Package ‘lessSEM’

January 22, 2024

Type Package

Title Non-Smooth Regularization for Structural Equation Models

Version 1.5.5

Maintainer Jannik H. Orzek <jannik.orzek@mailbox.org>

Description Provides regularized structural equation modeling (regularized SEM) with non-smooth penalty functions (e.g., lasso) building on 'lavaan'. The package is heavily inspired by the 'regsem'(<https://github.com/Rjacobucci/regsem>) and 'lslx'(<https://github.com/psyphh/lslx>) packages.

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.2.3

Depends lavaan, methods

Imports Rcpp (>= 1.0.8), RcppArmadillo, RcppParallel, ggplot2, tidyr, stringr, numDeriv, utils, stats, graphics, rlang, mvtnorm

Suggests knitr, plotly, rmarkdown, Rsolnp

LinkingTo Rcpp, RcppArmadillo, RcppParallel

VignetteBuilder knitr

SystemRequirements GNU make, C++17

URL https://github.com/jhorzek/lessSEM

BugReports https://github.com/jhorzek/lessSEM/issues

NeedsCompilation yes

Author Jannik H. Orzek [aut, cre, cph]

Repository CRAN

Date/Publication 2024-01-22 13:20:02 UTC
R topics documented:

.adaptBreakingForWls ... 5
.checkPenalties .. 6
.labelLavaanParameters ... 6
.updateLavaan ... 7
.useElasticNet ... 7
.adaptiveLasso .. 8
.addCappedL1 ... 11
.addElasticNet ... 13
.addLasso .. 15
.addLsp ... 17
.addMcp ... 19
.addScad .. 21
.AIC,gpRegularized-method 23
.AIC,Rcpp_mgSEM-method 24
.AIC,Rcpp_SEMCpp-method 24
.AIC,regularizedSEM-method 25
.AIC,regularizedSEMMixedPenalty-method 25
.bfgs ... 26
.bfgsEnet .. 27
.bfgsEnetMgSEM .. 27
.bfgsEnetSEM .. 28
.BIC,gpRegularized-method 28
.BIC,Rcpp_mgSEM-method 29
.BIC,Rcpp_SEMCpp-method 29
.BIC,regularizedSEM-method 30
.BIC,regularizedSEMMixedPenalty-method 30
.callFitFunction .. 31
.cappedL1 .. 31
.coef,cvRegularizedSEM-method 34
.coef,gpRegularized-method 34
.coef,Rcpp_mgSEM-method 35
.coef,Rcpp_SEMCpp-method 35
.coef,regularizedSEM-method 36
.coef,regularizedSEMMixedPenalty-method 36
.controlBFGS ... 37
.controlGlmnet ... 39
.controlIsta .. 40
.covariances ... 42
.createSubsets ... 43
.curveLambda .. 43
.cvAdaptiveLasso .. 44
.cvCappedL1 .. 47
.cvElasticNet ... 50
.cvLasso .. 53
.cvLsp .. 55
.cvMcp .. 58
R topics documented:

- cvRegularizedSEM-class .. 61
- cvRidge ... 62
- cvRidgeBfgs .. 64
- cvScad ... 67
- cvScaler ... 69
- cvSmoothAdaptiveLasso ... 70
- cvSmoothElasticNet ... 72
- cvSmoothLasso .. 75
- elasticNet .. 77
- estimates ... 80
- estimates,cvRegularizedSEM-method 81
- estimates,regularizedSEM-method 81
- estimates,regularizedSEMMixedPenalty-method 82
- fit .. 82
- fitIndices .. 83
- fitIndices,cvRegularizedSEM-method 84
- fitIndices,regularizedSEM-method 84
- fitIndices,regularizedSEMMixedPenalty-method 85
- getLavaanParameters .. 85
- getTuningParameterConfiguration 86
- glmnetCappedL1MgSEM ... 87
- glmnetCappedL1SEM .. 88
- glmnetEnetGeneralPurpose .. 88
- glmnetEnetGeneralPurposeCpp 89
- glmnetEnetMgSEM ... 89
- glmnetEnetSEM .. 90
- glmnetLspMgSEM ... 90
- glmnetLspSEM .. 91
- glmnetMcpMgSEM ... 91
- glmnetMcpSEM .. 92
- glmnetMixedMgSEM ... 92
- glmnetMixedPenaltyGeneralPurpose 93
- glmnetMixedPenaltyGeneralPurposeCpp 93
- glmnetMixedSEM ... 94
- glmnetScadMgSEM ... 94
- glmnetScadSEM ... 95
- gpAdaptiveLasso ... 95
- gpAdaptiveLassoCpp .. 98
- gpCappedL1 ... 102
- gpCappedL1Cpp ... 106
- gpElasticNet .. 109
- gpElasticNetCpp ... 113
- gpLasso ... 117
- gpLassoCpp .. 120
- gpLsp ... 124
- gpLspCpp .. 127
- gpMcp ... 130
- gpMcpCpp .. 133
R topics documented:

- gpRegularized-class ... 137
- gpRidge .. 138
- gpRidgeCpp .. 141
- gpScad ... 144
- gpScadCpp .. 147
- istaCappedL1mgSEM ... 151
- istaCappedL1SEM .. 151
- istaEnetGeneralPurpose ... 152
- istaEnetGeneralPurposeCpp 152
- istaEnetMgSEM ... 153
- istaEnetSEM .. 153
- istaLSPMgSEM ... 154
- istaLSPSEM .. 154
- istaMcpMgSEM ... 155
- istaMcpSEM .. 155
- istaMixedPenaltyGeneralPurpose 156
- istaMixedPenaltyGeneralPurposeCpp 156
- istaMixedPenaltyMgSEM ... 157
- istaMixedPenaltySEM .. 157
- istaScadMgSEM ... 158
- istaScadSEM .. 158
- lasso ... 159
- lavaan2lslxLabels .. 162
- lessSEM2Lavaan ... 163
- lessSEMCoef-class .. 164
- loadings ... 164
- logicalMatch .. 165
- logLik,Rcpp_mgSEM-method 166
- logLik,Rcpp_SEMCpp-method 166
- logLikelihood-class .. 167
- lsp ... 167
- makePtrs ... 170
- mcp ... 171
- mcpPenalty_C ... 173
- mgSEM ... 174
- mixedPenalty .. 175
- modifyModel .. 177
- newTau ... 178
- plot,cvRegularizedSEM,missing-method 180
- plot,gpRegularized,missing-method 180
- plot,regularizedSEM,missing-method 181
- plot,stabSel,missing-method 181
- regressions .. 182
- regsem2LavaanParameters .. 183
- regularizedSEM-class ... 184
- regularizedSEMMixedPenalty-class 184
- ridge ... 185
- ridgeBfgs ... 187
Description

wls needs smaller breaking points than ml

Usage

.adaptBreakingForWls(lavaanModel, currentBreaking, selectedDefault)

Arguments

 lavaanModel single model or vector of models
 currentBreaking current breaking condition value
 selectedDefault was default breaking condition selected?

Value

 updated breaking
.checkPenalties

Description

Internal function to check a mixedPenalty object

Usage

.checkPenalties(mixedPenalty)

Arguments

mixedPenalty object of class mixedPenalty. This object can be created with the mixedPenalty function. Penalties can be added with the addCappedL1, addLasso, addLsp, addMcp, and addScad functions.

.labelLavaanParameters

Description

Adds labels to unlabeled parameters in the lavaan parameter table. Also removes fixed parameters.

Usage

.labelLavaanParameters(lavaanModel)

Arguments

lavaanModel fitted lavaan model

Value

parameterTable with labeled parameters
Description
updates a lavaan model. lavaan has an update function that does exactly that, but it seems to not work with testthat. This is an attempt to hack around the issue...

Usage
.updateLavaan(lavaanModel, key, value)

Arguments
lavaanModel fitted lavaan model
key label of the element that should be updated
value new value for the updated element

Value
lavaan model

Description
Internal function checking if elastic net is used

Usage
.useElasticNet(mixedPenalty)

Arguments
mixedPenalty object of class mixedPenalty. This object can be created with the mixedPenalty function. Penalties can be added with the addCappedL1, addLasso, addLsp, addMcp, and addScad functions.

Value
TRUE if elastic net, FALSE otherwise
adaptiveLasso

Description

Implements adaptive lasso regularization for structural equation models. The penalty function is given by:

\[p(x_j) = \frac{1}{w_j} \lambda |x_j| \]

Adaptive lasso regularization will set parameters to zero if \(\lambda \) is large enough.

Usage

```r
adaptiveLasso(
  lavaanModel,
  regularized,
  weights = NULL,
  lambdas = NULL,
  nLambdas = NULL,
  reverse = TRUE,
  curve = 1,
  method = "glmnet",
  modifyModel = lessSEM::modifyModel(),
  control = lessSEM::controlGlmnet()
)
```

Arguments

- `lavaanModel`: model of class lavaan
- `regularized`: vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use `getLavaanParameters(model)` with your lavaan model object
- `weights`: labeled vector with weights for each of the parameters in the model. If you are unsure what these parameters are called, use `getLavaanParameters(model)` with your lavaan model object. If set to `NULL`, the default weights will be used: the inverse of the absolute values of the unregularized parameter estimates
- `lambdas`: numeric vector: values for the tuning parameter lambda
- `nLambdas`: alternative to lambda: If alpha = 1, lessSEM can automatically compute the first lambda value which sets all regularized parameters to zero. It will then generate nLambda values between 0 and the computed lambda.
- `reverse`: if set to TRUE and nLambdas is used, lessSEM will start with the largest lambda and gradually decrease lambda. Otherwise, lessSEM will start with the smallest lambda and gradually increase it.
curve Allows for unequally spaced lambda steps (e.g., .01,.02,.05,1,5,20). If curve is close to 1 all lambda values will be equally spaced, if curve is large lambda values will be more concentrated close to 0. See ?lessSEM::curveLambda for more information.

method which optimizer should be used? Currently implemented are ista and glmnet. With ista, the control argument can be used to switch to related procedures (currently gist).

modifyModel used to modify the lavaanModel. See ?modifyModel.

control used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.

Details

Identical to regsem, models are specified using lavaan. Currently, most standard SEM are supported. lessSEM also provides full information maximum likelihood for missing data. To use this functionality, fit your lavaan model with the argument sem(..., missing = ‘ml’). lessSEM will then automatically switch to full information maximum likelihood as well.

Adaptive lasso regularization:

Regularized SEM

For more details on GLMNET, see:

For more details on ISTA, see:

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan package for model specification. The first step # therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
 f =~ l1*y1 + l2*y2 + l3*y3 + l4*y4 + l5*y5 +
 l6*y6 + l7*y7 + l8*y8 + l9*y9 + l10*y10 +
 l11*y11 + l12*y12 + l13*y13 + l14*y14 + l15*y15
 f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
 data = dataset,
 meanstructure = TRUE,
 std.lv = TRUE)

Regularization:

lsem <- adaptiveLasso(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 # names of the regularized parameters:
 regularized = paste0("l", 6:15),
 # in case of lasso and adaptive lasso, we can specify the number of lambda # values to use. lessSEM will automatically find lambda_max and fit # models for nLambda values between 0 and lambda_max. For the other # penalty functions, lambdas must be specified explicitly
 nLambdas = 50)

use the plot-function to plot the regularized parameters:
plot(lsem)

the coefficients can be accessed with:
coeff(lsem)
if you are only interested in the estimates and not the tuning parameters, use
coeff(lsem)@estimates
or
estimates(lsem)

elements of lsem can be accessed with the @ operator:
lsem@parameters[1,]

fit Measures:
Advanced

Switching the optimizer

Use the "method" argument to switch the optimizer. The control argument
must also be changed to the corresponding function:

```r
lsemIsta <- adaptiveLasso(
  lavaanModel = lavaanModel,
  regularized = paste0("l", 6:15),
  nLambdas = 50,
  method = "ista",
  control = controlIsta())
```

Note: The results are basically identical:

```r
lsemIsta@parameters - lsem@parameters
```

Description

Implements cappedL1 regularization for structural equation models. The penalty function is given by:

\[
p(x_j) = \lambda \min(|x_j|, \theta)
\]

where \(\theta > 0\). The cappedL1 penalty is identical to the lasso for parameters which are below \(\theta\) and identical to a constant for parameters above \(\theta\). As adding a constant to the fitting function will not change its minimum, larger parameters can stay unregularized while smaller ones are set to zero.

Usage

```r
addCappedL1(mixedPenalty, regularized, lambdas, thetas)
```

Arguments

- **mixedPenalty**: model of class mixedPenalty created with the mixedPenalty function (see ?mixedPenalty)
- **regularized**: vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object
- **lambdas**: numeric vector: values for the tuning parameter lambda
- **thetas**: parameters whose absolute value is above this threshold will be penalized with a constant (theta)
Details

Identical to `regsem`, models are specified using `lavaan`. Currently, most standard SEM are supported. `lessSEM` also provides full information maximum likelihood for missing data. To use this functionality, fit your `lavaan` model with the argument `sem(..., missing = 'ml')`. `lessSEM` will then automatically switch to full information maximum likelihood as well.

CappedL1 regularization:

Regularized SEM

For more details on ISTA, see:

Value

Model of class `mixedPenalty`. Use the `fit()` - function to fit the model

Examples

```r
library(lessSEM)

# Identical to regsem, lessSEM builds on the lavaan
# package for model specification. The first step
# therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ 11*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
    16*y6 + 17*y7 + 18*y8 + 19*y9 + 110*y10 +
    111*y11 + 112*y12 + 113*y13 + 114*y14 + 115*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
```
addElasticNet

```
data = dataset,
meanstructure = TRUE,
std.lv = TRUE)

# We can add mixed penalties as follows:
regularized <- lavaanModel |>
# create template for regularized model with mixed penalty:
mixedPenalty() |>
# add penalty on loadings l6 - l10:
addCappedL1(regularized = paste0("l", 11:15),
  lambdas = seq(0,1,.1),
  thetas = 2.3) |>
# fit the model:
fit()
```

Description

Adds an elastic net penalty to specified parameters. The penalty function is given by:

\[p(x_j) = \alpha \lambda |x_j| + (1 - \alpha) \lambda x_j^2 \]

Note that the elastic net combines ridge and lasso regularization. If \(\alpha = 0 \), the elastic net reduces to ridge regularization. If \(\alpha = 1 \) it reduces to lasso regularization. In between, elastic net is a compromise between the shrinkage of the lasso and the ridge penalty.

Usage

```
addElasticNet(mixedPenalty, regularized, alphas, lambdas, weights = 1)
```

Arguments

- `mixedPenalty` model of class mixedPenalty created with the mixedPenalty function (see ?mixedPenalty)
- `regularized` vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object
- `alphas` numeric vector: values for the tuning parameter alpha. Set to 1 for lasso and to zero for ridge. Anything in between is an elastic net penalty.
- `lambdas` numeric vector: values for the tuning parameter lambda
- `weights` can be used to give different weights to the different parameters
Details

Identical to `regsem`, models are specified using `lavaan`. Currently, most standard SEM are supported. `lessSEM` also provides full information maximum likelihood for missing data. To use this functionality, fit your `lavaan` model with the argument `sem(..., missing = 'ml')`. `lessSEM` will then automatically switch to full information maximum likelihood as well.

Elastic net regularization:

Regularized SEM

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Model of class mixedPenalty. Use the `fit()` - function to fit the model

Examples

```r
library(lessSEM)

# Identical to regsem, lessSEM builds on the lavaan
# package for model specification. The first step
```
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ 11*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
 16*y6 + 17*y7 + 18*y8 + 19*y9 + 110*y10 +
 111*y11 + 112*y12 + 113*y13 + 114*y14 + 115*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
 data = dataset,
 meanstructure = TRUE,
 std.lv = TRUE)

We can add mixed penalties as follows:

regularized <- lavaanModel |>
create template for regularized model with mixed penalty:
mixedPenalty() |>
add penalty on loadings 16 - 110:
addElasticNet(regularized = paste0("l", 11:15),
 lambdas = seq(0,1,.1),
 alphas = .4) |>
fit the model:
fit()

addLasso

Description

Implements lasso regularization for structural equation models. The penalty function is given by:

\[p(x_j) = \lambda |x_j| \]

Lasso regularization will set parameters to zero if \(\lambda \) is large enough

Usage

`addLasso(mixedPenalty, regularized, weights = 1, lambdas)`

Arguments

- **mixedPenalty** model of class mixedPenalty created with the mixedPenalty function (see ?mixedPenalty)
- **regularized** vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use `getLavaanParameters(model)` with your lavaan model object
weights can be used to give different weights to the different parameters

1. lambdas numeric vector: values for the tuning parameter lambda

Details

Identical to `regsem`, models are specified using `lavaan`. Currently, most standard SEM are supported. `lessSEM` also provides full information maximum likelihood for missing data. To use this functionality, fit your `lavaan` model with the argument `sem(..., missing = 'ml')`. `lessSEM` will then automatically switch to full information maximum likelihood as well.

Lasso regularization:

Regularized SEM

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Model of class mixedPenalty. Use the `fit()` - function to fit the model
addLsp

Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan
package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ 11*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
 16*y6 + 17*y7 + 18*y8 + 19*y9 + 110*y10 +
 111*y11 + 112*y12 + 113*y13 + 114*y14 + 115*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
meanstructure = TRUE,
std.lv = TRUE)

We can add mixed penalties as follows:

regularized <- lavaanModel |>
 # create template for regularized model with mixed penalty:
 mixedPenalty() |>
 # add penalty on loadings 16 - 110:
 addLasso(regularized = paste0("l", 11:15),
 lambdas = seq(0,1,.1)) |>
 # fit the model:
 fit()

Description

Implements lsp regularization for structural equation models. The penalty function is given by:

\[p(x_j) = \lambda \log(1 + |x_j|/\theta) \]

where \(\theta > 0 \).

Usage

addLsp(mixedPenalty, regularized, lambdas, thetas)
Arguments

mixedPenalty model of class mixedPenalty created with the mixedPenalty function (see \texttt{?mixedPenalty})

regularized vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object

lambdas numeric vector: values for the tuning parameter lambda

thetas parameters whose absolute value is above this threshold will be penalized with a constant (theta)

Details

Identical to \texttt{regsem}, models are specified using \texttt{lavaan}. Currently, most standard SEM are supported. \texttt{lessSEM} also provides full information maximum likelihood for missing data. To use this functionality, fit your \texttt{lavaan} model with the argument \texttt{sem(..., missing = 'ml')} . \texttt{lessSEM} will then automatically switch to full information maximum likelihood as well.

\texttt{lsp} regularization:

Regularized SEM

For more details on GLMNET, see:

For more details on ISTA, see:

addMcp

Value

Model of class mixedPenalty. Use the fit() function to fit the model

Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan
package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <-
 "f =~ l1*y1 + l2*y2 + l3*y3 + l4*y4 + l5*y5 +
 l6*y6 + l7*y7 + l8*y8 + l9*y9 + l10*y10 +
 l11*y11 + l12*y12 + l13*y13 + l14*y14 + l15*y15
f ~~ 1*f"

lavaanModel <- lavaan::sem(lavaanSyntax,
 data = dataset,
 meanstructure = TRUE,
 std.lv = TRUE)

We can add mixed penalties as follows:

regularized <- lavaanModel |>
 # create template for regularized model with mixed penalty:
 mixedPenalty() |>
 # add penalty on loadings 16 - 110:
 addLsp(regularized = paste0("l", 11:15),
 lambdas = seq(0,1,.1),
 thetas = 2.3) |>
 # fit the model:
 fit()

Description

Implements mcp regularization for structural equation models. The penalty function is given by:
Equation Omitted in Pdf Documentation.

Usage

addMcp(mixedPenalty, regularized, lambdas, thetas)
Arguments

mixedPenalty: model of class mixedPenalty created with the mixedPenalty function (see ?mixedPenalty).

regularized: vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object.

lambdas: numeric vector: values for the tuning parameter lambda.

thetas: parameters whose absolute value is above this threshold will be penalized with a constant (theta).

Details

Identical to regsem, models are specified using lavaan. Currently, most standard SEM are supported. lessSEM also provides full information maximum likelihood for missing data. To use this functionality, fit your lavaan model with the argument sem(..., missing = 'ml'). lessSEM will then automatically switch to full information maximum likelihood as well.

mcp regularization:

Regularized SEM

For more details on ISTA, see:

Value

Model of class mixedPenalty. Use the fit() - function to fit the model.
Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ 11*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
 16*y6 + 17*y7 + 18*y8 + 19*y9 + 110*y10 +
 111*y11 + 112*y12 + 113*y13 + 114*y14 + 115*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
 meanstructure = TRUE,
 std.lv = TRUE)

We can add mixed penalties as follows:

regularized <- lavaanModel |>
 # create template for regularized model with mixed penalty:
 mixedPenalty() |>
 # add penalty on loadings l6 - l10:
 addMcp(regularized = paste0("l", 11:15),
 lambdas = seq(0,1,.1),
 thetas = 2.3) |>
 # fit the model:
 fit()

Description

Implements scad regularization for structural equation models. The penalty function is given by:
Equation Omitted in Pdf Documentation.

Usage

addScad(mixedPenalty, regularized, lambdas, thetas)

Arguments

mixedPenalty model of class mixedPenalty created with the mixedPenalty function (see ?mixedPenalty)
regularized vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use `getLavaanParameters(model)` with your lavaan model object

`lambdas` numeric vector: values for the tuning parameter lambda

`thetas` parameters whose absolute value is above this threshold will be penalized with a constant (theta)

Details

Identical to `regsem`, models are specified using `lavaan`. Currently, most standard SEM are supported. `lessSEM` also provides full information maximum likelihood for missing data. To use this functionality, fit your `lavaan` model with the argument `sem(..., missing = 'ml')`. `lessSEM` will then automatically switch to full information maximum likelihood as well.

scad regularization:

Regularized SEM

For more details on ISTA, see:

Value

Model of class mixedPenalty. Use the `fit()` function to fit the model

Examples

```r
library(lessSEM)

# Identical to regsem, lessSEM builds on the lavaan package for model specification. The first step # therefore is to implement the model in lavaan.

dataset <- simulateExampleData()
```
lavaanSyntax <- "
 f =~ 1*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
 16*y6 + 17*y7 + 18*y8 + 19*y9 + 100*y10 +
 111*y11 + 112*y12 + 113*y13 + 114*y14 + 115*y15
 f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
 data = dataset,
 meanstructure = TRUE,
 std.lv = TRUE)

We can add mixed penalties as follows:

regularized <- lavaanModel |>
 # create template for regularized model with mixed penalty:
 mixedPenalty() |>
 # add penalty on loadings l6 - l10:
 addScad(regularized = paste0("l", 11:15),
 lambdas = seq(0,1,.1),
 thetas = 3.1) |>
 # fit the model:
 fit()

AIC, gpRegularized-method

AIC(gpRegularized-method)

AIC

Description

returns the AIC

Usage

S4 method for signature 'gpRegularized'
AIC(object, ..., k = 2)

Arguments

object object of class gpRegularized
... not used
k multiplier for number of parameters

Value

data frame with fit values, appended with AIC

Description

AIC

Usage

```r
## S4 method for signature 'Rcpp_mgSEM'
AIC(object, ..., k = 2)
```

Arguments

- `object`: object of class `Rcpp_mgSEM`
- `...`: not used
- `k`: multiplier for number of parameters

Value

AIC values

AIC, Rcpp_mgSEM-method

Description

AIC

Usage

```r
## S4 method for signature 'Rcpp_SEMCpp'
AIC(object, ..., k = 2)
```

Arguments

- `object`: object of class `Rcpp_SEMCpp`
- `...`: not used
- `k`: multiplier for number of parameters

Value

AIC values
AIC, regularizedSEM-method

Description

returns the AIC

Usage

S4 method for signature 'regularizedSEM'
AIC(object, ..., k = 2)

Arguments

object object of class regularizedSEM
... not used
k multiplier for number of parameters

Value

AIC values

AIC, regularizedSEMMixedPenalty-method

Description

returns the AIC

Usage

S4 method for signature 'regularizedSEMMixedPenalty'
AIC(object, ..., k = 2)

Arguments

object object of class regularizedSEMMixedPenalty
... not used
k multiplier for number of parameters

Value

AIC values
Description

This function allows for optimizing models built in lavaan using the BFGS optimizer implemented in lessSEM. Its elements can be accessed with the "@" operator (see examples). The main purpose is to make transformations of lavaan models more accessible.

