Package ‘leidenbase’

March 28, 2022

Type Package

Title R and C/C++ Wrappers to Run the Leiden find_partition() Function

Version 0.1.1

Description An R to C/C++ interface that runs the Leiden community
detection algorithm to find a basic partition (). It runs the
equivalent of the 'leidenalg' find_partition() function, which is
given in the 'leidenalg' distribution file
'leiden/src/functions.py'. This package includes the
required source code files from the official 'leidenalg'
distribution and functions from the R 'igraph'
package. The 'leidenalg' distribution is available from
<https://github.com/vtraag/leidenalg/>
and the R 'igraph' package is available from
<https://igraph.org/r/>.
The Leiden algorithm is described in the article by

Imports igraph (>= 0.8.2)

License GPL-3

Encoding UTF-8

RoxygenNote 7.1.2

Depends R (>= 3.5.0)

Suggests rmarkdown, knitr, testthat (>= 3.1.0)

URL https://github.com/cole-trapnell-lab/leidenbase

BugReports https://github.com/cole-trapnell-lab/leidenbase/issues

NeedsCompilation yes

Maintainer Brent Ewing <bge@uw.edu>

VignetteBuilder knitr

Author Brent Ewing [aut, cre],
Vincent Traag [ctb],
Gábor Csárdi [ctb],
Tamás Nepusz [ctb],
R topics documented:

leiden_find_partition 2

Index 5

leiden_find_partition Leiden find partition community detection function

Description

R to C wrapper that runs the basic Leiden community detection algorithm, which is similar to the find_partition() function in the python Leidenalg distribution.

Usage

leiden_find_partition(
 igraph,
 partition_type = c("CPMVertexPartition", "ModularityVertexPartition",
 "RBConfigurationVertexPartition", "RBERVertexPartition",
 "SignificanceVertexPartition", "SurpriseVertexPartition"),
 initial_membership = NULL,
 edge_weights = NULL,
 node_sizes = NULL,
 seed = NULL,
 resolution_parameter = 0.1,
 num_iter = 2,
 verbose = FALSE
)

Arguments

igraph R igraph graph.
partition_type String partition type name. Default is CPMVertexPartition.
initial_membership Numeric vector of initial membership assignments of nodes. These are 1-based indices. Default is one community per node.
edge_weights Numeric vector of edge weights. Default is 1.0 for all edges.
node_sizes Numeric vector of node sizes. Default is 1 for all nodes.
seed Numeric random number generator seed. The seed value must be either NULL for random seed values or greater than 0 for a fixed seed value. Default is NULL.
leiden_find_partition

resolution_parameter
Numeric resolution parameter. The value must be greater than 0.0. Default is 0.1. The resolution_parameter is ignored for the partition_types ModularityVertexPartition, SignificanceVertexPartition, and SurpriseVertexPartition.

num_iter
Numeric number of iterations. Default is 2.

verbose
A logic flag to determine whether or not we should print run diagnostics.

Details

The Leiden algorithm is described in From Louvain to Leiden: guaranteeing well-connected communities. V. A. Traag and L. Waltman and N. J. van Eck Scientific Reports, 9(1) (2019) DOI: 10.1038/s41598-019-41695-z.

Significance is described in Significant Scales in Community Structure V. A. Traag, G. Krings, and P. Van Dooren Scientific Reports, 3(1) (2013) DOI: 10.1038/srep02930

Notes excerpted from leidenalg/src/VertexPartition.py

• CPMVertexPartition Implements Constant Potts Model. This quality function uses a linear resolution parameter and is well-defined for both positive and negative edge weights.

• ModularityVertexPartition Implements modularity. This quality function is well-defined only for positive edge weights.

• RBConfigurationVertexPartition Implements Reichardt and Bornholdt’s Potts model with a configuration null model. This quality function uses a linear resolution parameter and is well-defined only for positive edge weights.

• RBERVertexPartition Implements Reichardt and Bornholdt’s Potts model with an Erdos-Renyi null model. This quality function uses a linear resolution parameter and is well-defined only for positive edge weights.

• SignificanceVertexPartition Implements Significance. This quality function is well-defined only for unweighted graphs.

• SurpriseVertexPartition Implements (asymptotic) Surprise. This quality function is well-defined only for positive edge weights.

Value

A named list consisting of a numeric vector of the node community memberships (1-based indices), a numeric quality value, a numeric modularity, a numeric significance, a numeric vector of edge weights within each community, a numeric vector of edge weights from each community, a numeric vector of edge weights to each community, and total edge weight.

References

Significant Scales in Community Structure V. A. Traag, G. Krings, and P. Van Dooren Scientific Reports, 3(1) (2013) DOI: 10.1038/srep02930
Examples

```r
library(igraph)

fpath <- system.file('testdata', 'igraph_n1500_edgelist.txt.gz', package = 'leidenbase')

zfp <- gzfile(fpath)

igraph <- read_graph(file = zfp, format = 'edgelist', n = 1500)

res <- leiden_find_partition(igraph = igraph,
                              partition_type = 'CPMVertexPartition',
                              resolution_parameter = 1e-5)
```

leiden_find_partition
Index

leiden_find_partition, 2