.regsubsets returns an object with elements

which A logical matrix indicating which elements are in each model
rsq The r-squared for each model
rss Residual sum of squares for each model
adjr2 Adjusted r-squared
cp Mallows’ Cp
regsubsets

bic Schwartz's information criterion, BIC
outmat A version of the which component that is formatted for printing
obj A copy of the regsubsets object

The coef method returns a coefficient vector or list of vectors, the vcov method returns a matrix or list of matrices.

Note

As part of the setup process, the code initially fits models with the first variable in x, the first two, the first three, and so on. For forward and backward selection it is possible that the model with the k first variables will be better than the model with k variables from the selection algorithm. If it is, the model with the first k variables will be returned, with a warning. This can happen for forward and backward selection. It (obviously) can't for exhaustive search.

With nbest=1 you can avoid these extra models with nested=TRUE, which is the default.

See Also

leaps

Examples

data(swiss)
a<-regsubsets(as.matrix(swiss[,-1]),swiss[,1])
summary(a)
b<-regsubsets(Fertility~.,data=swiss,nbest=2)
summary(b)

coef(a, 1:3)
vcov(a, 3)
Index

*Topic `hplot`
 plot.regsubsets, 4
*Topic `regression`
 leaps, 1
 leaps.setup, 3
 plot.regsubsets, 4
 regsubsets, 5
 coef.regsubsets (regsubsets), 5
 leaps, 1, 3, 7
 leaps.backward (leaps.setup), 3
 leaps.exhaustive (leaps.setup), 3
 leaps.forward (leaps.setup), 3
 leaps.seqrep (leaps.setup), 3
 leaps.setup, 3
 plot.regsubsets, 4
 print.regsubsets (regsubsets), 5
 print.summary.regsubsets (regsubsets), 5
 regsubsets, 1–4, 5
 regsubsets.default, 2
 regsubsets.formula, 2
 summary.regsubsets, 4, 6
 summary.regsubsets (regsubsets), 5
 vcov.regsubsets (regsubsets), 5