Usage

bfgs(
 lavaanModel,
 modifyModel = lessSEM::modifyModel(),
 control = lessSEM::controlBFGS()
)

Arguments

lavaanModel model of class lavaan
modifyModel used to modify the lavaanModel. See ?modifyModel.
control used to control the optimizer. See ?controlBFGS for more details.

Value

Model of class regularizedSEM

Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan
package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f <- 1*Y1 + 12*Y2 + 13*Y3 + 14*Y4 + 15*Y5 +
 16*Y6 + 17*Y7 + 18*Y8 + 19*Y9 + 110*Y10 +
 111*Y11 + 112*Y12 + 113*Y13 + 114*Y14 + 115*Y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
 data = dataset,
 meanstructure = TRUE,
 std.lv = TRUE)
lsem <- bfgs(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel)

 # the coefficients can be accessed with:
 coef(lsem)

 # elements of lsem can be accessed with the @ operator:
 lsem@parameters

bfgsEnet

smoothly approximated elastic net

Description

Object for smoothly approximated elastic net optimization with bfgs optimizer

Value

a list with fit results

Fields

new creates a new object. Requires (1) a vector with weights for each parameter and (2) a list with control elements

setHessian changes the Hessian of the model. Expects a matrix

optimize optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a lambda and an alpha value.

bfgsEnetMgSEM

smoothly approximated elastic net

Description

Object for smoothly approximated elastic net optimization with bfgs optimizer

Value

a list with fit results
Fields

new creates a new object. Requires (1) a vector with weights for each parameter and (2) a list with control elements

setHessian changes the Hessian of the model. Expects a matrix

optimize optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a lambda and an alpha value.

bfgsEnetSEM smoothly approximated elastic net

Description

Object for smoothly approximated elastic net optimization with bfgs optimizer

Value

a list with fit results

Fields

new creates a new object. Requires (1) a vector with weights for each parameter and (2) a list with control elements

setHessian changes the Hessian of the model. Expects a matrix

optimize optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a lambda and an alpha value.

BIC, gpRegularized-method

BIC

Description

returns the BIC

Usage

S4 method for signature 'gpRegularized'
BIC(object, ...)

Arguments

object object of class gpRegularized

... not used

Value

data frame with fit values, appended with BIC
Description

BIC

Usage

```r
## S4 method for signature 'Rcpp_mgSEM'
BIC(object, ...)
```

Arguments

- `object`: object of class `Rcpp_mgSEM`
- `...`: not used

Value

BIC values

Description

BIC

Usage

```r
## S4 method for signature 'Rcpp_SEMCpp'
BIC(object, ...)
```

Arguments

- `object`: object of class `Rcpp_SEMCpp`
- `...`: not used

Value

BIC values
Description
returns the BIC

Usage
S4 method for signature 'regularizedSEM'
BIC(object, ...)

Arguments
- object: object of class regularizedSEM
- ...: not used

Value
BIC values

Description
returns the BIC

Usage
S4 method for signature 'regularizedSEMMixedPenalty'
BIC(object, ...)

Arguments
- object: object of class regularizedSEMMixedPenalty
- ...: not used

Value
BIC values
callFitFunction

Description

wrapper to call user defined fit function

Usage

callFitFunction(fitFunctionSEXP, parameters, userSuppliedElements)

Arguments

- **fitFunctionSEXP**: pointer to fit function
- **parameters**: vector with parameter values
- **userSuppliedElements**: list with additional elements

Value

fit value (double)

cappedL1

Description

Implements cappedL1 regularization for structural equation models. The penalty function is given by:

\[p(x_j) = \lambda \min(|x_j|, \theta) \]

where \(\theta > 0 \). The cappedL1 penalty is identical to the lasso for parameters which are below \(\theta \) and identical to a constant for parameters above \(\theta \). As adding a constant to the fitting function will not change its minimum, larger parameters can stay unregularized while smaller ones are set to zero.

Usage

cappedL1(
 lavaanModel,
 regularized,
 lambdas,
 thetas,
 modifyModel = lessSEM::modifyModel(),
 method = "glmnet",
 control = lessSEM::controlGlmnet()
)
Arguments

- `lavaanModel` model of class lavaan
- `regularized` vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use `getLavaanParameters(model)` with your lavaan model object
- `lambdas` numeric vector: values for the tuning parameter lambda
- `thetas` parameters whose absolute value is above this threshold will be penalized with a constant (theta)
- `modifyModel` used to modify the lavaanModel. See `modifyModel`.
- `method` which optimizer should be used? Currently implemented are ista and glmnet. With ista, the control argument can be used to switch to related procedures
- `control` used to control the optimizer. This element is generated with the `controlIsta` (see `controlIsta`)

Details

Identical to `regsem`, models are specified using `lavaan`. Currently, most standard SEM are supported. `lessSEM` also provides full information maximum likelihood for missing data. To use this functionality, fit your `lavaan` model with the argument `sem(..., missing = 'ml')`. `lessSEM` will then automatically switch to full information maximum likelihood as well.

CappedL1 regularization:

Regularized SEM

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Model of class regularizedSEM

Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan
package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "f =~ 11*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
 16*y6 + 17*y7 + 18*y8 + 19*y9 + 110*y10 +
 111*y11 + 112*y12 + 113*y13 + 114*y14 + 115*y15
f ~~ 1*f"

lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
meanstructure = TRUE,
std.lv = TRUE)

Regularization:

lsem <- cappedL1(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 # names of the regularized parameters:
 regularized = paste0("l", 6:15),
 lambdas = seq(0,1,length.out = 20),
 thetas = seq(0.01,2,length.out = 5))

the coefficients can be accessed with:
coef(lsem)
if you are only interested in the estimates and not the tuning parameters, use
coef(lsem)@estimates
or
estimates(lsem)

elements of lsem can be accessed with the @ operator:
lsem@parameters[1,]
fit Measures:
fitIndices(lsem)

The best parameters can also be extracted with:
coef(lsem, criterion = "AIC")
or
estimates(lsem, criterion = "AIC")

optional: plotting the paths requires installation of plotly
plot(lsem)

S4 Method for Signature 'cvRegularizedSEM'

coef(cvRegularizedSEM-method)

Description

Returns the parameter estimates of an cvRegularizedSEM

Usage

```r
## S4 method for signature 'cvRegularizedSEM'
coef(object, ...)
```

Arguments

- `object`: object of class cvRegularizedSEM
- `...`: not used

Value

the parameter estimates of an cvRegularizedSEM

S4 Method for Signature 'gpRegularized'

coef(gpRegularized-method)

Description

Returns the parameter estimates of a gpRegularized

Usage

```r
## S4 method for signature 'gpRegularized'
coef(object, ...)
```
Description

c coef

Usage

S4 method for signature 'Rcpp_mgSEM'

c coef(object, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>object of class gpRegularized</td>
</tr>
<tr>
<td>...</td>
<td>criterion can be one of: "AIC", "BIC". If set to NULL, all parameters will be returned</td>
</tr>
</tbody>
</table>

Value

parameter estimates

Description

c coef

Usage

S4 method for signature 'Rcpp_SEMCpp'

c coef(object, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>object of class Rcpp_mgSEM</td>
</tr>
<tr>
<td>...</td>
<td>not used</td>
</tr>
</tbody>
</table>

Value

all coefficients of the model in transformed form

Arguments

object object of class Rcpp_SEMCpp
... not used

Value

all coefficients of the model in transformed form

desc

Description

Returns the parameter estimates of a regularizedSEM

Usage

```R
## S4 method for signature 'regularizedSEM'
coef(object, ...)
```

Arguments

object object of class regularizedSEM
... criterion can be one of the ones returned by fitIndices. If set to NULL, all parameters will be returned

Value

parameters of the model as data.frame

desc

Description

Returns the parameter estimates of a regularizedSEMMixedPenalty

Usage

```R
## S4 method for signature 'regularizedSEMMixedPenalty'
coef(object, ...)
```
controlBFGS

Arguments

- **object**: object of class regularizedSEMMixedPenalty

- **criterion**: can be one of: "AIC", "BIC". If set to NULL, all parameters will be returned

Value

parameters of the model as data.frame

Description

Control the BFGS optimizer.

Usage

controlBFGS(
 startingValues = "est",
 initialHessian = ifelse(all(startingValues == "est"), "lavaan", "compute"),
 saveDetails = FALSE,
 stepSize = 0.9,
 sigma = 1e-05,
 gamma = 0,
 maxIterOut = 1000,
 maxIterIn = 1000,
 maxIterLine = 500,
 breakOuter = 1e-08,
 breakInner = 1e-10,
 convergenceCriterion = 0,
 verbose = 0,
 nCores = 1
)

Arguments

- **startingValues**: option to provide initial starting values. Only used for the first lambda. Three options are supported. Setting to "est" will use the estimates from the lavaan model object. Setting to "start" will use the starting values of the lavaan model. Finally, a labeled vector with parameter values can be passed to the function which will then be used as starting values.

- **initialHessian**: option to provide an initial Hessian to the optimizer. Must have row and column names corresponding to the parameter labels. Use getLavaanParameters(lavaanModel) to see those labels. If set to "gradNorm", the maximum of the gradients at the starting values times the stepSize will be used. This is adapted from Optim.jl
controlBFGS

https://github.com/JuliaNLsolvers/Optim.jl/blob/f43e6084aacf2dabb2b142952acd3fbb0e268439/src/multivariate/solvers/first_order/bfgs.jl#L104

If set to a single value, a diagonal matrix with the single value along the diagonal will be used. The default is "lavaan" which extracts the Hessian from the lavaanModel. This Hessian will typically deviate from that of the internal SEM representation of lessSEM (due to the transformation of the variances), but works quite well in practice.

saveDetails when set to TRUE, additional details about the individual models are save. Currently, this are the Hessian and the implied means and covariances. Note: This may take a lot of memory!

stepSize Initial stepSize of the outer iteration (\(\theta_{next} = \theta_{previous} + \text{stepSize} \times \text{Stepdirection} \))

maxIterOut Maximal number of outer iterations

maxIterIn Maximal number of inner iterations

maxIterLine Maximal number of iterations for the line search procedure

breakOuter Stopping criterion for outer iterations

breakInner Stopping criterion for inner iterations

convergenceCriterion which convergence criterion should be used for the outer iterations? possible are 0 = GLMNET, 1 = fitChange, 2 = gradients. Note that in case of gradients and GLMNET, we divide the gradients (and the Hessian) of the log-Likelihood by N as it would otherwise be considerably more difficult for larger sample sizes to reach the convergence criteria.

verbose 0 prints no additional information, > 0 prints GLMNET iterations

nCores number of core to use. Multi-core support is provided by ReppParallel and only supported for SEM, not for general purpose optimization.

Value

object of class controlBFGS

Examples

control <- controlBFGS()
controlGlmnet

Description

Control the GLMNET optimizer.

Usage

controlGlmnet(
 startingValues = "est",
 initialHessian = ifelse(all(startingValues == "est"), "lavaan", "compute"),
 saveDetails = FALSE,
 stepSize = 0.9,
 sigma = 1e-05,
 gamma = 0,
 maxIterOut = 1000,
 maxIterIn = 1000,
 maxIterLine = 500,
 breakOuter = 1e-08,
 breakInner = 1e-10,
 convergenceCriterion = 0,
 verbose = 0,
 nCores = 1
)

Arguments

startingValues option to provide initial starting values. Only used for the first lambda. Three
options are supported. Setting to "est" will use the estimates from the lavaan
model object. Setting to "start" will use the starting values of the lavaan model.
Finally, a labeled vector with parameter values can be passed to the function
which will then be used as starting values.

initialHessian option to provide an initial Hessian to the optimizer. Must have row and column
names corresponding to the parameter labels. Use getLavaanParameters(lavaanModel)
to see those labels. If set to "gradNorm", the maximum of the gradients at the
starting values times the stepSize will be used. This is adapted from Optim.jl
https://github.com/JuliaNLsolvers/Optim.jl/blob/f43e60844acfc24abb2b142952acd3fbb0e268439/src/multivariate/solvers/first_order/bfgs.jl#L104
If set to "compute", the initial hessian will be computed. If set to a single value,
a diagonal matrix with the single value along the diagonal will be used. The de-
fault is "lavaan" which extracts the Hessian from the lavaanModel. This Hessian
will typically deviate from that of the internal SEM representation of lessSEM
(due to the transformation of the variances), but works quite well in practice.

saveDetails when set to TRUE, additional details about the individual models are save. Cur-
rently, this are the Hessian and the implied means and covariances. Note: This
may take a lot of memory!
stepSize

Initial stepSize of the outer iteration (\(\text{theta}_{\text{next}} = \text{theta}_{\text{previous}} + \text{stepSize} \times \text{Stepdirection} \))

sigma

gamma

maxIterOut

Maximal number of outer iterations

maxIterIn

Maximal number of inner iterations

maxIterLine

Maximal number of iterations for the line search procedure

breakOuter

Stopping criterion for outer iterations

breakInner

Stopping criterion for inner iterations

convergenceCriterion

Which convergence criterion should be used for the outer iterations? Possible are 0 = GLMNET, 1 = fitChange, 2 = gradients. Note that in case of gradients and GLMNET, we divide the gradients (and the Hessian) of the log-Likelihood by N as it would otherwise be considerably more difficult for larger sample sizes to reach the convergence criteria.

verbose

0 prints no additional information, > 0 prints GLMNET iterations

nCores

Number of core to use. Multi-core support is provided by RcppParallel and only supported for SEM, not for general purpose optimization.

Value

Object of class controlGlmnet

Examples

```
control <- controlGlmnet()
```
Usage

controlIsta(
 startingValues = "est",
 saveDetails = FALSE,
 L0 = 0.1,
 eta = 2,
 accelerate = TRUE,
 maxIterOut = 10000,
 maxIterIn = 1000,
 breakOuter = 1e-08,
 convCritInner = 1,
 sigma = 0.1,
 stepSizeInheritance = ifelse(accelerate, 1, 3),
 verbose = 0,
 nCores = 1
)

Arguments

startingValues option to provide initial starting values. Only used for the first lambda. Three options are supported. Setting to "est" will use the estimates from the lavaan model object. Setting to "start" will use the starting values of the lavaan model. Finally, a labeled vector with parameter values can be passed to the function which will then be used as starting values.

saveDetails when set to TRUE, additional details about the individual models are save. Currently, this are the implied means and covariances. Note: This may take a lot of memory!

L0 L0 controls the step size used in the first iteration

eta eta controls by how much the step size changes in the inner iterations with (eta^i)*L, where i is the inner iteration

maxIterOut maximal number of outer iterations

maxIterIn maximal number of inner iterations

breakOuter change in fit required to break the outer iteration. Note: The value will be multiplied internally with sample size N as the -2log-Likelihood depends directly on the sample size

convCritInner this is related to the inner breaking condition. 0 = ista, as presented by Beck & Teboulle (2009); see Remark 3.1 on p. 191 (ISTA with backtracking) 1 = gist, as presented by Gong et al. (2013) (Equation 3)

sigma sigma in (0,1) is used by the gist convergence criterion. larger sigma enforce larger improvement in fit

stepSizeInheritance how should step sizes be carried forward from iteration to iteration? 0 = resets the step size to L0 in each iteration 1 = takes the previous step size as initial
value for the next iteration 3 = Barzilai-Borwein procedure 4 = Barzilai-Borwein procedure, but sometimes resets the step size; this can help when the optimizer is caught in a bad spot.

verbose if set to a value > 0, the fit every "verbose" iterations is printed.

nCores number of core to use. Multi-core support is provided by RcppParallel and only supported for SEM, not for general purpose optimization.

Value

object of class controlIsta

Examples

covariances <- controlIsta()

Description

Extract the labels of all covariances found in a lavaan model.

Usage

covariances(lavaanModel)

Arguments

lavaanModel fitted lavaan model

Value

vector with parameter labels

Examples

The following is adapted from ?lavaan::sem
library(lessSEM)
model <- '
 # latent variable definitions
 ind60 =~ x1 + x2 + x3
dem60 =~ y1 + a*y2 + b*y3 + c*y4
dem65 =~ y5 + a*y6 + b*y7 + c*y8

 # regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60

 # residual correlations
createSubsets

Description
create subsets for cross-validation

Usage
createSubsets(N, k)

Arguments
N
number of samples in the data set
k
number of subsets to create

Value
matrix with subsets

Examples
createSubsets(N=100, k = 5)

curveLambda

description

Description
generates lambda values between 0 and lambdaMax using the function described here: https://math.stackexchange.com/questions/384613/exponential-function-with-values-between-0-and-1-for-x-values-between-0-and-1. The function is identical to the one implemented in the regCtsem package.

Usage
curveLambda(maxLambda, lambdasAutoCurve, lambdasAutoLength)
Arguments

maxLambda maximal lambda value
lambdasAutoCurve controls the curve. A value close to 1 will result in a linear increase, larger values in lambdas more concentrated around 0
lambdasAutoLength number of lambda values to generate

Value

numeric vector

Examples

library(lessSEM)
plot(curveLambda(maxLambda = 10, lambdasAutoCurve = 1, lambdasAutoLength = 100))
plot(curveLambda(maxLambda = 10, lambdasAutoCurve = 5, lambdasAutoLength = 100))
plot(curveLambda(maxLambda = 10, lambdasAutoCurve = 100, lambdasAutoLength = 100))

Description

Implements cross-validated adaptive lasso regularization for structural equation models. The penalty function is given by:

\[p(x_j) = p(x_j) = \frac{1}{w_j} \lambda |x_j| \]

Adaptive lasso regularization will set parameters to zero if \(\lambda \) is large enough.

Usage

cvAdaptiveLasso(
 lavaanModel,
 regularized,
 weights = NULL,
 lambdas,
 k = 5,
 standardize = FALSE,
 returnSubsetParameters = FALSE,
 method = "glmnet",
 modifyModel = lessSEM::modifyModel(),
 control = lessSEM::controlGlmnet()
)
cvAdaptiveLasso

Arguments

- **lavaanModel**: model of class lavaan
- **regularized**: vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use `getLavaanParameters(model)` with your lavaan model object
- **weights**: labeled vector with weights for each of the parameters in the model. If you are unsure what these parameters are called, use `getLavaanParameters(model)` with your lavaan model object. If set to NULL, the default weights will be used: the inverse of the absolute values of the unregularized parameter estimates
- **lambdas**: numeric vector: values for the tuning parameter lambda
- **k**: the number of cross-validation folds. Alternatively, you can pass a matrix with booleans (TRUE, FALSE) which indicates for each person which subset it belongs to. See `?lessSEM::createSubsets` for an example of how this matrix should look like.
- **standardize**: Standardizing your data prior to the analysis can undermine the cross-validation. Set `standardize=TRUE` to automatically standardize the data.
- **returnSubsetParameters**: set to TRUE to return the parameters for each training set
- **method**: which optimizer should be used? Currently implemented are ista and glmnet. With ista, the control argument can be used to switch to related procedures (currently gist).
- **modifyModel**: used to modify the lavaanModel. See `?modifyModel`.
- **control**: used to control the optimizer. This element is generated with the `controlIsta` and `controlGlmnet` functions. See `?controlIsta` and `?controlGlmnet` for more details.

Details

Identical to `regsem`, models are specified using lavaan. Currently, most standard SEM are supported. lessSEM also provides full information maximum likelihood for missing data. To use this functionality, fit your lavaan model with the argument `sem(..., missing = 'ml')`. lessSEM will then automatically switch to full information maximum likelihood as well.

Adaptive lasso regularization:

Regularized SEM

For more details on GLMNET, see:

For more details on ISTA, see:

Value

model of class cvRegularizedSEM

Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan # package for model specification. The first step # therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ 11*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
16*y6 + 17*y7 + 18*y8 + 19*y9 + 20*y10 +
111*y11 + 112*y12 + 113*y13 + 114*y14 + 115*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
meanstructure = TRUE,
std.lv = TRUE)

Regularization:

lsem <- cvAdaptiveLasso(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 # names of the regularized parameters:
 regularized = paste0("1", 6:15),
)
cvCappedL1

lambdas = seq(0,1,.1))

use the plot-function to plot the cross-validation fit
plot(lsem)

the coefficients can be accessed with:
coef(lsem)
if you are only interested in the estimates and not the tuning parameters, use
coef(lsem)$estimates
or
estimates(lsem)

elements of lsem can be accessed with the @ operator:
lsem@parameters

The best parameters can also be extracted with:
estimates(lsem)

cvCappedL1

Description

Implements cappedL1 regularization for structural equation models. The penalty function is given by:

\[p(x_j) = \lambda \min(|x_j|, \theta) \]

where \(\theta > 0 \). The cappedL1 penalty is identical to the lasso for parameters which are below \(\theta \) and identical to a constant for parameters above \(\theta \). As adding a constant to the fitting function will not change its minimum, larger parameters can stay unregularized while smaller ones are set to zero.

Usage

cvCappedL1(
 lavaanModel, regularized, lambdas, thetas, k = 5, standardize = FALSE, returnSubsetParameters = FALSE, modifyModel = lessSEM::modifyModel(), method = "glmnet", control = lessSEM::controlGlmnet()
)
Arguments

- `lavaanModel`: model of class lavaan
- `regularized`: vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use `getLavaanParameters(model)` with your lavaan model object
- `lambdas`: numeric vector: values for the tuning parameter lambda
- `thetas`: parameters whose absolute value is above this threshold will be penalized with a constant (theta)
- `k`: the number of cross-validation folds. Alternatively, you can pass a matrix with booleans (TRUE, FALSE) which indicates for each person which subset it belongs to. See ?lessSEM::createSubsets for an example of how this matrix should look like.
- `standardize`: Standardizing your data prior to the analysis can undermine the cross-validation. Set `standardize=TRUE` to automatically standardize the data.
- `returnSubsetParameters`: set to TRUE to return the parameters for each training set
- `modifyModel`: used to modify the lavaanModel. See ?modifyModel.
- `method`: which optimizer should be used? Currently implemented are ista and glmnet. With ista, the control argument can be used to switch to related procedures.
- `control`: used to control the optimizer. This element is generated with the controlIsta function. See ?controlIsta for more details.

Details

Identical to `regsem`, models are specified using `lavaan`. Currently, most standard SEM are supported. `lessSEM` also provides full information maximum likelihood for missing data. To use this functionality, fit your `lavaan` model with the argument `sem(..., missing = 'ml')`. `lessSEM` will then automatically switch to full information maximum likelihood as well.

CappedL1 regularization:

Regularized SEM

For more details on GLMNET, see:

For more details on ISTA, see:

Value

model of class cvRegularizedSEM

Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan
package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <-
 "f =~ l1*y1 + l2*y2 + l3*y3 + l4*y4 + l5*y5 +
 l6*y6 + l7*y7 + l8*y8 + l9*y9 + l10*y10 +
 l11*y11 + l12*y12 + l13*y13 + l14*y14 + l15*y15
 f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
 data = dataset,
 meanstructure = TRUE,
 std.lv = TRUE)

Regularization:

lsem <- cvCappedL1(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 # names of the regularized parameters:
 regularized = paste0("l", 6:15),
 lambdas = seq(0,1,length.out = 5),
 thetas = seq(0.01,2,length.out = 3))
the coefficients can be accessed with:
coef(lsem)
if you are only interested in the estimates and not the tuning parameters, use
coef(lsem)@estimates
or
estimates(lsem)

elements of lsem can be accessed with the @ operator:
lsem@parameters

optional: plotting the cross-validation fit requires installation of plotly
plot(lsem)

cvElasticNet

Description

Implements elastic net regularization for structural equation models. The penalty function is given by:

$$p(x_j) = \alpha \lambda |x_j| + (1 - \alpha) \lambda x_j^2$$

Note that the elastic net combines ridge and lasso regularization. If $\alpha = 0$, the elastic net reduces to ridge regularization. If $\alpha = 1$ it reduces to lasso regularization. In between, elastic net is a compromise between the shrinkage of the lasso and the ridge penalty.

