Package ‘leidenbase’

December 14, 2022

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>R and C/C++ Wrappers to Run the Leiden find_partition() Function</td>
</tr>
<tr>
<td>Version</td>
<td>0.1.14</td>
</tr>
<tr>
<td>Description</td>
<td>An R to C/C++ interface that runs the Leiden community detection algorithm to find a basic partition(). It runs the equivalent of the 'leidenalg' find_partition() function, which is given in the 'leidenalg' distribution file 'leiden/src/functions.py'. This package includes the required source code files from the official 'leidenalg' distribution and functions from the R 'igraph' package. The 'leidenalg' distribution is available from https://github.com/vtraag/leidenalg/ and the R 'igraph' package is available from https://igraph.org/r/. The Leiden algorithm is described in the article by Traag et al. (2019) doi:10.1038/s41598-019-41695-z.</td>
</tr>
</tbody>
</table>

Imports	igraph (>= 0.8.2)
License	GPL-3
Encoding	UTF-8
RoxygenNote	7.1.2
Depends	R (>= 3.5.0)
Suggests	rmarkdown, knitr, testthat (>= 3.1.0)
URL	https://github.com/cole-trapnell-lab/leidenbase
BugReports	https://github.com/cole-trapnell-lab/leidenbase/issues
NeedsCompilation	yes
Maintainer	Brent Ewing <bge@uw.edu>
VignetteBuilder	knitr
Author	Brent Ewing [aut, cre], Vincent Traag [ctb], Gábor Csárdi [ctb], Tamás Nepusz [ctb],
Description

R to C wrapper that runs the basic Leiden community detection algorithm, which is similar to the find_partition() function in the python Leidenalg distribution.

Usage

```r
leiden_find_partition(
  igraph,
  partition_type = c("CPMVertexPartition", "ModularityVertexPartition",
                    "RBConfigurationVertexPartition", "RBERVertexPartition",
                    "SignificanceVertexPartition", "SurpriseVertexPartition"),
  initial_membership = NULL,
  edge_weights = NULL,
  node_sizes = NULL,
  seed = NULL,
  resolution_parameter = 0.1,
  num_iter = 2,
  verbose = FALSE
)
```

Arguments

- `igraph` [igraph graph.]
- `partition_type` [String partition type name. Default is CPMVertexPartition.]
- `initial_membership` [Numeric vector of initial membership assignments of nodes. These are 1-based indices. Default is one community per node.]
- `edge_weights` [Numeric vector of edge weights. Default is 1.0 for all edges.]
- `node_sizes` [Numeric vector of node sizes. Default is 1 for all nodes.]
- `seed` [Numeric random number generator seed. The seed value must be either NULL for random seed values or greater than 0 for a fixed seed value. Default is NULL.]
Resolution parameter

Numeric resolution parameter. The value must be greater than 0.0. Default is 0.1. The resolution parameter is ignored for the partition_types ModularityVertexPartition, SignificanceVertexPartition, and SurpriseVertexPartition.

Num_iter

Numeric number of iterations. Default is 2.

Verbose

A logic flag to determine whether or not we should print run diagnostics.

Details

The Leiden algorithm is described in From Louvain to Leiden: guaranteeing well-connected communities. V. A. Traag and L. Waltman and N. J. van Eck Scientific Reports, 9(1) (2019) DOI: 10.1038/s41598-019-41695-z.

Significance is described in Significant Scales in Community Structure V. A. Traag, G. Krings, and P. Van Dooren Scientific Reports, 3(1) (2013) DOI: 10.1038/srep02930

Notes excerpted from leidenalg/src/VertexPartition.py

- CPMVertexPartition Implements Constant Potts Model. This quality function uses a linear resolution parameter and is well-defined for both positive and negative edge weights.
- ModularityVertexPartition Implements modularity. This quality function is well-defined only for positive edge weights.
- RBConfigurationVertexPartition Implements Reichardt and Bornholdt’s Potts model with a configuration null model. This quality function uses a linear resolution parameter and is well-defined only for positive edge weights.
- RBERVertexPartition Implements Reichardt and Bornholdt’s Potts model with an Erdos-Renyi null model. This quality function uses a linear resolution parameter and is well-defined only for positive edge weights.
- SignificanceVertexPartition Implements Significance. This quality function is well-defined only for unweighted graphs.
- SurpriseVertexPartition Implements (asymptotic) Surprise. This quality function is well-defined only for positive edge weights.

Value

A named list consisting of a numeric vector of the node community memberships (1-based indices), a numeric quality value, a numeric modularity, a numeric significance, a numeric vector of edge weights within each community, a numeric vector of edge weights from each community, a numeric vector of edge weights to each community, and total edge weight.

References

Significant Scales in Community Structure V. A. Traag, G. Krings, and P. Van Dooren Scientific Reports, 3(1) (2013) DOI: 10.1038/srep02930
Examples

```r
library(igraph)

test_data_path <- system.file('testdata', 'igraph_n1500_edgelist.txt.gz', package = 'leidenbase')

edgelist <- gzfile(test_data_path)

igraph <- read_graph(file = edgelist, format = 'edgelist', n = 1500)

res <- leiden_find_partition(igraph = igraph, partition_type = 'CPMVertexPartition',
                             resolution_parameter = 1e-5)
```

```
Index

leiden_find_partition, 2