Package ‘leptokurticMixture’

September 9, 2023

Title Implements Parsimonious Finite Mixtures of Multivariate Elliptical Leptokurtic-Normals

Version 1.1

Description A way to fit Parsimonious Finite Mixtures of Multivariate Elliptical Leptokurtic-Normals. Two methods of estimation are implemented.

Date 2023-09-08

Encoding UTF-8

License GPL (>= 2)

Imports stats

NeedsCompilation yes

RoxygenNote 7.2.3

Author Ryan Browne [aut, cre] (0000-0003-4543-0218), Luca Bagnato [ctb], Antonio Punzo [ctb]

Maintainer Ryan Browne <rpbrowne@uwaterloo.ca>

Repository CRAN

Date/Publication 2023-09-09 12:00:02 UTC

R topics documented:

- compareEstimation 2
- EM 3
- pmln 4
- rmln 6

Index 7
compareEstimation

Description

Compare the two methods of estimation for fitting a finite mixture of multivariate elliptical leptokurtic-normal distributions; fixed point iterations and MM algorithm.

Usage

```r
compareEstimation(
  mod = NULL,
  data = NULL,
  G = NULL,
  n = 10^4,
  tol = 1e-06,
  wt = NULL,
  n0 = 25,
  lab = NULL
)
```

Arguments

- `mod`: A character of length 4 such as "VVVV", indicating the model; the covariance and beta parameters.
- `data`: A n x p matrix of observations.
- `G`: The number of components to fit.
- `n`: The maximum number of EM iterations.
- `tol`: The tolerance for the stopping rule; lack of progress. The default is 1e-6 but it depends on the dataset.
- `wt`: A (n x d) matrix of weights for initialization if NULL, then a random weight matrix is generated.
- `n0`: Given wt, the number of iterations used to obtain the initial parameters.
- `lab`: Using given labels (lab) as starting values.

Value

A vector of times, number of iterations and log-likelihood values.
EM

EM for the finite mixtures of MLN

Description
Performs a number of iterations of the EM for the multivariate elliptical leptokurtic-normal (MLN) distribution until the tolerance for the lack of progress or the maximum number of iterations is reached. An implementation of parsimonious clustering models via the eigen-decomposition of the scatter matrix and allowing the concentration parameter to be varying, equal or fixed across components.

Usage
EM(
 data = NULL,
 G = 2,
 model = NULL,
 kml = c(1, 0, 1),
 n = 10,
 epsilon = 0.01,
 gpar0 = NULL,
 estimation = 1,
 label = NULL
)

Arguments
- data: A n x p matrix of observations.
- G: A integer determine the number of components of the mixture model.
- model: a character of length 4 such as "VVVV", indicating the model; the covariance and beta parameters. The 1st position controls, lambda, the volume; "V" varying across components or "E" equal across components. The 2nd position controls the eigenvalues; V" varying across components, "E" equal across components or "I" the identity matrix. The 3rd position controls the orientation; "V" varying across components, "E" equal across components or "I" the identity matrix. The 4th position controls the concentration, beta; "V" varying across components, "E" equal across components, "F" fixed at the maximum value.
- kml: a vector of length 3 indicating, the number of k-means starts, number of random starts and the number of EM iterations used for each start
- n: The maximum number of EM iterations.
- epsilon: The tolerance for the stopping rule; lack of progress. The default is 1e-6 but it depends on the dataset.
- gpar0: A list of model parameters.
- estimation: If 1 (default) use the fixed point iterations and if 2 the MM algorithm.
- label: If NULL then the data has no known groups. If is.integer then some of the observations have known groups. If label[i]=k then observation belongs to group k. If label[i]=0 then observation has no known group.
Value

A list with following items

- loglik - A vector of the loglikelihood values
- gpar - A list containing the parameters values
- z - A n x G matrix of the posterior probabilities
- map - A vector the maximum a posteriori derived from z
- label - The input provided.
- numpar - The number of free parameters in the fitted model.
- maxLoglik - The largest value from loglik.