Usage

```r
cvElasticNet(
  lavaanModel, regularized, lambdas, alphas, k = 5, standardize = FALSE, returnSubsetParameters = FALSE, method = "glmnet", modifyModel = lessSEM::modifyModel(), control = lessSEM::controlGlmnet()
)
```

Arguments

- `lavaanModel` model of class lavaan
- `regularized` vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use `getLavaanParameters(model)` with your lavaan model object
cvElasticNet

- lambdas: numeric vector: values for the tuning parameter lambda
- alphas: numeric vector with values of the tuning parameter alpha. Must be between 0 and 1. 0 = ridge, 1 = lasso.
- k: the number of cross-validation folds. Alternatively, you can pass a matrix with booleans (TRUE, FALSE) which indicates for each person which subset it belongs to. See ?lessSEM::createSubsets for an example of how this matrix should look like.
- standardize: Standardizing your data prior to the analysis can undermine the cross-validation. Set standardize=TRUE to automatically standardize the data.
- returnSubsetParameters: set to TRUE to return the parameters for each training set
- method: which optimizer should be used? Currently implemented are ista and glmnet. With ista, the control argument can be used to switch to related procedures.
- modifyModel: used to modify the lavaanModel. See ?modifyModel.
- control: used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.

Details

Identical to regsem, models are specified using lavaan. Currently, most standard SEM are supported. lessSEM also provides full information maximum likelihood for missing data. To use this functionality, fit your lavaan model with the argument sem(..., missing = 'ml'). lessSEM will then automatically switch to full information maximum likelihood as well.

Elastic net regularization:

Regularized SEM

For more details on GLMNET, see:

For more details on ISTA, see:
cvElasticNet

Value

model of class cvRegularizedSEM

Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan
package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ 11*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
 16*y6 + 17*y7 + 18*y8 + 19*y9 + 110*y10 +
 111*y11 + 112*y12 + 113*y13 + 114*y14 + 115*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
 data = dataset,
 meanstructure = TRUE,
 std.lv = TRUE)

Regularization:

lsem <- cvElasticNet(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 # names of the regularized parameters:
 regularized = paste0("l", 6:15),
 lambdas = seq(0,1,length.out = 5),
 alphas = seq(0,1,length.out = 3))

the coefficients can be accessed with:
coef(lsem)
if you are only interested in the estimates and not the tuning parameters, use
coef(lsem)@estimates
or
estimates(lsem)

elements of lsem can be accessed with the @ operator:
Description

Implements cross-validated lasso regularization for structural equation models. The penalty function is given by:

\[p(x_j) = \lambda |x_j| \]

Lasso regularization will set parameters to zero if \(\lambda \) is large enough

Usage

cvLasso(
 lavaanModel,
 regularized,
 lambdas,
 k = 5,
 standardize = FALSE,
 returnSubsetParameters = FALSE,
 method = "glmnet",
 modifyModel = lessSEM::modifyModel(),
 control = lessSEM::controlGlmnet()
)

Arguments

lavaanModel model of class lavaan
regularized vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object
lambdas numeric vector: values for the tuning parameter lambda
k the number of cross-validation folds. Alternatively, you can pass a matrix with booleans (TRUE, FALSE) which indicates for each person which subset it belongs to. See ?lessSEM::createSubsets for an example of how this matrix should look like.
standardize Standardizing your data prior to the analysis can undermine the cross-validation. Set standardize=TRUE to automatically standardize the data.
returnSubsetParameters set to TRUE to return the parameters for each training set
method which optimizer should be used? Currently implemented are ista and glmnet. With ista, the control argument can be used to switch to related procedures.
modifyModel used to modify the lavaanModel. See ?modifyModel.

control used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.

Details

Identical to regsem, models are specified using lavaan. Currently, most standard SEM are supported. lessSEM also provides full information maximum likelihood for missing data. To use this functionality, fit your lavaan model with the argument sem(..., missing = 'ml'). lessSEM will then automatically switch to full information maximum likelihood as well.

Lasso regularization:

Regularized SEM

For more details on GLMNET, see:

For more details on ISTA, see:

Value

model of class cvRegularizedSEM
Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan package for model specification. The first step # therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ 11*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
 16*y6 + 17*y7 + 18*y8 + 19*y9 + 110*y10 +
 111*y11 + 112*y12 + 113*y13 + 114*y14 + 115*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
 meanstructure = TRUE,
 std.lv = TRUE)

Regularization:

lsem <- cvLasso(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 # names of the regularized parameters:
 regularized = paste0("l", 6:15),
 lambdas = seq(0,1,.1),
 k = 5, # number of cross-validation folds
 standardize = TRUE) # automatic standardization

use the plot-function to plot the cross-validation fit:
plot(lsem)

the coefficients can be accessed with:
coef(lsem)
if you are only interested in the estimates and not the tuning parameters, use
coef(lsem)@estimates
or
estimates(lsem)

elements of lsem can be accessed with the @ operator:
lsem@parameters

The best parameters can also be extracted with:
estimates(lsem)
Description

Implements lsp regularization for structural equation models. The penalty function is given by:

\[p(x_j) = \lambda \log(1 + |x_j|/\theta) \]

where \(\theta > 0 \).

Usage

```r
cvLsp(
  lavaanModel,
  regularized,
  lambdas,
  thetas,
  k = 5,
  standardize = FALSE,
  returnSubsetParameters = FALSE,
  modifyModel = lessSEM::modifyModel(),
  method = "glmnet",
  control = lessSEM::controlGlmnet()
)
```

Arguments

- **lavaanModel**: model of class lavaan
- **regularized**: vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use `getLavaanParameters(model)` with your lavaan model object
- **lambdas**: numeric vector: values for the tuning parameter lambda
- **thetas**: parameters whose absolute value is above this threshold will be penalized with a constant (theta)
- **k**: the number of cross-validation folds. Alternatively, you can pass a matrix with booleans (TRUE, FALSE) which indicates for each person which subset it belongs to. See `?lessSEM::createSubsets` for an example of how this matrix should look like.
- **standardize**: Standardizing your data prior to the analysis can undermine the cross-validation. Set `standardize=TRUE` to automatically standardize the data.
- **returnSubsetParameters**: set to TRUE to return the parameters for each training set
- **modifyModel**: used to modify the lavaanModel. See `?modifyModel`.
- **method**: which optimizer should be used? Currently implemented are ista and glmnet. With ista, the control argument can be used to switch to related procedures.
- **control**: used to control the optimizer. This element is generated with the `controlIsta` function. See `?controlIsta`
Details

Identical to \texttt{regsem}, models are specified using \texttt{lavaan}. Currently, most standard SEM are supported. \texttt{lessSEM} also provides full information maximum likelihood for missing data. To use this functionality, fit your \texttt{lavaan} model with the argument \texttt{sem(..., missing = 'ml')}. \texttt{lessSEM} will then automatically switch to full information maximum likelihood as well.

lsp regularization:

Regularized SEM

For more details on GLMNET, see:

For more details on ISTA, see:

Value

model of class \texttt{cvRegularizedSEM}

Examples

\begin{verbatim}
library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan
package for model specification. The first step
\end{verbatim}
dataset <- simulateExampleData()

lavaanSyntax <-
 f =~ l1*y1 + l2*y2 + l3*y3 + l4*y4 + l5*y5 +
 l6*y6 + l7*y7 + l8*y8 + l9*y9 + l10*y10 +
 l11*y11 + l12*y12 + l13*y13 + l14*y14 + l15*y15
 f ~~ 1*f

lavaanModel <- lavaan::sem(lavaanSyntax,
 data = dataset,
 meanstructure = TRUE,
 std.lv = TRUE)

Regularization:

lsem <- cvLsp(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 # names of the regularized parameters:
 regularized = paste0("l", 6:15),
 lambdas = seq(0,1,length.out = 5),
 thetas = seq(0.01,2,length.out = 3))

the coefficients can be accessed with:
coef(lsem)
if you are only interested in the estimates and not the tuning parameters, use
coef(lsem)@estimates
or
estimates(lsem)

elements of lsem can be accessed with the @ operator:
lsem@parameters

optional: plotting the cross-validation fit requires installation of plotly
plot(lsem)

Description

Implements mcp regularization for structural equation models. The penalty function is given by:

Equation Omitted in Pdf Documentation.

Usage

```
cvMcp()
```
cvMcp

\[
\text{lavaanModel}, \\
\text{regularized}, \\
\text{lambda}s, \\
\text{thetas}, \\
\text{k} = 5, \\
\text{standardize} = \text{FALSE}, \\
\text{returnSubsetParameters} = \text{FALSE}, \\
\text{modifyModel} = \text{lessSEM::modifyModel()}, \\
\text{method} = \text{"ista"}, \\
\text{control} = \text{lessSEM::controlIsta()}
\]

Arguments

- **lavaanModel**: model of class lavaan
- **regularized**: vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use `getLavaanParameters(model)` with your lavaan model object
- **lambda**: numeric vector: values for the tuning parameter lambda
- **thetas**: parameters whose absolute value is above this threshold will be penalized with a constant (theta)
- **k**: the number of cross-validation folds. Alternatively, you can pass a matrix with booleans (TRUE, FALSE) which indicates for each person which subset it belongs to. See `?lessSEM::createSubsets` for an example of how this matrix should look like.
- **standardize**: Standardizing your data prior to the analysis can undermine the cross-validation. Set `standardize=TRUE` to automatically standardize the data.
- **returnSubsetParameters**: set to TRUE to return the parameters for each training set
- **modifyModel**: used to modify the lavaanModel. See `?modifyModel`.
- **method**: which optimizer should be used? Currently implemented are ista and glmnet. With ista, the control argument can be used to switch to related procedures.
- **control**: used to control the optimizer. This element is generated with the `controlIsta` function. See `?controlIsta`.

Details

Identical to `regsem`, models are specified using `lavaan`. Currently, most standard SEM are supported. `lessSEM` also provides full information maximum likelihood for missing data. To use this functionality, fit your `lavaan` model with the argument `sem(..., missing = 'ml')`. `lessSEM` will then automatically switch to full information maximum likelihood as well.

mcp regularization:

Regularized SEM
For more details on GLMNET, see:

For more details on ISTA, see:

Value

model of class cvRegularizedSEM

Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan
package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ 11*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
 16*y6 + 17*y7 + 18*y8 + 19*y9 + 110*y10 +
 111*y11 + 112*y12 + 113*y13 + 114*y14 + 115*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
 data = dataset,
 meanstructure = TRUE,
Regularization:

lsem <- cvMcp(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 # names of the regularized parameters:
 regularized = paste0("l", 6:15),
 lambdas = seq(0,1,length.out = 5),
 thetas = seq(0.01,2,length.out = 3))

the coefficients can be accessed with:
coef(lsem)
if you are only interested in the estimates and not the tuning parameters, use
coef(lsem)@estimates
or
estimates(lsem)

elements of lsem can be accessed with the @ operator:
lsem@parameters

optional: plotting the cross-validation fit requires installation of plotly
plot(lsem)

cvRegularizedSEM-class

Class for cross-validated regularized SEM

Description

Class for cross-validated regularized SEM

Slots

- parameters: data.frame with parameter estimates for the best combination of the tuning parameters
- transformations: transformed parameters
- cvfits: data.frame with all combinations of the tuning parameters and the sum of the cross-validation fits
- parameterLabels: character vector with names of all parameters
- regularized: character vector with names of regularized parameters
- cvfitsDetails: data.frame with cross-validation fits for each subset
- subsets: matrix indicating which person is in which subset
- subsetParameters: optional: data.frame with parameter estimates for all combinations of the tuning parameters in all subsets
- misc: list with additional return elements
- notes: internal notes that have come up when fitting the model
Description

Implements ridge regularization for structural equation models. The penalty function is given by:

\[p(x_j) = \lambda x_j^2 \]

Note that ridge regularization will not set any of the parameters to zero but result in a shrinkage towards zero.

Usage

```r
cvRidge(
  lavaanModel,  # model of class lavaan
  regularized,  # vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object
  lambdas,      # numeric vector: values for the tuning parameter lambda
  k = 5,        # the number of cross-validation folds. Alternatively, you can pass a matrix with booleans (TRUE, FALSE) which indicates for each person which subset it belongs to. See ?lessSEM::createSubsets for an example of how this matrix should look like.
  standardize = FALSE,  # Standardizing your data prior to the analysis can undermine the cross-validation. Set standardize=TRUE to automatically standardize the data.
  returnSubsetParameters = FALSE,  # set to TRUE to return the parameters for each training set
  method = "glmnet",  # which optimizer should be used? Currently implemented are ista and glmnet. With ista, the control argument can be used to switch to related procedures (currently gist).
  modifyModel = lessSEM::modifyModel(),  # used to modify the lavaanModel. See ?modifyModel.
  control = lessSEM::controlGlmnet()  # used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.
)
```

Arguments

- `lavaanModel`: model of class lavaan
- `regularized`: vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object
- `lambdas`: numeric vector: values for the tuning parameter lambda
- `k`: the number of cross-validation folds. Alternatively, you can pass a matrix with booleans (TRUE, FALSE) which indicates for each person which subset it belongs to. See ?lessSEM::createSubsets for an example of how this matrix should look like.
- `standardize`: Standardizing your data prior to the analysis can undermine the cross-validation. Set standardize=TRUE to automatically standardize the data.
- `returnSubsetParameters`: set to TRUE to return the parameters for each training set
- `method`: which optimizer should be used? Currently implemented are ista and glmnet. With ista, the control argument can be used to switch to related procedures (currently gist).
- `modifyModel`: used to modify the lavaanModel. See ?modifyModel.
- `control`: used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.
Details

Identical to `regsem`, models are specified using `lavaan`. Currently, most standard SEM are supported. `lessSEM` also provides full information maximum likelihood for missing data. To use this functionality, fit your `lavaan` model with the argument `sem(..., missing = "ml")`. `lessSEM` will then automatically switch to full information maximum likelihood as well.

Ridge regularization:

Regularized SEM

For more details on GLMNET, see:

For more details on ISTA, see:

Value

model of class `cvRegularizedSEM`

Examples

```r
library(lessSEM)

# Identical to regsem, lessSEM builds on the lavaan
# package for model specification. The first step
# therefore is to implement the model in lavaan.
```
dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ 11*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
 16*y6 + 17*y7 + 18*y8 + 19*y9 + 20*y10 +
 111*y11 + 112*y12 + 113*y13 + 114*y14 + 115*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
 data = dataset,
 meanstructure = TRUE,
 std.lv = TRUE)

Regularization:

lsem <- cvRidge(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 # names of the regularized parameters:
 regularized = paste0("l", 6:15),
 lambdas = seq(0,1,length.out = 20))

use the plot-function to plot the cross-validation fit:
plot(lsem)

the coefficients can be accessed with:
coef(lsem)
if you are only interested in the estimates and not the tuning parameters, use
coef(lsem)$estimates
or
estimates(lsem)

elements of lsem can be accessed with the @ operator:
lsem@parameters

cvRidgeBfgs

cvRidgeBfgs

Description

Implements cross-validated ridge regularization for structural equation models. The penalty function is given by:

\[p(x_j) = \lambda x_j^2 \]

Note that ridge regularization will not set any of the parameters to zero but result in a shrinkage towards zero.
Usage

cvRidgeBfgs(
 lavaanModel,
 regularized,
 lambdas,
 k = 5,
 standardize = FALSE,
 returnSubsetParameters = FALSE,
 modifyModel = lessSEM::modifyModel(),
 control = lessSEM::controlBFGS()
)

Arguments

lavaanModel model of class lavaan
regularized vector with names of parameters which are to be regularized. If you are unsure
 what these parameters are called, use getLavaanParameters(model) with your
 lavaan model object
lambdas numeric vector: values for the tuning parameter lambda
k the number of cross-validation folds. Alternatively, you can pass a matrix with
 booleans (TRUE, FALSE) which indicates for each person which subset it belongs to. See ?lessSEM::createSubsets for an example of how this matrix should look like.
standardize Standardizing your data prior to the analysis can undermine the cross-validation. Set standardize=TRUE to automatically standardize the data.
returnSubsetParameters set to TRUE to return the parameters for each training set
modifyModel used to modify the lavaanModel. See ?modifyModel.
control used to control the optimizer. This element is generated with the controlBFGS function. See ?controlBFGS for more details.

Details

Identical to regsem, models are specified using lavaan. Currently, most standard SEM are supported. lessSEM also provides full information maximum likelihood for missing data. To use this functionality, fit your lavaan model with the argument sem(..., missing = 'ml'). lessSEM will then automatically switch to full information maximum likelihood as well.

Ridge regularization:

Regularized SEM

cvRidgeBfgs

Value

model of class cvRegularizedSEM

Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan
package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ l1*y1 + l2*y2 + l3*y3 + l4*y4 + l5*y5 +
 l6*y6 + l7*y7 + l8*y8 + l9*y9 + l10*y10 +
 l11*y11 + l12*y12 + l13*y13 + l14*y14 + l15*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
meanstructure = TRUE,
std.lv = TRUE)

Regularization:

lsem <- cvRidgeBfgs(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 # names of the regularized parameters:
 regularized = paste0("l", 6:15),
 lambdas = seq(0,1,length.out = 20))

use the plot-function to plot the cross-validation fit:
plot(lsem)

the coefficients can be accessed with:
coef(lsem)

elements of lsem can be accessed with the @ operator:
 lsem@parameters
Description

Implements scad regularization for structural equation models. The penalty function is given by: Equation Omitted in Pdf Documentation.

Usage

cvScad(
 lavaanModel,
 regularized,
 lambdas,
 thetas,
 k = 5,
 standardize = FALSE,
 returnSubsetParameters = FALSE,
 modifyModel = lessSEM::modifyModel(),
 method = "glmnet",
 control = lessSEM::controlGlmmnet()
)

Arguments

lavaanModel model of class lavaan
regularized vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object
lambdas numeric vector: values for the tuning parameter lambda
thetas parameters whose absolute value is above this threshold will be penalized with a constant (theta)
k the number of cross-validation folds. Alternatively, you can pass a matrix with booleans (TRUE, FALSE) which indicates for each person which subset it belongs to. See ?lessSEM::createSubsets for an example of how this matrix should look like.
standardize Standardizing your data prior to the analysis can undermine the cross-validation. Set standardize=TRUE to automatically standardize the data.
returnSubsetParameters set to TRUE to return the parameters for each training set
modifyModel used to modify the lavaanModel. See ?modifyModel.
method which optimizer should be used? Currently implemented are ista and glmnet. With ista, the control argument can be used to switch to related procedures.
control used to control the optimizer. This element is generated with the controlIsta function. See ?controlIsta
Details

Identical to `regsem`, models are specified using `lavaan`. Currently, most standard SEM are supported. `lessSEM` also provides full information maximum likelihood for missing data. To use this functionality, fit your `lavaan` model with the argument `sem(..., missing = 'ml')`. `lessSEM` will then automatically switch to full information maximum likelihood as well.

scad regularization:

For more details on GLMNET, see:

For more details on ISTA, see:

Value

model of class `cvRegularizedSEM`

Examples

```r
library(lessSEM)

# Identical to regsem, lessSEM builds on the lavaan
# package for model specification. The first step
# therefore is to implement the model in lavaan.
```
dataset <- simulateExampleData()

lavaanSyntax <- "
 f =~ l1*y1 + l2*y2 + l3*y3 + l4*y4 + l5*y5 +
 l6*y6 + l7*y7 + l8*y8 + l9*y9 + l10*y10 +
 l11*y11 + l12*y12 + l13*y13 + l14*y14 + l15*y15
 f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
 data = dataset,
 meanstructure = TRUE,
 std.lv = TRUE)

Regularization:

lsem <- cvScad(
 lavaanModel = lavaanModel,
 regularized = paste0("l", 6:15),
 lambdas = seq(0,1,length.out = 3),
 thetas = seq(2.01,5,length.out = 3))

the coefficients can be accessed with:
coef(lsem)
if you are only interested in the estimates and not the tuning parameters, use
coef(lsem)@estimates
or
estimates(lsem)

elements of lsem can be accessed with the @ operator:
lsem@parameters

optional: plotting the cross-validation fit requires installation of plotly
plot(lsem)

cvScaler

Description

Usage

cvScaler(testSet, means, standardDeviations)
Arguments

testSet
test data set
means
means of the training set
standardDeviations
standard deviations of the training set

Value

scaled test set

Examples

library(lessSEM)
data <- matrix(rnorm(50),10,5)
cvScaler(testSet = data,
 means = 1:5,
 standardDeviations = 1:5)

Description

Implements cross-validated smooth adaptive lasso regularization for structural equation models. The penalty function is given by:

\[p(x_j) = \frac{1}{w_j} \lambda \sqrt{(x_j + \epsilon)^2} \]

Usage

cvSmoothAdaptiveLasso(
lavaanModel,
regularized,
weights = NULL,
lambdas,
epsilon,
k = 5,
standardize = FALSE,
returnSubsetParameters = FALSE,
modifyModel = lessSEM::modifyModel(),
control = lessSEM::controlBFGS()
)
Arguments

- `lavaanModel`: model of class lavaan
- `regularized`: vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use `getLavaanParameters(model)` with your lavaan model object
- `weights`: labeled vector with weights for each of the parameters in the model. If you are unsure what these parameters are called, use `getLavaanParameters(model)` with your lavaan model object. If set to NULL, the default weights will be used: the inverse of the absolute values of the unregularized parameter estimates
- `lambdas`: numeric vector: values for the tuning parameter lambda
- `epsilon`: epsilon > 0; controls the smoothness of the approximation. Larger values = smoother
- `k`: the number of cross-validation folds. Alternatively, you can pass a matrix with booleans (TRUE, FALSE) which indicates for each person which subset it belongs to. See `?lessSEM::createSubsets` for an example of how this matrix should look like.
- `standardize`: Standardizing your data prior to the analysis can undermine the cross-validation. Set `standardize=TRUE` to automatically standardize the data.
- `returnSubsetParameters`: set to TRUE to return the parameters for each training set
- `modifyModel`: used to modify the lavaanModel. See `?modifyModel`.
- `control`: used to control the optimizer. This element is generated with the controlBFGS function. See `?controlBFGS` for more details.

Details

Identical to `regsem`, models are specified using `lavaan`. Currently, most standard SEM are supported. `lessSEM` also provides full information maximum likelihood for missing data. To use this functionality, fit your `lavaan` model with the argument `sem(..., missing = 'ml')`. `lessSEM` will then automatically switch to full information maximum likelihood as well.

Adaptive lasso regularization:

Regularized SEM

Value

model of class cvRegularizedSEM
Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ l1*y1 + l2*y2 + l3*y3 + l4*y4 + l5*y5 +
 l6*y6 + l7*y7 + l8*y8 + l9*y9 + l10*y10 +
 l11*y11 + l12*y12 + l13*y13 + l14*y14 + l15*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
meanstructure = TRUE,
std.lv = TRUE)

Regularization:

lsem <- cvSmoothAdaptiveLasso(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 # names of the regularized parameters:
 regularized = paste0("l", 6:15),
 lambdas = seq(0,1,.1),
 epsilon = 1e-8)

use the plot-function to plot the cross-validation fit
plot(lsem)

the coefficients can be accessed with:
coef(lsem)

elements of lsem can be accessed with the @ operator:
lsem@parameters

The best parameters can also be extracted with:
coef(lsem)
cvSmoothElasticNet

Description

Implements cross-validated smooth elastic net regularization for structural equation models. The penalty function is given by:

\[p(x_j) = \alpha \lambda \sqrt{(x_j + \epsilon)^2} + (1 - \alpha) \lambda x_j^2 \]

Note that the smooth elastic net combines ridge and smooth lasso regularization. If \(\alpha = 0 \), the elastic net reduces to ridge regularization. If \(\alpha = 1 \) it reduces to smooth lasso regularization. In between, elastic net is a compromise between the shrinkage of the lasso and the ridge penalty.

Usage

```r
cvSmoothElasticNet(
  lavaanModel,
  regularized,
  lambdas,
  alphas,
  epsilon,
  k = 5,
  standardize = FALSE,
  returnSubsetParameters = FALSE,
  modifyModel = lessSEM::modifyModel(),
  control = lessSEM::controlBFGS()
)
```

Arguments

- `lavaanModel`: model of class lavaan
- `regularized`: vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use `getLavaanParameters(model)` with your lavaan model object
- `lambdas`: numeric vector: values for the tuning parameter lambda
- `alphas`: numeric vector with values of the tuning parameter alpha. Must be between 0 and 1. 0 = ridge, 1 = lasso.
- `epsilon`: \(\epsilon > 0 \); controls the smoothness of the approximation. Larger values = smoother
- `k`: the number of cross-validation folds. Alternatively, you can pass a matrix with booleans (TRUE, FALSE) which indicates for each person which subset it belongs to. See `?lessSEM::createSubsets` for an example of how this matrix should look like.
- `standardize`: Standardizing your data prior to the analysis can undermine the cross-validation. Set `standardize=TRUE` to automatically standardize the data.
- `returnSubsetParameters`: set to TRUE to return the parameters for each training set
- `modifyModel`: used to modify the lavaanModel. See `modifyModel`.
- `control`: used to control the optimizer. This element is generated with the `controlBFGS` function. See `controlBFGS` for more details.
Details

Identical to `regsem`, models are specified using `lavaan`. Currently, most standard SEM are supported. `lessSEM` also provides full information maximum likelihood for missing data. To use this functionality, fit your `lavaan` model with the argument `sem(..., missing = 'ml')`. `lessSEM` will then automatically switch to full information maximum likelihood as well.

Elastic net regularization:

Regularized SEM

Value

model of class `cvRegularizedSEM`

Examples

```r
library(lessSEM)

# Identical to regsem, lessSEM builds on the lavaan package for model specification. The first step # therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ 11*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
    16*y6 + 17*y7 + 18*y8 + 19*y9 + 20*y10 +
    21*y11 + 22*y12 + 23*y13 + 24*y14 + 25*y15

f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
    data = dataset,
    meanstructure = TRUE,
    std.lv = TRUE)

# Regularization:

lsem <- cvSmoothElasticNet(
    # pass the fitted lavaan model
    lavaanModel = lavaanModel,
    # names of the regularized parameters:
    names = c("f", "y1", "y2", "y3", "y4", "y5", "y6", "y7", "y8", "y9", "y10", "y11", "y12", "y13", "y14", "y15"))

# Summary

summary(lsem)
```

cvSmoothLasso

regularized = paste0("l", 6:15),
epsilon = 1e-8,
lambdas = seq(0,1,length.out = 5),
alphas = .3)

the coefficients can be accessed with:
coef(lsem)

elements of lsem can be accessed with the @ operator:
lsem@parameters

optional: plotting the cross-validation fit requires installation of plotly
plot(lsem)

Description

Implements cross-validated smooth lasso regularization for structural equation models. The penalty function is given by:

\[p(x_j) = \lambda \sqrt{(x_j + \epsilon)^2} \]

Usage

cvSmoothLasso(
lavaanModel,
regularized,
lambdas,
epsilon,
k = 5,
standardize = FALSE,
returnSubsetParameters = FALSE,
modifyModel = lessSEM::modifyModel(),
control = lessSEM::controlBFGS()
)

Arguments

- lavaanModel: model of class lavaan
- regularized: vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object
- lambdas: numeric vector: values for the tuning parameter lambda
- epsilon: epsilon > 0; controls the smoothness of the approximation. Larger values = smoother
k

the number of cross-validation folds. Alternatively, you can pass a matrix with
booleans (TRUE, FALSE) which indicates for each person which subset it
belongs to. See ?lessSEM::createSubsets for an example of how this matrix should
look like.

standardize

Standardizing your data prior to the analysis can undermine the cross-
validation. Set standardize=TRUE to automatically standardize the data.

returnSubsetParameters

set to TRUE to return the parameters for each training set

modifyModel

used to modify the lavaanModel. See ?modifyModel.

control

used to control the optimizer. This element is generated with the controlBFGS
function. See ?controlBFGS for more details.

Details

Identical to regsem, models are specified using lavaan. Currently, most standard SEM are sup-
ported. lessSEM also provides full information maximum likelihood for missing data. To use this
functionality, fit your lavaan model with the argument sem(..., missing = 'ml'). lessSEM will
then automatically switch to full information maximum likelihood as well.

Lasso regularization:

Regularized SEM

Equation Modeling. Psychometrika, 82(2), 329–354. https://doi.org/10.1007/s11336-017-
9566-9

- Jacobucci, R., Grimm, K. J., & McArdle, J. J. (2016). Regularized Structural Equation Model-

Value

model of class cvRegularizedSEM

Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan
package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f <- 11*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
16*y6 + 17*y7 + 18*y8 + 19*y9 + 110*y10 +
111*y11 + 112*y12 + 113*y13 + 114*y14 + 115*y15
```

f <- 1*f

lavaanModel <- lavaan::sem(lavaanSyntax,
                          data = dataset,
                          meanstructure = TRUE,
                          std.lv = TRUE)

# Regularization:

lsem <- cvSmoothLasso(
  # pass the fitted lavaan model
  lavaanModel = lavaanModel,
  # names of the regularized parameters:
  regularized = paste0("l", 6:15),
  lambdas = seq(0,1,.1),
  k = 5, # number of cross-validation folds
  epsilon = 1e-8,
  standardize = TRUE) # automatic standardization

# use the plot-function to plot the cross-validation fit:
plot(lsem)

# the coefficients can be accessed with:
coef(lsem)

# elements of lsem can be accessed with the @ operator:
lsem@parameters

# The best parameters can also be extracted with:
coef(lsem)
```

description

Description

Implements elastic net regularization for structural equation models. The penalty function is given by:

\[p(x_j) = \alpha \lambda |x_j| + (1 - \alpha) \lambda x_j^2 \]

Note that the elastic net combines ridge and lasso regularization. If \(\alpha = 0 \), the elastic net reduces to ridge regularization. If \(\alpha = 1 \) it reduces to lasso regularization. In between, elastic net is a compromise between the shrinkage of the lasso and the ridge penalty.

Usage

```
elasticNet(
  lavaanModel, 
  regularized,
```
elasticNet

```r
lambdas,
alphas,
method = "glmnet",
modifyModel = lessSEM::modifyModel(),
control = lessSEM::controlGlmnet()
)
```

Arguments

- **lavaanModel**
 model of class lavaan
- **regularized**
 vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object
- **lambdas**
 numeric vector: values for the tuning parameter lambda
- **alphas**
 numeric vector with values of the tuning parameter alpha. Must be between 0 and 1. 0 = ridge, 1 = lasso.
- **method**
 which optimizer should be used? Currently implemented are ista and glmnet. With ista, the control argument can be used to switch to related procedures (currently gist).
- **modifyModel**
 used to modify the lavaanModel. See ?modifyModel.
- **control**
 used to control the optimizer. This element is generated with the lessSEM::controlIsta() and controlGlmnet() functions.

Details

Identical to *regsem*, models are specified using *lavaan*. Currently, most standard SEM are supported. *lessSEM* also provides full information maximum likelihood for missing data. To use this functionality, fit your *lavaan* model with the argument `sem(..., missing = 'ml')`. *lessSEM* will then automatically switch to full information maximum likelihood as well.

Elastic net regularization:

Regularized SEM

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Model of class regularizedSEM

Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan
package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ 11*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
 16*y6 + 17*y7 + 18*y8 + 19*y9 + 110*y10 +
 111*y11 + 112*y12 + 113*y13 + 114*y14 + 115*y15

f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
meanstructure = TRUE,
std.lv = TRUE)

Regularization:

lsem <- elasticNet(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 # names of the regularized parameters:
 regularized = paste0("l", 6:15),
 lambdas = seq(0, 1, length.out = 5),
 alphas = seq(0, 1, length.out = 3))
the coefficients can be accessed with:
coef(lsem)

elements of lsem can be accessed with the @ operator:
lsem@parameters[1,]

optional: plotting the paths requires installation of plotly
plot(lsem)

Advanced

Switching the optimizer
Use the "method" argument to switch the optimizer. The control argument
must also be changed to the corresponding function:
lsemIsta <- elasticNet(
 lavaanModel = lavaanModel,
 regularized = paste0("l", 6:15),
 lambdas = seq(0,1,length.out = 5),
 alphas = seq(0,1,length.out = 3),
 method = "ista",
 control = controlIsta())

Note: The results are basically identical:
lsemIsta@parameters - lsem@parameters

estimates

S4 method to extract the estimates of an object

description

S4 method to extract the estimates of an object

Usage

estimates(object, criterion = NULL, transformations = FALSE)

Arguments

object a model fitted with lessSEM
criterion fitIndice used to select the parameters
transformations

boolean: Should transformations be returned?

Value

returns a matrix with estimates
estimates,cvRegularizedSEM-method

Description

estimates

Usage

S4 method for signature 'cvRegularizedSEM'
estimates(object, criterion = NULL, transformations = FALSE)

Arguments

object object of class cvRegularizedSEM
criterion not used
transformations

boolean: Should transformations be returned?

Value

returns a matrix with estimates

estimates,regularizedSEM-method

Description

estimates

Usage

S4 method for signature 'regularizedSEM'
estimates(object, criterion = NULL, transformations = FALSE)

Arguments

object object of class regularizedSEM
criterion fit index (e.g., AIC) used to select the parameters
transformations

boolean: Should transformations be returned?

Value

returns a matrix with estimates
estimates, regularizedSEM::mixedPenalty-method

estimates

Description
estimates

Usage
S4 method for signature 'regularizedSEM::mixedPenalty'
estimates(object, criterion = NULL, transformations = FALSE)

Arguments
object object of class regularizedSEM::mixedPenalty
criterion fit index (e.g., AIC) used to select the parameters
transformations boolean: Should transformations be returned?

Value
returns a matrix with estimates

fit
fit

Description
Optimizes an object with mixed penalty. See ?mixedPenalty for more details.

Usage
fit(mixedPenalty)

Arguments
mixedPenalty object of class mixedPenalty. This object can be created with the mixedPenalty function. Penalties can be added with the addCappedL1, addElastiNet, addLasso, addLsp, addMcp, and addScad functions.

Value
throws error in case of undefined penalty combinations.
Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan
package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ l1*y1 + l2*y2 + l3*y3 + l4*y4 + l5*y5 +
 l6*y6 + l7*y7 + l8*y8 + l9*y9 + l10*y10 +
 l11*y11 + l12*y12 + l13*y13 + l14*y14 + l15*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
meanstructure = TRUE,
std.lv = TRUE)

We can add mixed penalties as follows:

regularized <- lavaanModel |>
 # create template for regularized model with mixed penalty:
mixedPenalty() |>
 # add penalty on loadings l6 - l10:
addElasticNet(regularized = paste0("l", 11:15),
 lambdas = seq(0,1,.1),
 alphas = .4) |>
 # fit the model:
fit()

--

fitIndices

S4 method to compute fit indices (e.g., AIC, BIC, ...)

--

Description

S4 method to compute fit indices (e.g., AIC, BIC, ...)

Usage

fitIndices(object)

Arguments

object a model fitted with lessSEM
Value
returns a data.frame with fit indices

Description
fitIndices

Usage
S4 method for signature 'cvRegularizedSEM'
fittedIndices(object)

Arguments
object object of class cvRegularizedSEM

Value
returns a data.frame with fit indices

Description
fitIndices

Usage
S4 method for signature 'regularizedSEM'
fittedIndices(object)

Arguments
object object of class regularizedSEM

Value
returns a data.frame with fit indices
Description

fitIndices

Usage

S4 method for signature 'regularizedSEMMixedPenalty'
fitIndices(object)

Arguments

object object of class regularizedSEMMixedPenalty

Value

returns a data.frame with fit indices

description

getLavaanParameters

Description

helper function: returns a labeled vector with parameters from lavaan

Usage

getLavaanParameters(lavaanModel, removeDuplicates = TRUE)

Arguments

lavaanModel model of class lavaan
removeDuplicates

should duplicated parameters be removed?

Value

returns a labeled vector with parameters from lavaan
getTuningParameterConfiguration

Examples

library(lessSEM)

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ 11*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
 16*y6 + 17*y7 + 18*y8 + 19*y9 + 110*y10 +
 111*y11 + 112*y12 + 113*y13 + 114*y14 + 115*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
 data = dataset,
 meanstructure = TRUE,
 std.lv = TRUE)

ggLavaanParameters(lavaanModel)

Description

Returns the lambda, theta, and alpha values for the tuning parameters of a regularized SEM with mixed penalty.

Usage

ggLavaanParameters(
 regularizedSEMMixedPenalty,
 tuningParameterConfiguration
)

Arguments

regularizedSEMMixedPenalty
 object of type regularizedSEMMixedPenalty (see \texttt{\textbackslash ?mixedPenalty})
tuningParameterConfiguration
 integer indicating which tuningParameterConfiguration should be extracted (e.g., 1). See the entry in the row tuningParameterConfiguration of regularizedSEMMixedPenalty@fits and regularizedSEMMixedPenalty@parameters.

Value

data frame with penalty and tuning parameter settings
Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan
package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
 f =~ 11*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
 16*y6 + 17*y7 + 18*y8 + 19*y9 + 110*y10 +
 111*y11 + 112*y12 + 113*y13 + 114*y14 + 115*y15
 f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
 data = dataset,
 meanstructure = TRUE,
 std.lv = TRUE)

We can add mixed penalties as follows:

regularized <- lavaanModel |>
 # create template for regularized model with mixed penalty:
 mixedPenalty() |>
 # add penalty on loadings 16 - 110:
 addLsp(regularized = paste0("l", 11:15),
 lambdas = seq(0,1,.1),
 thetas = 2.3) |>
 # fit the model:
 fit()

getTuningParameterConfiguration(regularizedSEMMixedPenalty = regularized,
 tuningParameterConfiguration = 2)

glmmnetCappedL1MgSEM

CappedL1 optimization with glmnet optimizer

Description

Object for cappedL1 optimization with glmnet optimizer

Value

a list with fit results
Fields

`new` creates a new object. Requires (2) a list with control elements
`setHessian` changes the Hessian of the model. Expects a matrix
`optimize` optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a theta and a lambda value.

glmnetCappedL1SEM
CappedL1 optimization with glmnet optimizer

Description

Object for cappedL1 optimization with glmnet optimizer

Value

a list with fit results

Fields

`new` creates a new object. Requires a list with control elements
`setHessian` changes the Hessian of the model. Expects a matrix
`optimize` optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a theta and a lambda value.

glmnetEnetGeneralPurpose
elastic net optimization with glmnet optimizer

Description

Object for elastic net optimization with glmnet optimizer

Value

a list with fit results

Fields

`new` creates a new object. Requires (1) a vector with weights for each parameter and (2) a list with control elements
`setHessian` changes the Hessian of the model. Expects a matrix
`optimize` optimize the model. Expects a vector with starting values, an R function to compute the fit, an R function to compute the gradients, a list with elements the fit and gradient function require, a lambda and an alpha value.
glmnetEnetGeneralPurposeCpp

elastic net optimization with glmnet optimizer

Description

Object for elastic net optimization with glmnet optimizer

Value

a list with fit results

Fields

new creates a new object. Requires (1) a vector with weights for each parameter and (2) a list with control elements

setHessian changes the Hessian of the model. Expects a matrix

optimize optimize the model. Expects a vector with starting values, a SEXP function pointer to compute the fit, a SEXP function pointer to compute the gradients, a list with elements the fit and gradient function require, a lambda and an alpha value.

glmnetEnetMgSEM

elastic net optimization with glmnet optimizer

Description

Object for elastic net optimization with glmnet optimizer

Value

a list with fit results

Fields

new creates a new object. Requires (1) a vector with weights for each parameter and (2) a list with control elements

setHessian changes the Hessian of the model. Expects a matrix

optimize optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a lambda and an alpha value.
glmnetEnetSEM

elastic net optimization with glmnet optimizer

Description

Object for elastic net optimization with glmnet optimizer

Value

a list with fit results

Fields

- `new` creates a new object. Requires (1) a vector with weights for each parameter and (2) a list with control elements
- `setHessian` changes the Hessian of the model. Expects a matrix
- `optimize` optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a lambda and an alpha value.

glmnetLspMgSEM

lsp optimization with glmnet optimizer

Description

Object for lsp optimization with glmnet optimizer

Value

a list with fit results

Fields

- `new` creates a new object. Requires (2) a list with control elements
- `setHessian` changes the Hessian of the model. Expects a matrix
- `optimize` optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a theta and a lambda value.
glmnetLspSEM

Description
Object for lsp optimization with glmnet optimizer

Value
a list with fit results

Fields
- `new` creates a new object. Requires a list with control elements
- `setHessian` changes the Hessian of the model. Expects a matrix
- `optimize` optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a theta and a lambda value.

glmnetMcpMgSEM

Description
Object for mcp optimization with glmnet optimizer

Value
a list with fit results

Fields
- `new` creates a new object. Requires (2) a list with control elements
- `setHessian` changes the Hessian of the model. Expects a matrix
- `optimize` optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a theta and a lambda value.
glmnetMcpSEM

mcp optimization with glmnet optimizer

Description

Object for mcp optimization with glmnet optimizer

Value

a list with fit results

Fields

- `new` creates a new object. Requires a list with control elements
- `setHessian` changes the Hessian of the model. Expects a matrix
- `optimize` optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a theta and a lambda value.

glmnetMixedMgSEM

mixed optimization with glmnet optimizer

Description

Object for mixed optimization with glmnet optimizer

Value

a list with fit results

Fields

- `new` creates a new object. Requires (2) a list with control elements
- `setHessian` changes the Hessian of the model. Expects a matrix
- `optimize` optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a theta and a lambda value.
glmnetMixedPenaltyGeneralPurpose

mixed optimization with glmnet optimizer

Description

Object for mixed optimization with glmnet optimizer

Value

a list with fit results

Fields

new creates a new object. Requires a list with control elements
setHessian changes the Hessian of the model. Expects a matrix
optimize optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a theta and a lambda value.

glmnetMixedPenaltyGeneralPurposeCpp

mixed optimization with glmnet optimizer

Description

Object for mixed optimization with glmnet optimizer

Value

a list with fit results

Fields

new creates a new object. Requires a list with control elements
setHessian changes the Hessian of the model. Expects a matrix
optimize optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a theta and a lambda value.
glmnetMixedSEM

Mixed optimization with glmnet optimizer

Description

Object for mixed optimization with glmnet optimizer

Value

A list with fit results

Fields

- new: creates a new object. Requires a list with control elements
- setHessian: changes the Hessian of the model. Expects a matrix
- optimize: optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a theta and a lambda value.

glmnetScadMgSEM

Scad optimization with glmnet optimizer

Description

Object for scad optimization with glmnet optimizer

Value

A list with fit results

Fields

- new: creates a new object. Requires (2) a list with control elements
- setHessian: changes the Hessian of the model. Expects a matrix
- optimize: optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a theta and a lambda value.
glmnetScadSEM

Description

Object for scad optimization with glmnet optimizer

Value

a list with fit results

Fields

- `new` creates a new object. Requires a list with control elements
- `setHessian` changes the Hessian of the model. Expects a matrix
- `optimize` optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a theta and a lambda value.

gpAdaptiveLasso

Description

Implements adaptive lasso regularization for general purpose optimization problems. The penalty function is given by:

\[p(x_j) = p(x_j) = \frac{1}{w_j} \lambda |x_j| \]

Adaptive lasso regularization will set parameters to zero if \(\lambda \) is large enough.

Usage

```r
gpAdaptiveLasso(
  par,
  regularized,
  weights = NULL,
  fn,
  gr = NULL,
  lambdas = NULL,
  nLambdas = NULL,
  reverse = TRUE,
  curve = 1,
  ...,
  method = "glmnet",
  control = lessSEM::controlGlnet()
)
```
Arguments

- **par**: labeled vector with starting values
- **regularized**: vector with names of parameters which are to be regularized.
- **weights**: labeled vector with adaptive lasso weights. NULL will use 1/abs(par)
- **fn**: R function which takes the parameters as input and returns the fit value (a single value)
- **gr**: R function which takes the parameters as input and returns the gradients of the objective function. If set to NULL, numDeriv will be used to approximate the gradients
- **lambdas**: numeric vector: values for the tuning parameter lambda
- **nLambdas**: alternative to lambda: If alpha = 1, lessSEM can automatically compute the first lambda value which sets all regularized parameters to zero. It will then generate nLambdas values between 0 and the computed lambda.
- **reverse**: if set to TRUE and nLambdas is used, lessSEM will start with the largest lambda and gradually decrease lambda. Otherwise, lessSEM will start with the smallest lambda and gradually increase it.
- **curve**: Allows for unequally spaced lambda steps (e.g., .01,.02,.05,1,5,20). If curve is close to 1 all lambda values will be equally spaced, if curve is large lambda values will be more concentrated close to 0. See ?lessSEM::curveLambda for more information.
- **...**: additional arguments passed to fn and gr
- **method**: which optimizer should be used? Currently implemented are ista and glmnet.
- **control**: used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.

Details

The interface is similar to that of optim. Users have to supply a vector with starting values (important: This vector must have labels) and a fitting function. This fitting functions must take a labeled vector with parameter values as first argument. The remaining arguments are passed with the ... argument. This is similar to optim.

The gradient function gr is optional. If set to NULL, the numDeriv package will be used to approximate the gradients. Supplying a gradient function can result in considerable speed improvements.

Adaptive lasso regularization:

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Object of class gpRegularized

Examples

This example shows how to use the optimizers
for other objective functions. We will use
a linear regression as an example. Note that
this is not a useful application of the optimizers
as there are specialized packages for linear regression
(e.g., glmnet)

library(lessSEM)
set.seed(123)

first, we simulate data for our
linear regression.
N <- 100 # number of persons
p <- 10 # number of predictors
X <- matrix(rnorm(N*p), nrow = N, ncol = p) # design matrix
b <- c(rep(1,4),
 rep(0,6)) # true regression weights
y <- X %*% matrix(b, ncol = 1) + rnorm(N, 0, .2)

First, we must construct a fitting function
which returns a single value. We will use
the residual sum squared as fitting function.