Examples

```r
x1 = rmln(n=100, d=4, mu=rep(5,4), diag(4), beta=2)
x2 = rmln(n=100, d=4, mu=rep(-5,4), diag(4), beta=2)
x = rbind( x1,x2)
mlnFit = EM(data=x, G=2, model="VVVF")
```

pmln
Parsimonious model-based clustering with the multivariate elliptical leptokurtic-normal

Description

Performs parsimonious clustering with the multivariate elliptical leptokurtic-normal (MLN). There are 14 possible scale matrix structure and 2 for the kurtosis parameter for a total of 28 models.

Usage

```r
pmln(
  data = NULL,
  G = 1:3,
  covModels = NULL,
  betaModels = "B",
  kml = c(1, 0, 1),
  label = NULL,
  scale.data = TRUE,
  veo = FALSE,
  iterMax = 1000,
  tol = 1e-08,
  pprogress = FALSE,
  method = "FP"
)
```
Arguments

- **data**: A n x p matrix of observations.
- **G**: A integer determine the number of components of the mixture model.
- **covModels**: if NULL fit 14 possible scale matrix structures. Otherwise a character vector where each element has length 3. e.g. c("VVV", "EEE") A character of length 4 such as "VVVV", indicating the model; the covariance and beta parameters. The 1st position controls, lambda, the volume; "V" varying across components or "E" equal across components. The 2nd position controls the eigenvalues; "V" varying across components, "E" equal across components or "I" the identity matrix. The 3rd position controls the orientation; "V" varying across components, "E" equal across components or "I" the identity matrix.
- **betaModels**: set to "V", "E", "B", "F". "V" varying across components, "E" equal across components, "B" consider both "V" & "E", "F" fixed at the maximum value.
- **kml**: a vector of length 3 indicating, the number of k-means starts, number of random starts and the number of EM iterations used for each start.
- **label**: If NULL then the data has no known groups. If is.integer then some of the observations have known groups. If label[i]=k then observation belongs to group k. If label[i]=0 then observation has no known group.
- **scale.data**: Should the data be scaled before clustering. The default is TRUE.
- **veo**: "Variables exceed observations". If TRUE, fit the model even though the number variables in the model exceeds the number of observations.
- **iterMax**: The maximum number of EM iterations for each model fitted.
- **tol**: The tol for the stopping rule; lack of progress. The default is 1e-6 but it depends on the data set.
- **pprogress**: If TRUE print the progress of the function.
- **method**: If FP use the fixed point iteration method otherwise if MM use the MM method.

Value

A list of

- **startobject** - A statement on how the models were initialized
- **gpar** - A list of parameter values for the model choosen by the BIC
- **loglik** - A vector of the log-likelihoods values
- **z** - A n x G matrix of the posterior probabilities from the model choosen by the BIC
- **map** - A vector the maximum a posteriori derived from z
- **BIC** - An array with dimensions (G, number of fitted models, 3). The last dimension indices the loglik, number of free parameters and BIC for each fitted model.
- **bicModel** - Information as list on the model choosen by the BIC.

Examples

```r
x1 = rmln(n=100, d=4, mu=rep(5,4), diag(4), beta=2)
x2 = rmln(n=100, d=4, mu=rep(-5,4), diag(4), beta=2)
x = rbind(x1,x2)
mlnFit = pmln(data=x, G=2, covModels=c("VVV", "EEE"), betaModels="B")
```
Description

This function calculates the log cumulative density function for the multivariate-t with scale matrix equal to the identity matrix. It finds the mode and then uses Gaussian quadrature to estimate the integral.

Usage

```r
rmln(n = NULL, d = NULL, mu = NULL, Sigma = NULL, beta = NULL)
```

Arguments

- `n`: number of observations
- `d`: the dimension of the observations
- `mu`: location parameter of length d
- `Sigma`: (d x d) scatter matrix
- `beta`: the concentration parameter

Value

A (n x d) matrix of realizations

Examples

```r
x = rmln(n=10, d=4, mu=rep(0,4), diag(4), beta=2)
```
Index

compareEstimation, 2
EM, 3
pmln, 4
rmln, 6