Let’s start setting up the fitting function:
fittingFunction <- function(par, y, X, N){
 par is the parameter vector
 y is the observed dependent variable
 X is the design matrix
 N is the sample size
 pred <- X %*% matrix(par, ncol = 1) # be explicit here:
 # we need par to be a column vector
 sse <- sum((y - pred)^2)
 # we scale with .5/N to get the same results as glmnet
return((.5/N)*sse)
}

let's define the starting values:
b <- c(solve(t(X)%*%X)%*%t(X)%*%y) # we will use the lm estimates
names(b) <- paste0("b", 1:length(b))
names of regularized parameters
regularized <- paste0("b",1:p)

define the weight for each of the parameters
weights <- 1/abs(b)
we will re-scale the weights for equivalence to glmnet.
see ?glmnet for more details
weights <- length(b)*weights/sum(weights)

optimize
adaptiveLassoPen <- gpAdaptiveLasso(
 par = b,
 regularized = regularized,
 weights = weights,
 fn = fittingFunction,
 lambdas = seq(0,1,.01),
 X = X,
 y = y,
 N = N
)
plot(adaptiveLassoPen)

You can access the fit results as follows:
adaptiveLassoPen@fits
Note that we won't compute any fit measures automatically, as
we cannot be sure how the AIC, BIC, etc are defined for your objective function

for comparison:
library(glmnet)
coef(glmnet(x = X,
y = y,
penalty.factor = weights,
lambda = adaptiveLassoPen@fits$lambda[20],
intercept = FALSE,
standardize = FALSE))[,1]
adaptiveLassoPen@parameters[20,]

Description

Implements adaptive lasso regularization for general purpose optimization problems with C++ functions. The penalty function is given by:

\[p(x_j) = p(x_j) = \frac{1}{w_j} \lambda |x_j| \]
Adaptive lasso regularization will set parameters to zero if λ is large enough.

Usage

\[
\text{gpAdaptiveLassoCpp(}
\text{par,}
\text{regularized,}
\text{weights = NULL,}
\text{fn,}
\text{gr,}
\text{lambdas = NULL,}
\text{nLambdas = NULL,}
\text{curve = 1,}
\text{additionalArguments,}
\text{method = "glmnet",}
\text{control = lessSEM::controlGlmnet()}\
\text{)}
\]

Arguments

- **par**: labeled vector with starting values
- **regularized**: vector with names of parameters which are to be regularized.
- **weights**: labeled vector with adaptive lasso weights. NULL will use 1/abs(par)
- **fn**: R function which takes the parameters as input and returns the fit value (a single value)
- **gr**: R function which takes the parameters as input and returns the gradients of the objective function. If set to NULL, numDeriv will be used to approximate the gradients
- **lambdas**: numeric vector: values for the tuning parameter lambda
- **nLambdas**: alternative to lambda: If alpha = 1, lessSEM can automatically compute the first lambda value which sets all regularized parameters to zero. It will then generate nLambda values between 0 and the computed lambda.
- **curve**: Allows for unequally spaced lambda steps (e.g., .01,.02,.05,1,5,20). If curve is close to 1 all lambda values will be equally spaced, if curve is large lambda values will be more concentrated close to 0. See ?lessSEM::curveLambda for more information.
- **additionalArguments**: list with additional arguments passed to fn and gr
- **method**: which optimizer should be used? Currently implemented are ista and glmnet.
- **control**: used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.

Details

The interface is inspired by optim, but a bit more restrictive. Users have to supply a vector with starting values (important: This vector must have labels), a fitting function, and a gradient function.
These fitting functions must take an const Rcpp::NumericVector& with parameter values as first argument and an Rcpp::List& as second argument

Adaptive lasso regularization:

For more details on GLMNET, see:

For more details on ISTA, see:

For more details on the optimizers:

Value
Object of class *gpRegularized*

Examples

```r
# This example shows how to use the optimizers
library(Rcpp)
library(lessSEM)

linreg <- function(parameters, data)
  double fitfunction(const Rcpp::NumericVector& parameters, Rcpp::List& data)
  // extract all required elements:
```
arma::colvec b = Rcpp::as<arma::colvec>(parameters);
arma::colvec y = Rcpp::as<arma::colvec>(data["y"]); // the dependent variable
arma::mat X = Rcpp::as<arma::mat>(data["X"]); // the design matrix

// compute the sum of squared errors:
arma::mat sse = arma::trans(y-X*b)*(y-X*b);

// other packages, such as glmnet, scale the sse with
// 1/(2*N), where N is the sample size. We will do that here as well
sse *= 1.0/(2.0 * y.n_elem);

// note: We must return a double, but the sse is a matrix
// To get a double, just return the single value that is in
// this matrix:
return(sse(0,0));

// [[Rcpp::export]]
arma::rowvec gradientfunction(const Rcpp::NumericVector& parameters, Rcpp::List& data){
 // extract all required elements:
 arma::colvec b = Rcpp::as<arma::colvec>(parameters);
 arma::colvec y = Rcpp::as<arma::colvec>(data["y"]); // the dependent variable
 arma::mat X = Rcpp::as<arma::mat>(data["X"]); // the design matrix

 // note: we want to return our gradients as row-vector; therefore,
 // we have to transpose the resulting column-vector:
 arma::rowvec gradients = arma::trans(-2.0*X.t() * y + 2.0*X.t()*X*b);

 // other packages, such as glmnet, scale the sse with
 // 1/(2*N), where N is the sample size. We will do that here as well
 gradients *= (.5/y.n_rows);

 return(gradients);
}

// Dirk Eddelbuettel at
// https://gallery.rcpp.org/articles/passing-cpp-function-pointers/
typedef double (*fitFunPtr)(const Rcpp::NumericVector&, //parameters
 Rcpp::List& //additional elements
);
typedef Rcpp::XPtr<fitFunPtr> fitFunPtr_t;

typedef arma::rowvec (*gradientFunPtr)(const Rcpp::NumericVector&, //parameters
 Rcpp::List& //additional elements
);
typedef Rcpp::XPtr<gradientFunPtr> gradientFunPtr_t;

// [[Rcpp::export]]
fitFunPtr_t fitFunPtr() {
 return(fitFunPtr_t(new fitFunPtr(&fitfunction)));
Description

Implements cappedL1 regularization for general purpose optimization problems. The penalty function is given by:

$$p(x_j) = \lambda \min(|x_j|, \theta)$$

where $\theta > 0$. The cappedL1 penalty is identical to the lasso for parameters which are below θ and identical to a constant for parameters above θ. As adding a constant to the fitting function will not change its minimum, larger parameters can stay unregularized while smaller ones are set to zero.

Usage

```r
gpCappedL1()
```
gpCappedL1

par,
fn,
gr = NULL,
...,
regularized,
lambdas,
thetas,
method = "glmnet",
control = lessSEM::controlGlmnet()
)

Arguments

par labeled vector with starting values
fn R function which takes the parameters AND their labels as input and returns the
fit value (a single value)
gr R function which takes the parameters AND their labels as input and returns the
gradients of the objective function. If set to NULL, numDeriv will be used to
approximate the gradients
... additional arguments passed to fn and gr
regularized vector with names of parameters which are to be regularized.
lambdas numeric vector: values for the tuning parameter lambda
thetas parameters whose absolute value is above this threshold will be penalized with
a constant (theta)
method which optimizer should be used? Currently implemented are ista and glmnet.
control used to control the optimizer. This element is generated with the controlIsta and
controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.

Details

The interface is similar to that of optim. Users have to supply a vector with starting values (impor-
tant: This vector must have labels) and a fitting function. This fitting functions must take a labeled
vector with parameter values as first argument. The remaining arguments are passed with the ...
argument. This is similar to optim.

The gradient function gr is optional. If set to NULL, the numDeriv package will be used to approx-
imate the gradients. Supplying a gradient function can result in considerable speed improvements.

CappedL1 regularization:

For more details on GLMNET, see:

- Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized Linear

For more details on ISTA, see:

Value

Object of class gpRegularized

Examples

This example shows how to use the optimizers
for other objective functions. We will use
a linear regression as an example. Note that
this is not a useful application of the optimizers
as there are specialized packages for linear regression
(e.g., glmnet)

This example shows how to use the optimizers
for other objective functions. We will use
a linear regression as an example. Note that
this is not a useful application of the optimizers
as there are specialized packages for linear regression
(e.g., glmnet)

library(lessSEM)
set.seed(123)

first, we simulate data for our
linear regression.
N <- 100 # number of persons
p <- 10 # number of predictors
X <- matrix(rnorm(N*p),nrow = N, ncol = p) # design matrix
b <- c(rep(1,4),
 rep(0,6)) # true regression weights
y <- X%*%matrix(b,ncol = 1) + rnorm(N,0,.2)

First, we must construct a fitting function
which returns a single value. We will use
the residual sum squared as fitting function.
Let's start setting up the fitting function:
fittingFunction <- function(par, y, X, N){
 # par is the parameter vector
 # y is the observed dependent variable
 # X is the design matrix
 # N is the sample size
 pred <- X %*% matrix(par, ncol = 1) # be explicit here:
 # we need par to be a column vector
 sse <- sum((y - pred)^2)
 # we scale with .5/N to get the same results as glmnet
 return((.5/N)*sse)
}

let's define the starting values:
b <- c(solve(t(X)%*%X)%*%t(X)%*%y) # we will use the lm estimates
names(b) <- paste0("b", 1:length(b))
names of regularized parameters
regularized <- paste0("b",1:p)

optimize
cL1 <- gpCappedL1(
 par = b,
 regularized = regularized,
 fn = fittingFunction,
 lambdas = seq(0,1,.1),
 thetas = c(0.001, .5, 1),
 X = X,
 y = y,
 N = N
)

optional: plot requires plotly package
plot(cL1)

for comparison

fittingFunction <- function(par, y, X, N, lambda, theta){
 pred <- X %*% matrix(par, ncol = 1)
 sse <- sum((y - pred)^2)
 smoothAbs <- sqrt(par^2 + 1e-8)
 pen <- lambda * ifelse(smoothAbs < theta, smoothAbs, theta)
 return((.5/N)*sse + sum(pen))
}

round(
 optim(par = b,
 fn = fittingFunction,
 y = y,
 X = X,
 N = N,
 lambda = cL1@fits$lambda[15],
 theta = cL1@fits$theta[15],
 lambda = cL1@fits$lambda[15],
 theta = cL1@fits$theta[15],
 lambda = cL1@fits$lambda[15],
 theta = cL1@fits$theta[15],
)
gpCappedL1Cpp

method = "BFGS")$par,
4)
cL1@parameters[15,

Description

Implements cappedL1 regularization for general purpose optimization problems with C++ functions. The penalty function is given by:

\[p(x_j) = \lambda \min(|x_j|, \theta) \]

where \(\theta > 0 \). The cappedL1 penalty is identical to the lasso for parameters which are below \(\theta \) and identical to a constant for parameters above \(\theta \). As adding a constant to the fitting function will not change its minimum, larger parameters can stay unregularized while smaller ones are set to zero.

Usage

```r
gpCappedL1Cpp(
  par,
  fn,
  gr,
  additionalArguments,
  regularized,
  lambdas,
  thetas,
  method = "glmnet",
  control = lessSEM::controlGlmnet()
)
```

Arguments

- `par` labeled vector with starting values
- `fn` R function which takes the parameters AND their labels as input and returns the fit value (a single value)
- `gr` R function which takes the parameters AND their labels as input and returns the gradients of the objective function. If set to NULL, numDeriv will be used to approximate the gradients
- `additionalArguments` list with additional arguments passed to `fn` and `gr`
- `regularized` vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use `getLavaanParameters(model)` with your lavaan model object
- `lambdas` numeric vector: values for the tuning parameter lambda
parameters whose absolute value is above this threshold will be penalized with a constant (theta).

method which optimizer should be used? Currently implemented are ista and glmnet.

control used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.

Details

The interface is inspired by optim, but a bit more restrictive. Users have to supply a vector with starting values (important: This vector must have labels), a fitting function, and a gradient function. These fitting functions must take an const Rcpp::NumericVector& with parameter values as first argument and an Rcpp::List& as second argument

CappedL1 regularization:

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Object of class gpRegularized

Examples

This example shows how to use the optimizers
for C++ objective functions. We will use
a linear regression as an example. Note that
this is not a useful application of the optimizers
as there are specialized packages for linear regression
library(Rcpp)
library(lessSEM)

linreg <-
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>

// [[Rcpp::export]]
double fitfunction(const Rcpp::NumericVector& parameters, Rcpp::List& data){
 arma::colvec b = Rcpp::as<arma::colvec>(parameters);
 arma::colvec y = Rcpp::as<arma::colvec>(data["y"]); // the dependent variable
 arma::mat X = Rcpp::as<arma::mat>(data["X"]); // the design matrix

 arma::mat sse = arma::trans(y-X*b)*(y-X*b);

 // other packages, such as glmnet, scale the sse with
 // 1/(2*N), where N is the sample size. We will do that here as well
 sse *= 1.0/(2.0 * y.n_elem);

 // note: We must return a double, but the sse is a matrix
 // To get a double, just return the single value that is in
 // this matrix:
 return(sse(0,0));
}

// [[Rcpp::export]]
arma::rowvec gradientfunction(const Rcpp::NumericVector& parameters, Rcpp::List& data){
 arma::colvec b = Rcpp::as<arma::colvec>(parameters);
 arma::colvec y = Rcpp::as<arma::colvec>(data["y"]); // the dependent variable
 arma::mat X = Rcpp::as<arma::mat>(data["X"]); // the design matrix

 // note: we want to return our gradients as row-vector; therefore,
 // we have to transpose the resulting column-vector:
 arma::rowvec gradients = arma::trans(-2.0*X.t() * y + 2.0*X.t()*X*b);

 // other packages, such as glmnet, scale the sse with
 // 1/(2*N), where N is the sample size. We will do that here as well
 gradients *= (.5/y.n_rows);
 return(gradients);
}

// https://gallery.rcpp.org/articles/passing-cpp-function-pointers/
typedef double (*fitFunPtr)(const Rcpp::NumericVector&, Rcpp::List& //additional elements
 Rcpp::List& //additional elements
);
typedef Rcpp::XPtr<fitFunPtr_t> fitFunPtr_t;

typedef arma::rowvec (*gradientFunPtr)(const Rcpp::NumericVector&, //parameters
 Rcpp::List& //additional elements
);

typedef Rcpp::XPtr<gradientFunPtr> gradientFunPtr_t;

// [[Rcpp::export]]
fitFunPtr_t fitfunPtr() {
 return(fitFunPtr_t(new fitFunPtr(&fitfunction)));
}

// [[Rcpp::export]]
gradientFunPtr_t gradfunPtr() {
 return(gradientFunPtr_t(new gradientFunPtr(&gradientfunction)));
}

Rcpp::sourceCpp(code = linreg)

ffp <- fitfunPtr()
gfp <- gradfunPtr()

N <- 100 # number of persons
p <- 10 # number of predictors
X <- matrix(rnorm(N*p),nrow = N, ncol = p) # design matrix
b <- c(rep(1,4),
 rep(0,6)) # true regression weights
y <- X%*%matrix(b,ncol = 1) + rnorm(N,0,.2)

data <- list("y" = y,
 "X" = cbind(1,X))
parameters <- rep(0, ncol(data$X))
names(parameters) <- paste0("b", 0:(length(parameters)-1))

cL1 <- gpCappedL1Cpp(par = parameters,
 regularized = paste0("b", 1:(length(b)-1)),
 fn = ffp,
 gr = gfp,
 lambdas = seq(0,1,.1),
 thetas = seq(0.1,1,.1),
 additionalArguments = data)

cL1@parameters
Description

Implements elastic net regularization for general purpose optimization problems. The penalty function is given by:

\[p(x_j) = p(x_j) = \frac{1}{w_j} \lambda |x_j| \]

Note that the elastic net combines ridge and lasso regularization. If \(\alpha = 0 \), the elastic net reduces to ridge regularization. If \(\alpha = 1 \) it reduces to lasso regularization. In between, elastic net is a compromise between the shrinkage of the lasso and the ridge penalty.

Usage

```r
gpElasticNet(
  par,
  regularized,
  fn,
  gr = NULL,
  lambdas,
  alphas,
  ...,
  method = "glmnet",
  control = lessSEM::controlGlmnet()
)
```

Arguments

- `par`: labeled vector with starting values
- `regularized`: vector with names of parameters which are to be regularized.
- `fn`: R function which takes the parameters AND their labels as input and returns the fit value (a single value)
- `gr`: R function which takes the parameters AND their labels as input and returns the gradients of the objective function. If set to NULL, numDeriv will be used to approximate the gradients
- `lambdas`: numeric vector: values for the tuning parameter lambda
- `alphas`: numeric vector with values of the tuning parameter alpha. Must be between 0 and 1. 0 = ridge, 1 = lasso.
- `...`: additional arguments passed to fn and gr
- `method`: which optimizer should be used? Currently implemented are ista and glmnet.
- `control`: used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.

Details

The interface is similar to that of optim. Users have to supply a vector with starting values (important: This vector must have labels) and a fitting function. This fitting functions must take a labeled vector with parameter values as first argument. The remaining arguments are passed with the ... argument. This is similar to optim.
The gradient function gr is optional. If set to NULL, the `numDeriv` package will be used to approximate the gradients. Supplying a gradient function can result in considerable speed improvements.

Elastic net regularization:

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Object of class `gpRegularized`

Examples

```r
# This example shows how to use the optimizers
# for other objective functions. We will use
# a linear regression as an example. Note that
# this is not a useful application of the optimizers
# as there are specialized packages for linear regression
# (e.g., glmnet)

library(lessSEM)
set.seed(123)

# first, we simulate data for our
# linear regression.
N <- 100 # number of persons
p <- 10 # number of predictors
X <- matrix(rnorm(N*p),nrow = N, ncol = p) # design matrix
b <- c(rep(1,4),
```
rep(0,6)) # true regression weights
y <- X%*%matrix(b,ncol = 1) + rnorm(N,0,.2)

First, we must construct a fitting function
which returns a single value. We will use
the residual sum squared as fitting function.

Let's start setting up the fitting function:
fittingFunction <- function(par, y, X, N){
 # par is the parameter vector
 # y is the observed dependent variable
 # X is the design matrix
 # N is the sample size
 pred <- X %*% matrix(par, ncol = 1) # be explicit here:
 # we need par to be a column vector
 sse <- sum((y - pred)^2)
 # we scale with .5/N to get the same results as glmnet
 return((.5/N)*sse)
}

Let's define the starting values:
b <- c(solve(t(X)%*%X)%*%t(X)%*%y) # we will use the lm estimates
names(b) <- paste0("b", 1:length(b))
names of regularized parameters
regularized <- paste0("b",1:p)

optimize
elasticNetPen <- gpElasticNet(
 par = b,
 regularized = regularized,
 fn = fittingFunction,
 lambdas = seq(0,1,.1),
 alphas = c(0, .5, 1),
 X = X,
 y = y,
 N = N
)

optional: plot requires plotly package
plot(elasticNetPen)

for comparison:
fittingFunction <- function(par, y, X, N, lambda, alpha){
 pred <- X %*% matrix(par, ncol = 1)
 sse <- sum((y - pred)^2)
 return((.5/N)*sse + (1-alpha)*lambda * sum(par^2) + alpha*lambda *sum(sqrt(par^2 + 1e-8)))
}

round(
 optim(par = b,
 fn = fittingFunction,
 y = y,
 X = X,
gpElasticNetCpp

N = N,
lambda = elasticNetPen@fits$lambda[15],
alpha = elasticNetPen@fits$alpha[15],
method = "BFGS"$par,
4)
elasticNetPen@parameters[15,]

Description

Implements elastic net regularization for general purpose optimization problems with C++ functions. The penalty function is given by:

\[p(x_j) = p(x_j) = \frac{1}{w_j} \lambda |x_j| \]

Note that the elastic net combines ridge and lasso regularization. If \(\alpha = 0 \), the elastic net reduces to ridge regularization. If \(\alpha = 1 \) it reduces to lasso regularization. In between, elastic net is a compromise between the shrinkage of the lasso and the ridge penalty.

Usage

gpElasticNetCpp(
 par,
 regularized,
 fn,
 gr,
 lambdas,
 alphas,
 additionalArguments,
 method = "glmnet",
 control = lessSEM::controlGlmnet()
)

Arguments

par labeled vector with starting values
regularized vector with names of parameters which are to be regularized.
fn R function which takes the parameters AND their labels as input and returns the fit value (a single value)
gr R function which takes the parameters AND their labels as input and returns the gradients of the objective function. If set to NULL, numDeriv will be used to approximate the gradients
lambdas numeric vector: values for the tuning parameter lambda
alphas numeric vector with values of the tuning parameter alpha. Must be between 0 and 1. 0 = ridge, 1 = lasso.

additionalArguments list with additional arguments passed to fn and gr

method which optimizer should be used? Currently implemented are ista and glmnet.

control used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.

Details

The interface is inspired by optim, but a bit more restrictive. Users have to supply a vector with starting values (important: This vector must have labels), a fitting function, and a gradient function. These fitting functions must take an const Rcpp::NumericVector& with parameter values as first argument and an Rcpp::List& as second argument

Elastic net regularization:

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Object of class gpRegularized
Examples

This example shows how to use the optimizers
for C++ objective functions. We will use
a linear regression as an example. Note that
this is not a useful application of the optimizers
as there are specialized packages for linear regression
(e.g., glmnet)

library(Rcpp)
library(lessSEM)

linreg <-
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>

// [[Rcpp::export]]
double fitfunction(const Rcpp::NumericVector & parameters, Rcpp::List & data){
 // extract all required elements:
 arma::colvec b = Rcpp::as<arma::colvec>(parameters);
 arma::colvec y = Rcpp::as<arma::colvec>(data["y"]); // the dependent variable
 arma::mat X = Rcpp::as<arma::mat>(data["X"]); // the design matrix

 // compute the sum of squared errors:
 arma::mat sse = arma::trans(y-X*b)*(y-X*b);

 // other packages, such as glmnet, scale the sse with
 // 1/(2*N), where N is the sample size. We will do that here as well
 sse *= 1.0/(2.0 * y.n_elem);

 // note: We must return a double, but the sse is a matrix
 // To get a double, just return the single value that is in
 // this matrix:
 return(sse(0,0));
}

// [[Rcpp::export]]
arma::rowvec gradientfunction(const Rcpp::NumericVector & parameters, Rcpp::List & data){
 // extract all required elements:
 arma::colvec b = Rcpp::as<arma::colvec>(parameters);
 arma::colvec y = Rcpp::as<arma::colvec>(data["y"]); // the dependent variable
 arma::mat X = Rcpp::as<arma::mat>(data["X"]); // the design matrix

 // note: we want to return our gradients as row-vector; therefore,
 // we have to transpose the resulting column-vector:
 arma::rowvec gradients = arma::trans(-2.0*X.t() * y + 2.0*X.t()*X*b);

 // other packages, such as glmnet, scale the sse with
 // 1/(2*N), where N is the sample size. We will do that here as well
 gradients *= (.5/y.n_rows);
return(gradients);
}

// Dirk Eddelbuettel at
// https://gallery.rcpp.org/articles/passing-cpp-function-pointers/
typedef double (*fitFunPtr)(const Rcpp::NumericVector&, //parameters
 Rcpp::List& //additional elements
);
typedef Rcpp::XPtr<fitFunPtr> fitFunPtr_t;

typedef arma::rowvec (*gradientFunPtr)(const Rcpp::NumericVector&, //parameters
 Rcpp::List& //additional elements
);;
typedef Rcpp::XPtr<gradientFunPtr> gradientFunPtr_t;

// [[Rcpp::export]]
fitFunPtr_t fitfunPtr() {
return(fitFunPtr_t(new fitFunPtr(&fitfunction)));
}

// [[Rcpp::export]]
gradientFunPtr_t gradfunPtr() {
return(gradientFunPtr_t(new gradientFunPtr(&gradientfunction)));
}

Rcpp::sourceCpp(code = linreg)

ffp <- fitfunPtr()
gfp <- gradfunPtr()

N <- 100 # number of persons
p <- 10 # number of predictors
X <- matrix(rnorm(N*p),nrow = N, ncol = p) # design matrix
b <- c(rep(1,4),
 rep(0,6)) # true regression weights
y <- X%*%matrix(b,ncol = 1) + rnorm(N,0,.2)
data <- list("y" = y,
 "X" = cbind(1,X))
parameters <- rep(0, ncol(data$X))
names(parameters) <- paste0("b", 0:(length(parameters)-1))
en <- gpElasticNetCpp(par = parameters,
 regularized = paste0("b", 1:(length(b)-1)),
 fn = ffp,
 gr = gfp,
 lambdas = seq(0,1,.1),
 alphas = c(0,.5,1),
 additionalArguments = data)
en@parameters
Description

Implements lasso regularization for general purpose optimization problems. The penalty function is given by:

\[p(x_j) = \lambda |x_j| \]

Lasso regularization will set parameters to zero if \(\lambda \) is large enough.

Usage

```r
gpLasso(
  par,
  regularized,
  fn,
  gr = NULL,
  lambdas = NULL,
  nLambdas = NULL,
  reverse = TRUE,
  curve = 1,
  ...,  
  method = "glmnet",
  control = lessSEM::controlGlmnet()
)
```

Arguments

- `par`: labeled vector with starting values
- `regularized`: vector with names of parameters which are to be regularized.
- `fn`: R function which takes the parameters as input and returns the fit value (a single value)
- `gr`: R function which takes the parameters as input and returns the gradients of the objective function. If set to NULL, numDeriv will be used to approximate the gradients
- `lambdas`: numeric vector: values for the tuning parameter lambda
- `nLambdas`: alternative to lambda: If alpha = 1, lessSEM can automatically compute the first lambda value which sets all regularized parameters to zero. It will then generate nLambda values between 0 and the computed lambda.
- `reverse`: if set to TRUE and nLambdas is used, lessSEM will start with the largest lambda and gradually decrease lambda. Otherwise, lessSEM will start with the smallest lambda and gradually increase it.
curve

Allows for unequally spaced lambda steps (e.g., .01,.02,.05,1,5,20). If curve is close to 1 all lambda values will be equally spaced, if curve is large lambda values will be more concentrated close to 0. See ?lessSEM::curveLambda for more information.

... additional arguments passed to fn and gr

method

which optimizer should be used? Currently implemented are ista and glmnet.

control

used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.

Details

The interface is similar to that of optim. Users have to supply a vector with starting values (important: This vector must have labels) and a fitting function. This fitting functions must take a labeled vector with parameter values as first argument. The remaining arguments are passed with the ... argument. This is similar to optim.

The gradient function gr is optional. If set to NULL, the numDeriv package will be used to approximate the gradients. Supplying a gradient function can result in considerable speed improvements.

Lasso regularization:

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Object of class gpRegularized
Examples

This example shows how to use the optimizers
for other objective functions. We will use
a linear regression as an example. Note that
this is not a useful application of the optimizers
as there are specialized packages for linear regression
(e.g., glmnet)

library(lessSEM)
set.seed(123)

first, we simulate data for our
linear regression.
N <- 100 # number of persons
p <- 10 # number of predictors
X <- matrix(rnorm(N*p),nrow = N, ncol = p) # design matrix
b <- c(rep(1,4),
 rep(0,6)) # true regression weights
y <- X%*%matrix(b,ncol = 1) + rnorm(N,0,.2)

First, we must construct a fitting function
which returns a single value. We will use
the residual sum squared as fitting function.

Let's start setting up the fitting function:
fittingFunction <- function(par, y, X, N){
 # par is the parameter vector
 # y is the observed dependent variable
 # X is the design matrix
 # N is the sample size
 pred <- X %*% matrix(par, ncol = 1) # be explicit here:
 # we need par to be a column vector
 sse <- sum((y - pred)^2)
 # we scale with .5/N to get the same results as glmnet
 return((.5/N)*sse)
}

let's define the starting values:
b <- rep(0,p)
names(b) <- paste0("b", 1:length(b))
names of regularized parameters
regularized <- paste0("b", 1:p)

optimize
lassoPen <- gpLasso(
 par = b,
 regularized = regularized,
 fn = fittingFunction,
 nLambdas = 100,
 X = X,
 y = y,
 N = N)
plot(lassoPen)

You can access the fit results as follows:
lassoPen@fits
Note that we won't compute any fit measures automatically, as
we cannot be sure how the AIC, BIC, etc are defined for your objective function

gpLassoCpp

Description

Implements lasso regularization for general purpose optimization problems with C++ functions. The penalty function is given by:

\[p(x_j) = \lambda |x_j| \]

Lasso regularization will set parameters to zero if \(\lambda \) is large enough.

Usage

```r
gpLassoCpp(
  par,
  regularized,
  fn,
  gr,
  lambdas = NULL,
  nLambdas = NULL,
  curve = 1,
  additionalArguments,
  method = "glmnet",
  control = lessSEM::controlGlmnet()
)
```

Arguments

- **par**: labeled vector with starting values
- **regularized**: vector with names of parameters which are to be regularized.
- **fn**: pointer to Rcpp function which takes the parameters as input and returns the fit value (a single value)
- **gr**: pointer to Rcpp function which takes the parameters as input and returns the gradients of the objective function.
- **lambdas**: numeric vector: values for the tuning parameter lambda
- **nLambdas**: alternative to lambda: If alpha = 1, lessSEM can automatically compute the first lambda value which sets all regularized parameters to zero. It will then generate nLambda values between 0 and the computed lambda.
curve Allows for unequally spaced lambda steps (e.g., .01,.02,.05,1,5,20). If curve is close to 1 all lambda values will be equally spaced, if curve is large lambda values will be more concentrated close to 0. See ?lessSEM::curveLambda for more information.

additionalArguments list with additional arguments passed to fn and gr

method which optimizer should be used? Currently implemented are ista and glmnet.

control used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.

Details

The interface is inspired by optim, but a bit more restrictive. Users have to supply a vector with starting values (important: This vector must have labels), a fitting function, and a gradient function. These fitting functions must take an const Rcpp::NumericVector& with parameter values as first argument and an Rcpp::List& as second argument

Lasso regularization:

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Object of class gpRegularized
Examples

This example shows how to use the optimizers
for C++ objective functions. We will use
a linear regression as an example. Note that
this is not a useful application of the optimizers
as there are specialized packages for linear regression
(e.g., glmnet)

library(Rcpp)
library(lessSEM)

linreg <-'
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>

// [[Rcpp::export]]
double fitfunction(const Rcpp::NumericVector& parameters, Rcpp::List& data){
 // extract all required elements:
 arma::colvec b = Rcpp::as<arma::colvec>(parameters);
 arma::colvec y = Rcpp::as<arma::colvec>(data["y"]); // the dependent variable
 arma::mat X = Rcpp::as<arma::mat>(data["X"]); // the design matrix

 // compute the sum of squared errors:
 arma::mat sse = arma::trans(y-X*b)*(y-X*b);

 // other packages, such as glmnet, scale the sse with
 // 1/(2*N), where N is the sample size. We will do that here as well
 sse *= 1.0/(2.0 * y.n_elem);

 // note: We must return a double, but the sse is a matrix
 // To get a double, just return the single value that is in
 // this matrix:
 return(sse(0,0));
}

// [[Rcpp::export]]
arma::rowvec gradientfunction(const Rcpp::NumericVector& parameters, Rcpp::List& data){
 // extract all required elements:
 arma::colvec b = Rcpp::as<arma::colvec>(parameters);
 arma::colvec y = Rcpp::as<arma::colvec>(data["y"]); // the dependent variable
 arma::mat X = Rcpp::as<arma::mat>(data["X"]); // the design matrix

 // note: we want to return our gradients as row-vector; therefore,
 // we have to transpose the resulting column-vector:
 arma::rowvec gradients = arma::trans(-2.0*X.t() * y + 2.0*X.t()*X*b);

 // other packages, such as glmnet, scale the sse with
 // 1/(2*N), where N is the sample size. We will do that here as well
 gradients *= .5/y.n_rows;
return(gradients);
}

// Dirk Eddelbuettel at
// https://gallery.rcpp.org/articles/passing-cpp-function-pointers/
typedef double (*fitFunPtr)(const Rcpp::NumericVector&, //parameters
 Rcpp::List& //additional elements
);
typedef Rcpp::XPtr<fitFunPtr> fitFunPtr_t;
typedef arma::rowvec (*gradientFunPtr)(const Rcpp::NumericVector&, //parameters
 Rcpp::List& //additional elements
);
typedef Rcpp::XPtr<gradientFunPtr> gradientFunPtr_t;

// [[Rcpp::export]]
fitFunPtr_t fitfunPtr() {
 return(fitFunPtr_t(new fitFunPtr(&fitfunction)));
}

// [[Rcpp::export]]
gradientFunPtr_t gradfunPtr() {
 return(gradientFunPtr_t(new gradientFunPtr(&gradientfunction)));
}

Rcpp::sourceCpp(code = linreg)

ffp <- fitfunPtr()
gfp <- gradfunPtr()

N <- 100 # number of persons
p <- 10 # number of predictors
X <- matrix(rnorm(N*p),nrow = N, ncol = p) # design matrix
b <- c(rep(1,4),
 rep(0,6)) # true regression weights
y <- X%*%matrix(b,ncol = 1) + rnorm(N,0,.2)
data <- list("y" = y,
 "X" = cbind(1,X))
parameters <- rep(0, ncol(data$X))
names(parameters) <- paste0("b", 0:(length(parameters)-1))

l1 <- gpLassoCpp(par = parameters,
 regularized = paste0("b", 1:(length(b)-1)),
 fn = ffp,
 gr = gfp,
 lambdas = seq(0,1,.1),
 additionalArguments = data)

l1@parameters
Description

Implements lsp regularization for general purpose optimization problems. The penalty function is given by:

Usage

```r
gpLsp(par, fn, gr = NULL, ..., regularized, lambdas, thetas, method = "glmnet", control = lessSEM::controlGlmnet()
)
```

Arguments

- **par**
 - labeled vector with starting values
- **fn**
 - R function which takes the parameters AND their labels as input and returns the fit value (a single value)
- **gr**
 - R function which takes the parameters AND their labels as input and returns the gradients of the objective function. If set to NULL, numDeriv will be used to approximate the gradients
- **...**
 - additional arguments passed to fn and gr
- **regularized**
 - vector with names of parameters which are to be regularized.
- **lambdas**
 - numeric vector: values for the tuning parameter lambda
- **thetas**
 - numeric vector: values for the tuning parameter theta
- **method**
 - which optimizer should be used? Currently implemented are ista and glmnet.
- **control**
 - used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.
Details

The interface is similar to that of optim. Users have to supply a vector with starting values (important: This vector must have labels) and a fitting function. This fitting functions must take a labeled vector with parameter values as first argument. The remaining arguments are passed with the ... argument. This is similar to optim.

The gradient function gr is optional. If set to NULL, the numDeriv package will be used to approximate the gradients. Supplying a gradient function can result in considerable speed improvements.

lsp regularization:

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Object of class gpRegularized

Examples

```r
library(lessSEM)
set.seed(123)

# first, we simulate data for our
# linear regression.
N <- 100 # number of persons
p <- 10 # number of predictors
X <- matrix(rnorm(N*p),nrow = N, ncol = p) # design matrix
b <- c(rep(1,4),
       rep(0,6)) # true regression weights
```
y <- X%*%matrix(b,ncol = 1) + rnorm(N,0,.2)

First, we must construct a fitting function
which returns a single value. We will use
the residual sum squared as fitting function.

Let's start setting up the fitting function:
fittingFunction <- function(par, y, X, N){
 # par is the parameter vector
 # y is the observed dependent variable
 # X is the design matrix
 # N is the sample size
 pred <- X %*% matrix(par, ncol = 1) # be explicit here:
 # we need par to be a column vector
 sse <- sum((y - pred)^2)
 # we scale with .5/N to get the same results as glmnet
 return((.5/N)*sse)
}

let's define the starting values:
b <- c(solve(t(X)%*%X)%*%t(X)%*%y) # we will use the lm estimates
names(b) <- paste0("b", 1:length(b))
names of regularized parameters
regularized <- paste0("b",1:p)

optimize
lspPen <- gpLsp(par = b,
 regularized = regularized,
 fn = fittingFunction,
 lambdas = seq(0,1,.1),
 thetas = c(0.001, .5, 1),
 X = X,
 y = y,
 N = N
)

optional: plot requires plotly package
plot(lspPen)

for comparison
fittingFunction <- function(par, y, X, N, lambda, theta){
 pred <- X %*% matrix(par, ncol = 1)
 sse <- sum((y - pred)^2)
 smoothAbs <- sqrt(par^2 + 1e-8)
 pen <- lambda * log(1.0 + smoothAbs / theta)
 return((.5/N)*sse + sum(pen))
}

round(
 optim(par = b,
 fn = fittingFunction,
Description

Implements lsp regularization for general purpose optimization problems with C++ functions. The penalty function is given by:

\[p(x_j) = \lambda \log(1 + |x_j|/\theta) \]

where \(\theta > 0 \).

Usage

gpLspCpp(
 par,
 fn,
 gr,
 additionalArguments,
 regularized,
 lambdas,
 thetas,
 method = "glmnet",
 control = lessSEM::controlGlmnet()
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>par</td>
<td>labeled vector with starting values</td>
</tr>
<tr>
<td>fn</td>
<td>R function which takes the parameters AND their labels as input and returns the fit value (a single value)</td>
</tr>
<tr>
<td>gr</td>
<td>R function which takes the parameters AND their labels as input and returns the gradients of the objective function. If set to NULL, numDeriv will be used to approximate the gradients</td>
</tr>
<tr>
<td>additionalArguments</td>
<td>list with additional arguments passed to fn and gr</td>
</tr>
<tr>
<td>regularized</td>
<td>vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object</td>
</tr>
</tbody>
</table>
lambdas: numeric vector: values for the tuning parameter lambda
thetas: numeric vector: values for the tuning parameter theta
method: which optimizer should be used? Currently implemented are ista and glmnet.
control: used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.

Details

The interface is inspired by optim, but a bit more restrictive. Users have to supply a vector with starting values (important: This vector must have labels), a fitting function, and a gradient function. These fitting functions must take an const Rcpp::NumericVector& with parameter values as first argument and an Rcpp::List& as second argument.

lsp regularization:

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Object of class gpRegularized

Examples

This example shows how to use the optimizers
for C++ objective functions. We will use
a linear regression as an example. Note that
this is not a useful application of the optimizers
as there are specialized packages for linear regression
(e.g., glmnet)

library(Rcpp)
library(lessSEM)

linreg <- ' # [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>

// [[Rcpp::export]]
double fitfunction(const Rcpp::NumericVector& parameters, Rcpp::List& data){
 // extract all required elements:
 arma::colvec b = Rcpp::as<arma::colvec>(parameters);
 arma::colvec y = Rcpp::as<arma::colvec>(data["y"]); // the dependent variable
 arma::mat X = Rcpp::as<arma::mat>(data["X"]); // the design matrix

 // compute the sum of squared errors:
 arma::mat sse = arma::trans(y-X*b)*(y-X*b);

 // other packages, such as glmnet, scale the sse with
 // 1/(2*N), where N is the sample size. We will do that here as well
 sse *= 1.0/(2.0 * y.n_elem);

 // note: We must return a double, but the sse is a matrix
 // To get a double, just return the single value that is in
 // this matrix:
 return(sse(0,0));
}

// [[Rcpp::export]]
arma::rowvec gradientfunction(const Rcpp::NumericVector& parameters, Rcpp::List& data){
 // extract all required elements:
 arma::colvec b = Rcpp::as<arma::colvec>(parameters);
 arma::colvec y = Rcpp::as<arma::colvec>(data["y"]); // the dependent variable
 arma::mat X = Rcpp::as<arma::mat>(data["X"]); // the design matrix

 // note: we want to return our gradients as row-vector; therefore,
 // we have to transpose the resulting column-vector:
 arma::rowvec gradients = arma::trans(-2.0*X.t() * y + 2.0*X.t()*X*b);

 // other packages, such as glmnet, scale the sse with
 // 1/(2*N), where N is the sample size. We will do that here as well
 gradients *= (.5/y.n_rows);

 return(gradients);
}

// Dirk Eddelbuettel at
// https://gallery.rcpp.org/articles/passing-cpp-function-pointers/
typedef double (*fitFunPtr)(const Rcpp::NumericVector&, //parameters
Rcpp::List& //additional elements

};
typedef Rcpp::XPtr<fitFunPtr> fitFunPtr_t;

typedef arma::rowvec (*gradientFunPtr)(const Rcpp::NumericVector& //parameters
 Rcpp::List& //additional elements
);
typedef Rcpp::XPtr<gradientFunPtr> gradientFunPtr_t;

// [[Rcpp::export]]
fitFunPtr_t fitfunPtr() {
 return(fitFunPtr_t(new fitFunPtr(&fitfunction)));
}

// [[Rcpp::export]]
gradientFunPtr_t gradfunPtr() {
 return(gradientFunPtr_t(new gradientFunPtr(&gradientfunction)));
}

Rcpp::sourceCpp(code = linreg)

ffp <- fitfunPtr()
gfp <- gradfunPtr()

N <- 100 # number of persons
p <- 10 # number of predictors
X <- matrix(rnorm(N*p),nrow = N, ncol = p) # design matrix
b <- c(rep(1,4),
 rep(0,6)) # true regression weights
y <- X%*%matrix(b,ncol = 1) + rnorm(N,0,.2)

data <- list("y" = y,
 "X" = cbind(1,X))
parameters <- rep(0, ncol(data$X))
names(parameters) <- paste0("b", 0:(length(parameters)-1))

l <- gpLspCpp(par = parameters,
 regularized = paste0("b", 1:(length(b)-1)),
 fn = ffp,
 gr = gfp,
 lambdas = seq(0,1,.1),
 thetas = seq(0.1,1,.1),
 additionalArguments = data)

l@parameters
Description

Implements mcp regularization for general purpose optimization problems. The penalty function is given by:

Equation Omitted in Pdf Documentation.

Usage

```r
gpMcp(
  par,
  fn,
  gr = NULL,
  ..., 
  regularized,
  lambdas,
  thetas,
  method = "glmnet",
  control = lessSEM::controlGlmnet()
)
```

Arguments

- `par`: labeled vector with starting values
- `fn`: R function which takes the parameters AND their labels as input and returns the fit value (a single value)
- `gr`: R function which takes the parameters AND their labels as input and returns the gradients of the objective function. If set to NULL, numDeriv will be used to approximate the gradients
- `...`: additional arguments passed to fn and gr
- `regularized`: vector with names of parameters which are to be regularized.
- `lambdas`: numeric vector: values for the tuning parameter lambda
- `thetas`: numeric vector: values for the tuning parameter theta
- `method`: which optimizer should be used? Currently implemented are ista and glmnet.
- `control`: used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.

Details

The interface is similar to that of optim. Users have to supply a vector with starting values (important: This vector must have labels) and a fitting function. This fitting functions must take a labeled vector with parameter values as first argument. The remaining arguments are passed with the ... argument. This is similar to optim.

The gradient function gr is optional. If set to NULL, the numDeriv package will be used to approximate the gradients. Supplying a gradient function can result in considerable speed improvements.

mcp regularization:

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Object of class gpRegularized

Examples

This example shows how to use the optimizers
for other objective functions. We will use
a linear regression as an example. Note that
this is not a useful application of the optimizers
as there are specialized packages for linear regression
(e.g., glmnet)

library(lessSEM)
set.seed(123)

first, we simulate data for our
linear regression.
N <- 100 # number of persons
p <- 10 # number of predictors
X <- matrix(rnorm(N*p),nrow = N, ncol = p) # design matrix
b <- c(rep(1,4),
 rep(0,6)) # true regression weights
y <- X%*%matrix(b,ncol = 1) + rnorm(N,0,.2)

First, we must construct a fitting function
which returns a single value. We will use
the residual sum sum squared as fitting function.
Let's start setting up the fitting function:
fittingFunction <- function(par, y, X, N){
 # par is the parameter vector
 # y is the observed dependent variable
 # X is the design matrix
 # N is the sample size
 pred <- X %*% matrix(par, ncol = 1) # be explicit here:
 # we need par to be a column vector
 sse <- sum((y - pred)^2)
 # we scale with .5/N to get the same results as glmnet
 return((.5/N)*sse)
}

let's define the starting values:
first, let's add an intercept
X <- cbind(1, X)

b <- c(solve(t(X)%*%X)%*%t(X)%*%y) # we will use the lm estimates
names(b) <- paste0("b", 0:(length(b)-1))
names of regularized parameters
regularized <- paste0("b",1:p)

optimize
mcpPen <- gpMcp(par = b,
 regularized = regularized,
 fn = fittingFunction,
 lambdas = seq(0,1,.1),
 thetas = c(1.001, 1.5, 2),
 X = X,
 y = y,
 N = N
)

optional: plot requires plotly package
plot(mcpPen)

Description

Implements mcp regularization for general purpose optimization problems with C++ functions. The penalty function is given by:

Equation Omitted in Pdf Documentation.
Usage

gpMcpCpp(
 par,
 fn,
 gr,
 additionalArguments,
 regularized,
 lambdas,
 thetas,
 method = "glmnet",
 control = lessSEM::controlGlmnet()
)

Arguments

par labeled vector with starting values
fn R function which takes the parameters AND their labels as input and returns the fit value (a single value)
gr R function which takes the parameters AND their labels as input and returns the gradients of the objective function. If set to NULL, numDeriv will be used to approximate the gradients
additionalArguments list with additional arguments passed to fn and gr
regularized vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object
lambdas numeric vector: values for the tuning parameter lambda
thetas numeric vector: values for the tuning parameter theta
method which optimizer should be used? Currently implemented are ista and glmnet.
control used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.

Details

The interface is inspired by optim, but a bit more restrictive. Users have to supply a vector with starting values (important: This vector must have labels), a fitting function, and a gradient function. These fitting functions must take an const Rcpp::NumericVector& with parameter values as first argument and an Rcpp::List& as second argument

mcp regularization:

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Object of class gpRegularized

Examples

This example shows how to use the optimizers
for C++ objective functions. We will use
a linear regression as an example. Note that
this is not a useful application of the optimizers
as there are specialized packages for linear regression
(e.g., glmnet)

library(Rcpp)
library(lessSEM)

linreg <-
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>

// [[Rcpp::export]]
double fitfunction(const Rcpp::NumericVector& parameters, Rcpp::List& data)(
 // extract all required elements:
 arma::colvec b = Rcpp::as<arma::colvec>(parameters);
 arma::colvec y = Rcpp::as<arma::colvec>(data["y"]); // the dependent variable
 arma::mat X = Rcpp::as<arma::mat>(data["X"]); // the design matrix

 // compute the sum of squared errors:
 arma::mat sse = arma::trans(X*b)*(y-X*b);

 // other packages, such as glmnet, scale the sse with
 // 1/(2*N), where N is the sample size. We will do that here as well
 sse *= 1.0/(2.0 * y.n_elem);
// note: We must return a double, but the sse is a matrix
// To get a double, just return the single value that is in
// this matrix:
 return(sse(0,0));
}

// [[Rcpp::export]]
arma::rowvec gradientfunction(const Rcpp::NumericVector& parameters, Rcpp::List& data){
 // extract all required elements:
 arma::colvec b = Rcpp::as<arma::colvec>(parameters);
 arma::colvec y = Rcpp::as<arma::colvec>(data["y"]); // the dependent variable
 arma::mat X = Rcpp::as<arma::mat>(data["X"]); // the design matrix

 // note: we want to return our gradients as row-vector; therefore,
 // we have to transpose the resulting column-vector:
 arma::rowvec gradients = arma::trans(-2.0*X.t() * y + 2.0*X.t()*X*b);

 // other packages, such as glmnet, scale the sse with
 // 1/(2*N), where N is the sample size. We will do that here as well
 gradients *= (.5/y.n_rows);
 return(gradients);
}

// Dirk Eddelbuettel at
// https://gallery.rcpp.org/articles/passing-cpp-function-pointers/
typedef double (*fitFunPtr)(const Rcpp::NumericVector&, //parameters
 Rcpp::List& //additional elements
);
typedef Rcpp::XPtr<fitFunPtr> fitFunPtr_t;

typedef arma::rowvec (*gradientFunPtr)(const Rcpp::NumericVector&, //parameters
 Rcpp::List& //additional elements
);
typedef Rcpp::XPtr<gradientFunPtr> gradientFunPtr_t;

// [[Rcpp::export]]
fitFunPtr_t fitfunPtr() {
 return(fitFunPtr_t(new fitFunPtr(&fitfunction)));
}

// [[Rcpp::export]]
gradientFunPtr_t gradfunPtr() {
 return(gradientFunPtr_t(new gradientFunPtr(&gradientfunction)));
}

Rcpp::sourceCpp(code = linreg)

ffp <- fitfunPtr()
gfp <- gradfunPtr()
N <- 100 # number of persons
p <- 10 # number of predictors
X <- matrix(rnorm(N*p),nrow = N,ncol = p) # design matrix
b <- c(rep(1,4),
 rep(0,6)) # true regression weights
y <- X%*%matrix(b,ncol = 1) + rnorm(N,0,.2)
data <- list("y" = y,
 "X" = cbind(1,X))
parameters <- rep(0, ncol(data$X))
names(parameters) <- paste0("b", 0:(length(parameters)-1))

m <- gpMcpCpp(par = parameters,
 regularized = paste0("b", 1:(length(b)-1)),
 fn = ffp,
 gr = gfp,
 lambdas = seq(0,1,.1),
 thetas = seq(.1,.1,.1),
 additionalArguments = data)

m@parameters

gpRegularized-class

Class for regularized model using general purpose optimization interface

Description

Class for regularized model using general purpose optimization interface

Slots

- **penalty** penalty used (e.g., "lasso")
- **parameters** data.frame with all parameter estimates
- **fits** data.frame with all fit results
- **parameterLabels** character vector with names of all parameters
- **weights** vector with weights given to each of the parameters in the penalty
- **regularized** character vector with names of regularized parameters
- **internalOptimization** list of elements used internally
- **inputArguments** list with elements passed by the user to the general purpose optimizer
Description

Implements ridge regularization for general purpose optimization problems. The penalty function is given by:

\[p(x_j) = \lambda x_j^2 \]

Note that ridge regularization will not set any of the parameters to zero but result in a shrinkage towards zero.

Usage

\[
gpRidge(
 par,
 regularized,
 fn,
 gr = NULL,
 lambdas,
 ...,
 method = "glmnet",
 control = lessSEM::controlGlmnet()
)
\]

Arguments

- **par**: labeled vector with starting values
- **regularized**: vector with names of parameters which are to be regularized.
- **fn**: R function which takes the parameters as input and returns the fit value (a single value)
- **gr**: R function which takes the parameters as input and returns the gradients of the objective function. If set to NULL, numDeriv will be used to approximate the gradients
- **lambdas**: numeric vector: values for the tuning parameter lambda
- **...**: additional arguments passed to fn and gr
- **method**: which optimizer should be used? Currently implemented are ista and glmnet.
- **control**: used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.

Details

The interface is similar to that of optim. Users have to supply a vector with starting values (important: This vector must have labels) and a fitting function. This fitting functions must take a labeled vector with parameter values as first argument. The remaining arguments are passed with the ... argument. This is similar to optim.
The gradient function gr is optional. If set to NULL, the numDeriv package will be used to approximate the gradients. Supplying a gradient function can result in considerable speed improvements.

Ridge regularization:

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Object of class gpRegularized

Examples

```r
# This example shows how to use the optimizers
# for other objective functions. We will use
# a linear regression as an example. Note that
# this is not a useful application of the optimizers
# as there are specialized packages for linear regression
# (e.g., glmnet)

library(lessSEM)
set.seed(123)

# first, we simulate data for our
# linear regression.
N <- 100 # number of persons
p <- 10 # number of predictors
X <- matrix(rnorm(N*p),nrow = N, ncol = p) # design matrix
b <- c(rep(1,4),
       rep(0,6)) # true regression weights
y <- X%*%matrix(b,ncol = 1) + rnorm(N,0,.2)
```
First, we must construct a fitting function
which returns a single value. We will use
the residual sum squared as fitting function.

Let's start setting up the fitting function:
fittingFunction <- function(par, y, X, N){
 # par is the parameter vector
 # y is the observed dependent variable
 # X is the design matrix
 # N is the sample size
 pred <- X %*% matrix(par, ncol = 1) # be explicit here:
 # we need par to be a column vector
 sse <- sum((y - pred)^2)
 # we scale with .5/N to get the same results as glmnet
 return((.5/N)*sse)
}

let's define the starting values:
b <- c(solve(t(X)%*%X)%*%t(X)%*%y) # we will use the lm estimates
names(b) <- paste0("b", 1:length(b)) # names of regularized parameters
regularized <- paste0("b",1:p)

optimize
ridgePen <- gpRidge(par = b,
 regularized = regularized,
 fn = fittingFunction,
 lambdas = seq(0,1,.01),
 X = X,
 y = y,
 N = N
)
plot(ridgePen)

for comparison:
fittingFunction <- function(par, y, X, N, lambda){
pred <- X %*% matrix(par, ncol = 1)
sse <- sum((y - pred)^2)
return((.5/N)*sse + lambda * sum(par^2))
}
#
optim(par = b,
fn = fittingFunction,
y = y,
X = X,
N = N,
lambda = ridgePen@fits$lambda[20],
method = "BFGS")$par
ridgePen@parameters[20,]
Description

Implements ridge regularization for general purpose optimization problems with C++ functions. The penalty function is given by:

\[p(x_j) = \lambda x_j^2 \]

Note that ridge regularization will not set any of the parameters to zero but result in a shrinkage towards zero.

Usage

\[
gpRidgeCpp(par, regularized, fn, gr, lambdas, additionalArguments, method = "glmnet", control = lessSEM::controlGlmnet())
\]

Arguments

- **par**: labeled vector with starting values
- **regularized**: vector with names of parameters which are to be regularized.
- **fn**: R function which takes the parameters as input and returns the fit value (a single value)
- **gr**: R function which takes the parameters as input and returns the gradients of the objective function. If set to NULL, numDeriv will be used to approximate the gradients
- **lambdas**: numeric vector: values for the tuning parameter lambda
- **additionalArguments**: list with additional arguments passed to fn and gr
- **method**: which optimizer should be used? Currently implemented are ista and glmnet.
- **control**: used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.
Details

The interface is inspired by optim, but a bit more restrictive. Users have to supply a vector with starting values (important: This vector must have labels), a fitting function, and a gradient function. These fitting functions must take an const Rcpp::NumericVector& with parameter values as first argument and an Rcpp::List& as second argument.

Ridge regularization:

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Object of class gpRegularized

Examples

```r
# This example shows how to use the optimizers
# for C++ objective functions. We will use
# a linear regression as an example. Note that
# this is not a useful application of the optimizers
# as there are specialized packages for linear regression
# (e.g., glmnet)

library(Rcpp)
library(lessSEM)

linreg <-`
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
```
// [[Rcpp::export]]
double fitfunction(const Rcpp::NumericVector& parameters, Rcpp::List& data){
 arma::colvec b = Rcpp::as<arma::colvec>(parameters);
 arma::colvec y = Rcpp::as<arma::colvec>(data["y"]); // the dependent variable
 arma::mat X = Rcpp::as<arma::mat>(data["X"]); // the design matrix

 // compute the sum of squared errors:
 arma::mat sse = arma::trans(y-X*b)*(y-X*b);
 // other packages, such as glmnet, scale the sse with
 // 1/(2*N), where N is the sample size. We will do that here as well
 sse *= 1.0/(2.0 * y.n_elem);
 // note: We must return a double, but the sse is a matrix
 // To get a double, just return the single value that is in
 // this matrix:
 return(sse(0,0));
}

// [[Rcpp::export]]
arma::rowvec gradientfunction(const Rcpp::NumericVector& parameters, Rcpp::List& data){
 arma::colvec b = Rcpp::as<arma::colvec>(parameters);
 arma::colvec y = Rcpp::as<arma::colvec>(data["y"]); // the dependent variable
 arma::mat X = Rcpp::as<arma::mat>(data["X"]); // the design matrix

 // note: we want to return our gradients as row-vector; therefore,
 // we have to transpose the resulting column-vector:
 arma::rowvec gradients = arma::trans(-2.0*X.t() * y + 2.0*X.t()*X*b);
 // other packages, such as glmnet, scale the sse with
 // 1/(2*N), where N is the sample size. We will do that here as well
 gradients *= (.5/y.n_rows);

 return(gradients);
}

// https://gallery.rcpp.org/articles/passing-cpp-function-pointers/
typedef double (*fitFunPtr)(const Rcpp::NumericVector&, //parameters
 Rcpp::List& //additional elements
);
typedef Rcpp::XPtr<fitFunPtr> fitFunPtr_t;

typedef arma::rowvec (*gradientFunPtr)(const Rcpp::NumericVector&, //parameters
 Rcpp::List& //additional elements
);
typedef Rcpp::XPtr<gradientFunPtr> gradientFunPtr_t;

// [[Rcpp::export]]
fitFunPtr_t fitfunPtr() {
 return(fitFunPtr_t(new fitFunPtr(&fitfunction)));
}

// [[Rcpp::export]]
gradientFunPtr_t gradfunPtr() {
 return(gradientFunPtr_t(new gradientFunPtr(&gradientfunction)));
}

Rcpp::sourceCpp(code = linreg)

ffp <- fitfunPtr()
gfp <- gradfunPtr()

N <- 100 # number of persons
p <- 10 # number of predictors
X <- matrix(rnorm(N*p), nrow = N, ncol = p) # design matrix
b <- c(rep(1,4),
 rep(0,6)) # true regression weights
y <- X%*%matrix(b, ncol = 1) + rnorm(N,0,.2)

data <- list("y" = y,
 "X" = cbind(1,X))
parameters <- rep(0, ncol(data$X))
names(parameters) <- paste0("b", 0:(length(parameters)-1))

r <- gpRidgeCpp(par = parameters,
 regularized = paste0("b", 1:(length(b)-1)),
 fn = ffp,
 gr = gfp,
 lambdas = seq(0,1,.1),
 additionalArguments = data)

r@parameters

descr = "gpScad"
descr

Description

Implements scad regularization for general purpose optimization problems. The penalty function is given by:

Equation Omitted in Pdf Documentation.

Usage

gpScad(
 par,
 ...)
fn,
gr = NULL,
...,
regularized,
lambdas,
thetas,
method = "glmnet",
control = lessSEM::controlGlmnet()

Arguments

par: labeled vector with starting values

fn: R function which takes the parameters AND their labels as input and returns the fit value (a single value)

gr: R function which takes the parameters AND their labels as input and returns the gradients of the objective function. If set to NULL, numDeriv will be used to approximate the gradients

...: additional arguments passed to fn and gr

regularized: vector with names of parameters which are to be regularized.

lambdas: numeric vector: values for the tuning parameter lambda

thetas: numeric vector: values for the tuning parameter theta

method: which optimizer should be used? Currently implemented are ista and glmnet.

control: used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.

Details

The interface is similar to that of optim. Users have to supply a vector with starting values (important: This vector must have labels) and a fitting function. This fitting functions must take a labeled vector with parameter values as first argument. The remaining arguments are passed with the ... argument. This is similar to optim.

The gradient function gr is optional. If set to NULL, the numDeriv package will be used to approximate the gradients. Supplying a gradient function can result in considerable speed improvements.

scad regularization:

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Object of class gpRegularized

Examples

This example shows how to use the optimizers
for other objective functions. We will use
a linear regression as an example. Note that
this is not a useful application of the optimizers
as there are specialized packages for linear regression
(e.g., glmnet)

library(lessSEM)
set.seed(123)

first, we simulate data for our
linear regression.
N <- 100 # number of persons
p <- 10 # number of predictors
X <- matrix(rnorm(N*p),nrow = N, ncol = p) # design matrix
b <- c(rep(1,4),
 rep(0,6)) # true regression weights
y <- X%*%matrix(b,ncol = 1) + rnorm(N,0,.2)

First, we must construct a fitting function
which returns a single value. We will use
the residual sum squared as fitting function.

Let's start setting up the fitting function:
fittingFunction <- function(par, y, X, N){
 # par is the parameter vector
 # y is the observed dependent variable
 # X is the design matrix
 # N is the sample size
 pred <- X %*% matrix(par, ncol = 1) # be explicit here:
 # we need par to be a column vector
 sse <- sum((y - pred)^2)
 # we scale with .5/N to get the same results as glmnet

 sse / (N)
return((.5/N)*sse)
}

let's define the starting values:
first, let's add an intercept
X <- cbind(1, X)

b <- c(solve(t(X)%*%X)%*%t(X)%*%y) # we will use the lm estimates
names(b) <- paste0("b", 0:(length(b)-1)) # names of regularized parameters
regularized <- paste0("b",1:p)

optimize
scadPen <- gpScad(
 par = b,
 regularized = regularized,
 fn = fittingFunction,
 lambdas = seq(0,1,.1),
 thetas = c(2.001, 2.5, 5),
 X = X,
 y = y,
 N = N
)

optional: plot requires plotly package
plot(scadPen)

for comparison
library(ncvreg)
scadFit <- ncvreg(X = X[,-1],
 y = y,
 penalty = "SCAD",
 lambda = scadPen@fits$lambda[15],
 gamma = scadPen@fits$theta[15])
coef(scadFit)
scadPen@parameters[15]

gpScadCpp

gpScadCpp

Description

Implements scad regularization for general purpose optimization problems with C++ functions. The penalty function is given by:

Equation Omitted in Pdf Documentation.

Usage

gpScadCpp(
 par,
fn,
gr,
additionalArguments,
regularized,
lambdas,
thetas,
method = "glmnet",
control = lessSEM::controlGlmnet()
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>par</td>
<td>labeled vector with starting values</td>
</tr>
<tr>
<td>fn</td>
<td>R function which takes the parameters AND their labels as input and returns the fit value (a single value)</td>
</tr>
<tr>
<td>gr</td>
<td>R function which takes the parameters AND their labels as input and returns the gradients of the objective function. If set to NULL, numDeriv will be used to approximate the gradients</td>
</tr>
<tr>
<td>additionalArguments</td>
<td>list with additional arguments passed to fn and gr</td>
</tr>
<tr>
<td>regularized</td>
<td>vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object</td>
</tr>
<tr>
<td>lambdas</td>
<td>numeric vector: values for the tuning parameter lambda</td>
</tr>
<tr>
<td>thetas</td>
<td>numeric vector: values for the tuning parameter theta</td>
</tr>
<tr>
<td>method</td>
<td>which optimizer should be used? Currently implemented are ista and glmnet.</td>
</tr>
<tr>
<td>control</td>
<td>used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.</td>
</tr>
</tbody>
</table>

Details

The interface is inspired by optim, but a bit more restrictive. Users have to supply a vector with starting values (important: This vector must have labels), a fitting function, and a gradient function. These fitting functions must take an const Rcpp::NumericVector& with parameter values as first argument and an Rcpp::List& as second argument.

scad regularization:

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Object of class gpRegularized

Examples

This example shows how to use the optimizers
for C++ objective functions. We will use
a linear regression as an example. Note that
this is not a useful application of the optimizers
as there are specialized packages for linear regression
(e.g., glmnet)

library(Rcpp)
library(lessSEM)

linreg <-
 // [[Rcpp::depends(RcppArmadillo)]]
 #include <RcppArmadillo.h>

 // [[Rcpp::export]]
double fitfunction(const Rcpp::NumericVector& parameters, Rcpp::List& data){
 // extract all required elements:
 arma::colvec b = Rcpp::as<arma::colvec>(parameters);
 arma::colvec y = Rcpp::as<arma::colvec>(data["y"]); // the dependent variable
 arma::mat X = Rcpp::as<arma::mat>(data["X"]); // the design matrix

 // compute the sum of squared errors:
 arma::mat sse = arma::trans(y-X*b)*(y-X*b);

 // other packages, such as glmnet, scale the sse with
 // 1/(2*N), where N is the sample size. We will do that here as well
 sse *= 1.0/(2.0 * y.n_elem);

 // note: We must return a double, but the sse is a matrix
 // To get a double, just return the single value that is in
 // this matrix:
return(sse(0,0));
}

// [[Rcpp::export]]
arma::rowvec gradientfunction(const Rcpp::NumericVector& parameters, Rcpp::List& data){
 // extract all required elements:
 arma::colvec b = Rcpp::as<arma::colvec>(parameters);
 arma::colvec y = Rcpp::as<arma::colvec>(data["y"]); // the dependent variable
 arma::mat X = Rcpp::as<arma::mat>(data["X"]); // the design matrix

 // note: we want to return our gradients as row-vector; therefore,
 // we have to transpose the resulting column-vector:
 arma::rowvec gradients = arma::trans(-2.0*X.t() * y + 2.0*X.t()*X*b);

 // other packages, such as glmnet, scale the sse with
 // 1/(2*N), where N is the sample size. We will do that here as well
 gradients *= .5/y.n_rows;

 return(gradients);
}

// Dirk Eddelbuettel at
// https://gallery.rcpp.org/articles/passing-cpp-function-pointers/
typedef double (*fitFunPtr)(const Rcpp::NumericVector&, //parameters
 Rcpp::List& //additional elements
);
typedef Rcpp::XPtr<fitFunPtr> fitFunPtr_t;

typedef arma::rowvec (*gradientFunPtr)(const Rcpp::NumericVector&, //parameters
 Rcpp::List& //additional elements
);
typedef Rcpp::XPtr<gradientFunPtr> gradientFunPtr_t;

// [[Rcpp::export]]
fitFunPtr_t fitfunPtr() {
 return(fitFunPtr_t(new fitFunPtr(&fitfunction)));
}

// [[Rcpp::export]]
gradientFunPtr_t gradfunPtr() {
 return(gradientFunPtr_t(new gradientFunPtr(&gradientfunction)));
}

Rcpp::sourceCpp(code = linreg)

ffp <- fitfunPtr()
gfp <- gradfunPtr()

N <- 100 # number of persons
p <- 10 # number of predictors
X <- matrix(rnorm(N*p),nrow = N, ncol = p) # design matrix
\[b <- c(\text{rep}(1,4), \text{rep}(0,6)) \] # true regression weights
\[y <- X%*%\text{matrix}(b, \text{ncol} = 1) + \text{rnorm}(N, 0, .2) \]

\[\text{data} <- \text{list}(\text{"y"} = y, \text{"X"} = \text{cbind}(1, X)) \]

\[\text{parameters} <- \text{rep}(0, \text{nrow(data$X)}) \]
\[\text{names(parameters)} <- \text{paste0(} \text{"b", 0: (length(parameters)-1))} \]

\[s <- \text{gpScadCpp(par} = \text{parameters,} \]
\[\quad \text{regularized} = \text{paste0(} \text{"b", 1: (length(b)-1))}, \]
\[\quad \text{fn} = \text{ffp}, \]
\[\quad \text{gr} = \text{gfp}, \]
\[\quad \text{lambdas} = \text{seq}(0, 1,.1), \]
\[\quad \text{thetas} = \text{seq}(2.1, 3,.1), \]
\[\quad \text{additionalArguments} = \text{data}) \]

\[s@\text{parameters} \]

istaCappedL1SEM

cappedL1 optimization with ista

Description

Object for elastic net optimization with ista optimizer

Value

a list with fit results

Fields

- **new** creates a new object. Requires (1) a vector with weights for each parameter and (2) a list with control elements
- **optimize** optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a theta value, a lambda and an alpha value (alpha must be 1).

istaCappedL1SEM

cappedL1 optimization with ista

Description

Object for elastic net optimization with ista optimizer

Value

a list with fit results
istaEnetGeneralPurposeCpp

Fields

- `new` creates a new object. Requires (1) a vector with weights for each parameter and (2) a list with control elements.
- `optimize` optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a theta value, a lambda and an alpha value (alpha must be 1).

istaEnetGeneralPurpose

elastic net optimization with ista

Description

Object for elastic net optimization with ista optimizer

Value

a list with fit results

Fields

- `new` creates a new object. Requires (1) a vector with weights for each parameter and (2) a list with control elements.
- `optimize` optimize the model. Expects a vector with starting values, an R function to compute the fit, an R function to compute the gradients, a list with elements the fit and gradient function require, a lambda and an alpha value.

istaEnetGeneralPurposeCpp

elastic net optimization with ista

Description

Object for elastic net optimization with ista optimizer

Value

a list with fit results

Fields

- `new` creates a new object. Requires (1) a vector with weights for each parameter and (2) a list with control elements.
- `optimize` optimize the model. Expects a vector with starting values, a SEXP function pointer to compute the fit, a SEXP function pointer to compute the gradients, a list with elements the fit and gradient function require, a lambda and an alpha value.
istaEnetMgSEM

elastic net optimization with ista optimizer

Description

Object for elastic net optimization with glmnet optimizer

Value

a list with fit results

Fields

- `new` creates a new object. Requires (1) a vector with weights for each parameter and (2) a list with control elements
- `optimize` optimize the model. Expects a vector with starting values, a SEM of type `SEM_Cpp`, a lambda and an alpha value.

istaEnetSEM

elastic net optimization with ista optimizer

Description

Object for elastic net optimization with glmnet optimizer

Value

a list with fit results

Fields

- `new` creates a new object. Requires (1) a vector with weights for each parameter and (2) a list with control elements
- `optimize` optimize the model. Expects a vector with starting values, a SEM of type `SEM_Cpp`, a lambda and an alpha value.
Description

Object for lsp optimization with ista optimizer

Value

a list with fit results

Fields

new creates a new object. Requires (1) a vector with weights for each parameter and (2) a list with control elements

optimize optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a theta and a lambda value.
Description

Object for mcp optimization with ista optimizer

Value

a list with fit results

Fields

- `new` creates a new object. Requires (1) a vector with weights for each parameter and (2) a list with control elements
- `optimize` optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a theta and a lambda value.
istaMixedPenaltyGeneralPurpose

mixed penalty optimization with ista

Description

Object for elastic net optimization with ista optimizer

Value

a list with fit results

Fields

new creates a new object.
optimize optimize the model.

istaMixedPenaltyGeneralPurposeCpp

mixed penalty optimization with ista

Description

Object for elastic net optimization with ista optimizer

Value

a list with fit results

Fields

new creates a new object. Requires (1) a vector with weights for each parameter, (2) a vector indicating which penalty is used, and (3) a list with control elements

optimize optimize the model.
Description

Object for elastic net optimization with ista optimizer

Value

a list with fit results

Fields

- `new` creates a new object. Requires (1) a vector with weights for each parameter, (2) a vector indicating which penalty is used, and (3) a list with control elements
- `optimize` optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a theta value, a lambda and an alpha value (alpha must be 1).
istaScadSEM
scad optimization with ista

Description

Object for scad optimization with ista optimizer

Value

a list with fit results

Fields

- **new** creates a new object. Requires (1) a vector with weights for each parameter and (2) a list with control elements
- **optimize** optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a theta and a lambda value.

Description

Object for scad optimization with ista optimizer

Value

a list with fit results

Fields

- **new** creates a new object. Requires (1) a vector with weights for each parameter and (2) a list with control elements
- **optimize** optimize the model. Expects a vector with starting values, a SEM of type SEM_Cpp, a theta and a lambda value.
lasso

Description

Implements lasso regularization for structural equation models. The penalty function is given by:

\[p(x_j) = \lambda |x_j| \]

Lasso regularization will set parameters to zero if \(\lambda \) is large enough.

Usage

\[
\text{lasso}(\text{lavaanModel, regularized, lambda = NULL, nLambdas = NULL, reverse = TRUE, curve = 1, method = "glmnet", modifyModel = \text{lessSEM::modifyModel(), control = \text{lessSEM::controlGlmnet()}})}
\]

Arguments

- **lavaanModel**: model of class lavaan
- **regularized**: vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use \text{getLavaanParameters(model)} with your lavaan model object
- **lambda**: numeric vector: values for the tuning parameter lambda
- **nLambdas**: alternative to lambda: If alpha = 1, lessSEM can automatically compute the first lambda value which sets all regularized parameters to zero. It will then generate nLambda values between 0 and the computed lambda.
- **reverse**: if set to TRUE and nLambdas is used, lessSEM will start with the largest lambda and gradually decrease lambda. Otherwise, lessSEM will start with the smallest lambda and gradually increase it.
- **curve**: Allows for unequally spaced lambda steps (e.g., .01,.02,.05,1,5,20). If curve is close to 1 all lambda values will be equally spaced, if curve is large lambda values will be more concentrated close to 0. See \text{?lessSEM::curveLambda} for more information.
- **method**: which optimizer should be used? Currently implemented are ista and glmnet. With ista, the control argument can be used to switch to related procedures (currently gist).
- **modifyModel**: used to modify the lavaanModel. See \text{modifyModel}.
- **control**: used to control the optimizer. This element is generated with the \text{controlIsta} and \text{controlGlmnet} functions. See \text{?controlIsta} and \text{?controlGlmnet} for more details.
Details

Identical to regsem, models are specified using lavaan. Currently, most standard SEM are supported. lessSEM also provides full information maximum likelihood for missing data. To use this functionality, fit your lavaan model with the argument sem(..., missing = 'ml'). lessSEM will then automatically switch to full information maximum likelihood as well.

Lasso regularization:

Regularized SEM

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Model of class regularizedSEM

Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan
package for model specification. The first step
therefore is to implement the model in lavaan.
dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ 1*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
 16*y6 + 17*y7 + 18*y8 + 19*y9 + 110*y10 +
 111*y11 + 112*y12 + 113*y13 + 114*y14 + 115*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
meanstructure = TRUE,
std.lv = TRUE)

Regularization:

lsem <- lasso(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 # names of the regularized parameters:
 regularized = paste0("l", 6:15),
 # in case of lasso and adaptive lasso, we can specify the number of lambda
 # values to use. lessSEM will automatically find lambda_max and fit
 # models for nLambda values between 0 and lambda_max. For the other
 # penalty functions, lambdas must be specified explicitly
 nLambdas = 50)

use the plot-function to plot the regularized parameters:
plot(lsem)

the coefficients can be accessed with:
coef(lsem)
if you are only interested in the estimates and not the tuning parameters, use
coef(lsem)@estimates
or
estimates(lsem)

elements of lsem can be accessed with the @ operator:
lsem@parameters[,]

fit Measures:
fitIndices(lsem)

The best parameters can also be extracted with:
coef(lsem, criterion = "AIC")
or
estimates(lsem, criterion = "AIC")

Advanced
Switching the optimizer
Use the "method" argument to switch the optimizer. The control argument
must also be changed to the corresponding function:
lsemIsta <- lasso(
 lavaanModel = lavaanModel,
 regularized = paste0("l", 6:15),
 nLambdas = 50,
 method = "ista",
 control = controlIsta()
)

Note: The results are basically identical:
lsemIsta@parameters - lsem@parameters

Description

helper function: lslx and lavaan use slightly different parameter labels. This function can be used to get both sets of labels.

Usage

lavaan2lslxLabels(lavaanModel)

Arguments

lavaanModel model of class lavaan

Value

list with lavaan labels and lslx labels

Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan
package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ l1*y1 + l2*y2 + l3*y3 + l4*y4 + l5*y5 +
 l6*y6 + l7*y7 + l8*y8 + l9*y9 + l10*y10 +
 l11*y11 + l12*y12 + l13*y13 + l14*y14 + l15*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
 data = dataset,
 meanstructure = TRUE,"
Description

Creates a lavaan model object from lessSEM (only if possible). Pass either a criterion or a combination of lambda, alpha, and theta.

Usage

```r
lessSEM2Lavaan(
  regularizedSEM,
  criterion = NULL,
  lambda = NULL,
  alpha = NULL,
  theta = NULL
)
```

Arguments

- `regularizedSEM` object created with lessSEM
- `criterion` criterion used for model selection. Currently supported are "AIC" or "BIC"
- `lambda` value for tuning parameter lambda
- `alpha` value for tuning parameter alpha
- `theta` value for tuning parameter theta

Value

lavaan model

Examples

```r
library(lessSEM)

# Identical to regsem, lessSEM builds on the lavaan
# package for model specification. The first step
# therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ 11*Y1 + 12*Y2 + 13*Y3 + 14*Y4 + 15*Y5 +
    16*Y6 + 17*Y7 + 18*Y8 + 19*Y9 + 110*Y10 +
    111*Y11 + 112*Y12 + 113*Y13 + 114*Y14 + 115*Y15
```

std.lv = TRUE)
lavaan2IslxLabels(lavaanModel)
loadings

f <- 1*f

lavaanModel <- lavaan::sem(lavaanSyntax,
 data = dataset,
 meanstructure = TRUE,
 std.lv = TRUE)

Regularization:
regularized <- lasso(lavaanModel,
 regularized = paste0("l", 11:15),
 lambdas = seq(0,1,.1))

using criterion
lessSEM2Lavaan(regularizedSEM = regularized,
 criterion = "AIC")

using tuning parameters (note: we only have to specify the tuning
parameters that are actually used by the penalty function. In case
of lasso, this is lambda):
lessSEM2Lavaan(regularizedSEM = regularized,
 lambda = 1)

loadings(lavaanModel)

loadings

Class for the coefficients estimated by lessSEM.

Description
Class for the coefficients estimated by lessSEM.

Slots
 tuningParameters tuning parameters
 estimates parameter estimates
 transformations transformations of parameters

loadings

Description
Extract the labels of all loadings found in a lavaan model.

Usage
loadings(lavaanModel)
Arguments

lavaanModel fitted lavaan model

Value

vector with parameter labels

Examples

The following is adapted from ?lavaan::sem
library(lessSEM)
model <- '
 # latent variable definitions
 ind60 =~ x1 + x2 + x3
 dem60 =~ y1 + a*y2 + b*y3 + c*y4
 dem65 =~ y5 + a*y6 + b*y7 + c*y8

 # regressions
 dem60 ~ ind60
 dem65 ~ ind60 + dem60

 # residual correlations
 y1 ~~ y5
 y2 ~~ y4 + y6
 y3 ~~ y7
 y4 ~~ y8
 y6 ~~ y8
',

fit <- sem(model, data = PoliticalDemocracy)

loadings(fit)

logicalMatch logicalMatch

Description

Returns the rows for which all elements of a boolean matrix X are equal to the elements in boolean vector x

Usage

logicalMatch(X, x)

Arguments

X matrix with booleans
x vector of booleans
Value

numerical vector with indices of matching rows

Description

logLik

Usage

S4 method for signature 'Rcpp_mgSEM'
logLik(object, ...)

Arguments

object object of class Rcpp_mgSEM
... not used

Value

log-likelihood of the model

Description

logLik

Usage

S4 method for signature 'Rcpp_SEMCpp'
logLik(object, ...)

Arguments

object object of class Rcpp_SEMCpp
... not used

Value

log-likelihood of the model
logLikelihood-class

Class for log-likelihood of regularized SEM. Note: we define a custom logLik - Function because the generic one is using df = number of parameters which might be confusing.

Description

Class for log-likelihood of regularized SEM. Note: we define a custom logLik - Function because the generic one is using df = number of parameters which might be confusing.

Slots

logLik log-Likelihood

nParameters number of parameters in the model

N number of persons in the data set

lsp

lsp

Description

Implements lsp regularization for structural equation models. The penalty function is given by:

\[p(x_j) = \lambda \log(1 + |x_j|/\theta) \]

where \(\theta > 0 \).

Usage

lsp(
 lavaanModel,
 regularized,
 lambdas,
 thetas,
 modifyModel = lessSEM::modifyModel(),
 method = "glmnet",
 control = lessSEM::controlGlrmnet()
)
Arguments

lavaanModel model of class lavaan
regularized vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object
lambdas numeric vector: values for the tuning parameter lambda
thetas parameters whose absolute value is above this threshold will be penalized with a constant (theta)
modifyModel used to modify the lavaanModel. See ?modifyModel.
method which optimizer should be used? Currently implemented are ista and glmnet. With ista, the control argument can be used to switch to related procedures
control used to control the optimizer. This element is generated with the controlIsta (see ?controlIsta)

Details

Identical to regsem, models are specified using lavaan. Currently, most standard SEM are supported. lessSEM also provides full information maximum likelihood for missing data. To use this functionality, fit your lavaan model with the argument sem(..., missing = 'ml'). lessSEM will then automatically switch to full information maximum likelihood as well.

lsp regularization:

Regularized SEM

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Model of class regularizedSEM

Examples

```r
library(lessSEM)

# Identical to regsem, lessSEM builds on the lavaan package for model specification. The first step
# therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ 11*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
   16*y6 + 17*y7 + 18*y8 + 19*y9 + 110*y10 +
   111*y11 + 112*y12 + 113*y13 + 114*y14 + 115*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
meanstructure = TRUE,
std.lv = TRUE)

# Regularization:

lsem <- lsp(
# pass the fitted lavaan model
lavaanModel = lavaanModel,
# names of the regularized parameters:
regularized = paste0("l", 6:15),
lambdas = seq(0,1,length.out = 20),
thetas = seq(0.01,2,length.out = 5))

# the coefficients can be accessed with:
coef(lsem)
# if you are only interested in the estimates and not the tuning parameters, use
coef(lsem)@estimates
# or
estimates(lsem)

# elements of lsem can be accessed with the @ operator:
lsem@parameters[1,]
```
Description

This function helps you create the pointers necessary to use the Cpp interface.

Usage

```r
makePtrs(fitFunName, gradFunName)
```

Arguments

- `fitFunName`: name of your C++ fit function (IMPORTANT: This must be the name used in C++)
- `gradFunName`: name of your C++ gradient function (IMPORTANT: This must be the name used in C++)

Value

A string which can be copied in the C++ function to create the pointers.

Examples

```r
# see vignette("General-Purpose-Optimization", package = "lessSEM") for an example
```
Description

Implements mcp regularization for structural equation models. The penalty function is given by:

Equation Omitted in Pdf Documentation.

Usage

mcp(
 lavaanModel,
 regularized,
 lambdas,
 thetas,
 modifyModel = lessSEM::modifyModel(),
 method = "ista",
 control = lessSEM::controlIsta()
)

Arguments

lavaanModel model of class lavaan
regularized vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object
lambdas numeric vector: values for the tuning parameter lambda
thetas parameters whose absolute value is above this threshold will be penalized with a constant (theta)
modifyModel used to modify the lavaanModel. See ?modifyModel.
method which optimizer should be used? Currently implemented are ista and glmnet. With ista, the control argument can be used to switch to related procedures (currently gist).
control used to control the optimizer. This element is generated with the controlIsta (see ?controlIsta)

Details

Identical to regsem, models are specified using lavaan. Currently, most standard SEM are supported. lessSEM also provides full information maximum likelihood for missing data. To use this functionality, fit your lavaan model with the argument sem(..., missing = 'ml'). lessSEM will then automatically switch to full information maximum likelihood as well.

In our experience, the glmnet optimizer can run in issues with the mcp penalty. Therefore, we default to using ista.

mcp regularization:

Regularized SEM

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Model of class regularizedSEM

Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan
package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ 1*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
16*y6 + 17*y7 + 18*y8 + 19*y9 + 110*y10 +
111*y11 + 112*y12 + 113*y13 + 114*y14 + 115*y15
f =~ 1*f
"

mcpPenalty_C

Description
mcpPenalty_C

Usage
mcpPenalty_C(par, lambda_p, theta)
Arguments

- par: single parameter value
- lambda_p: lambda value for this parameter
- theta: theta value for this parameter

Value

penalty value

mgSEM

mgSEM class

Description

internal mgSEM representation

Fields

- new: Creates a new mgSEM.
- addModel: add a model. Expects Rcpp::List
- addTransformation: adds transformations to a model
- implied: Computes implied means and covariance matrix
- fit: Fits the model. Returns objective value of the fitting function
- getParameters: Returns a data frame with model parameters.
- getParameterLabels: Returns a vector with unique parameter labels as used internally.
- getEstimator: Returns a vector with names of the estimators used in the submodels.
- getGradients: Returns a matrix with scores.
- getScores: Returns a matrix with scores. Not yet implemented
- getHessian: Returns the hessian of the model. Expects the labels of the parameters and the values of the parameters as well as a boolean indicating if these are raw. Finally, a double (eps) controls the precision of the approximation.
- computeTransformations: compute the transformations.
- setTransformationGradientStepSize: change the step size of the gradient computation for the transformations.
mixedPenalty

Description

Provides possibility to impose different penalties on different parameters.

Usage

mixedPenalty(
 lavaanModel,
 modifyModel = lessSEM::modifyModel(),
 method = "glmnet",
 control = lessSEM::controlGlmnet()
)

Arguments

lavaanModel model of class lavaan
modifyModel used to modify the lavaanModel. See ?modifyModel.
method which optimizer should be used? Currently supported are "glmnet" and "ista".
control used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.

Details

The mixedPenalty function allows you to add multiple penalties to a single model. For instance, you may want to regularize both loadings and regressions in a SEM. In this case, using the same penalty (e.g., lasso) for both types of penalties may actually not be what you want to use because the penalty function is sensitive to the scales of the parameters. Instead, you may want to use two separate lasso penalties for loadings and regressions. Similarly, separate penalties for different parameters have, for instance, been proposed in multi-group models (Geminiani et al., 2021).

Identical to regsem, models are specified using lavaan. Currently, most standard SEM are supported. lessSEM also provides full information maximum likelihood for missing data. To use this functionality, fit your lavaan model with the argument sem(..., missing = 'ml'). lessSEM will then automatically switch to full information maximum likelihood as well. Models are fitted with the glmnet or ista optimizer. Note that the optimizers differ in which penalties they support. The following table provides an overview:

<table>
<thead>
<tr>
<th>Penalty</th>
<th>Function</th>
<th>glmnet</th>
<th>ista</th>
</tr>
</thead>
<tbody>
<tr>
<td>lasso</td>
<td>addLasso</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>elastic</td>
<td>addElastic</td>
<td>x*</td>
<td>-</td>
</tr>
<tr>
<td>cappedL1</td>
<td>addCappedL1</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>lsp</td>
<td>addLsp</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>scad</td>
<td>addScad</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>mcp</td>
<td>addMcp</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
By default, glmnet will be used. Note that the elastic net penalty can only be combined with other elastic net penalties.

Check vignette(topic = "Mixed-Penalties", package = "lessSEM") for more details.

Regularized SEM

For more details on ISTA, see:

Value

Model of class regularizedSEM

Examples

```r
library(lessSEM)

# Identical to regsem, lessSEM builds on the lavaan
# package for model specification. The first step
# therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
  f =~ 11*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
    16*y6 + 17*y7 + 18*y8 + 19*y9 + 20*y10 +
    21*y11 + 22*y12 + 23*y13 + 24*y14 + 25*y15
  f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
                          data = dataset,
                          meanstructure = TRUE,
                          std.lv = TRUE)
```

Regularization:

In this example, we want to regularize the loadings l6-l10
independently of the loadings l11-15. This could, for instance,
reflect that the items y6-y10 and y11-y15 may belong to different
subscales.

regularized <- lavaanModel |>
create template for regularized model with mixed penalty:
mixedPenalty() |>
add lasso penalty on loadings l6 - l10:
addLasso(regularized = paste0("l", 6:10),
 lambdas = seq(0,1,length.out = 4)) |>
add scad penalty on loadings l11 - l15:
addScad(regularized = paste0("l", 11:15),
 lambdas = seq(0,1,length.out = 3),
 thetas = 3.1) |>
fit the model:
fit()

elements of regularized can be accessed with the @ operator:
regularized@parameters[1,]

AIC and BIC:
AIC(regularized)
BIC(regularized)

The best parameters can also be extracted with:
coef(regularized, criterion = "AIC")
coef(regularized, criterion = "BIC")

The tuningParameterConfiguration corresponds to the rows
in the lambda, theta, and alpha matrices in regularized@tuningParameterConfigurations.
Configuration 3, for example, is given by
regularized@tuningParameterConfigurations$lambda[3,]
regularized@tuningParameterConfigurations$theta[3,]
regularized@tuningParameterConfigurations$alpha[3,]
Note that lambda, theta, and alpha may correspond to tuning parameters
of different penalties for different parameters (e.g., lambda for l6 is the lambda
of the lasso penalty, while lambda for l12 is the lambda of the scad penalty).

modifyModel

Description

Modify the model from lavaan to fit your needs
newTau

Usage

modifyModel(
 addMeans = FALSE,
 activeSet = NULL,
 dataSet = NULL,
 transformations = NULL,
 transformationList = list(),
 transformationGradientStepSize = 1e-06
)

Arguments

addMeans If lavaanModel has meanstructure = FALSE, addMeans = TRUE will add a mean structure. FALSE will set the means of the observed variables to their observed means.
activeSet Option to only use a subset of the individuals in the data set. Logical vector of length N indicating which subjects should remain in the sample.
dataSet option to replace the data set in the lavaan model with a different data set. Can be useful for cross-validation
transformations allows for transformations of parameters - useful for measurement invariance tests etc.
transformationList optional list used within the transformations. NOTE: This must be used as an Rcpp::List.
transformationGradientStepSize step size used to compute the gradients of the transformations

Value

Object of class modifyModel

Examples

modification <- modifyModel(addMeans = TRUE) # adds intercepts to a lavaan object
that was fitted without explicit intercepts

newTau

Description

assign new value to parameter tau used by approximate optimization. Any regularized value below tau will be evaluated as zeroed which directly impacts the AIC, BIC, etc.
Usage

newTau(regularizedSEM, tau)

Arguments

regularizedSEM object fitted with approximate optimization
tau new tau value

Value

regularizedSEM, but with new regularizedSEM@fits$nonZeroParameters

Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan
package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <-
 "f =~ l1*y1 + l2*y2 + l3*y3 + l4*y4 + l5*y5 +
 l6*y6 + l7*y7 + l8*y8 + l9*y9 + l10*y10 +
 l11*y11 + l12*y12 + l13*y13 + l14*y14 + l15*y15
 f ~~ 1*f"

lavaanModel <- lavaan::sem(lavaanSyntax,
 data = dataset,
 meanstructure = TRUE,
 std.lv = TRUE)

Regularization:

lsem <- smoothLasso(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 # names of the regularized parameters:
 regularized = paste0("l", 6:15),
 epsilon = 1e-10,
 tau = 1e-4,
 lambdas = seq(0,1,length.out = 50)
)
	newTau(regularizedSEM = lsem, tau = .1)
Description
plots the cross-validation fits

Usage
S4 method for signature 'cvRegularizedSEM,missing'
plot(x, y, ...)

Arguments
- x: object of class cvRegularizedSEM
- y: not used
- ... not used

Value
either an object of ggplot2 or of plotly

Description
plots the regularized and unregularized parameters for all levels of lambda

Usage
S4 method for signature 'gpRegularized,missing'
plot(x, y, ...)

Arguments
- x: object of class gpRegularized
- y: not used
- ... use regularizedOnly=FALSE to plot all parameters

Value
either an object of ggplot2 or of plotly
Description
plots the regularized and unregularized parameters for all levels of lambda

Usage
S4 method for signature 'regularizedSEM,missing'
plot(x, y, ...)

Arguments
x object of class gpRegularized
y not used
... use regularizedOnly=FALSE to plot all parameters

Value
either an object of ggplot2 or of plotly

Description
plots the regularized and unregularized parameters for all levels of the tuning parameters

Usage
S4 method for signature 'stabSel,missing'
plot(x, y, ...)

Arguments
x object of class stabSel
y not used
... use regularizedOnly=FALSE to plot all parameters

Value
either an object of ggplot2 or of plotly
Description

Extract the labels of all regressions found in a lavaan model.

Usage

regressions(lavaanModel)

Arguments

lavaanModel fitted lavaan model

Value

vector with parameter labels

Examples

The following is adapted from ?lavaan::sem
library(lessSEM)
model <- ' # latent variable definitions
 ind60 =~ x1 + x2 + x3
 dem60 =~ y1 + a*y2 + b*y3 + c*y4
 dem65 =~ y5 + a*y6 + b*y7 + c*y8

 # regressions
 dem60 ~ ind60
 dem65 ~ ind60 + dem60

 # residual correlations
 y1 ~~ y5
 y2 ~~ y4 + y6
 y3 ~~ y7
 y4 ~~ y8
 y6 ~~ y8
',

fit <- sem(model, data = PoliticalDemocracy)

regressions(fit)
Description

helper function: regsem and lavaan use slightly different parameter labels. This function can be used to translate the parameter labels of a cv_regsem object to lavaan labels

Usage

regsem2LavaanParameters(regsemModel, lavaanModel)

Arguments

regsemModel model of class regsem
lavaanModel model of class lavaan

Value

regsem parameters with lavaan labels

Examples

The following is adapted from ?regsem::regsem.
#library(lessSEM)
#library(regsem)
put variables on same scale for regsem
#HS <- data.frame(scale(HolzingerSwineford1939[,7:15]))
#
#mod <- '
#f <- 1*x1 + 11*x2 + 12*x3 + 13*x4 + 14*x5 + 15*x6 + 16*x7 + 17*x8 + 18*x9
#'
Recommended to specify meanstructure in lavaan
#lavaanModel <- cfa(mod, HS, meanstructure=TRUE)
#
#regsemModel <- regsem(lavaanModel,
lambda = 0.3,
gradFun = "ram",
type="lasso",
pars_pen=c("11", "12", "16", "17", "18"))
#regsem2LavaanParameters(regsemModel = regsemModel,
lavaanModel = lavaanModel)
regularizedSEM-class

Class for regularized SEM

Slots

- penalty: penalty used (e.g., "lasso")
- parameters: data.frame with parameter estimates
- fits: data.frame with all fit results
- parameterLabels: character vector with names of all parameters
- weights: vector with weights given to each of the parameters in the penalty
- regularized: character vector with names of regularized parameters
- transformations: if the model has transformations, the transformed parameters are returned
- internalOptimization: list of elements used internally
- inputArguments: list with elements passed by the user to the general
- notes: internal notes that have come up when fitting the model

regularizedSEMMixedPenalty-class

Class for regularized SEM

Description

Class for regularized SEM

Slots

- penalty: penalty used (e.g., "lasso")
- tuningParameterConfigurations: list with settings for the lambda, theta, and alpha tuning parameters.
- parameters: data.frame with parameter estimates
- fits: data.frame with all fit results
- parameterLabels: character vector with names of all parameters
- weights: vector with weights given to each of the parameters in the penalty
- regularized: character vector with names of regularized parameters
- transformations: if the model has transformations, the transformed parameters are returned
- internalOptimization: list of elements used internally
- inputArguments: list with elements passed by the user to the general
- notes: internal notes that have come up when fitting the model
Description

Implements ridge regularization for structural equation models. The penalty function is given by:

\[p(x_j) = \lambda x_j^2 \]

Note that ridge regularization will not set any of the parameters to zero but result in a shrinkage towards zero.

Usage

```r
ridge(
  lavaanModel,  # model of class lavaan
  regularized,  # vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object
  lambdas,      # numeric vector: values for the tuning parameter lambda
  method = "glmnet",  # which optimizer should be used? Currently implemented are ista and glmnet. With ista, the control argument can be used to switch to related procedures (currently gist).
  modifyModel = lessSEM::modifyModel(),  # used to modify the lavaanModel. See ?modifyModel.
  control = lessSEM::controlGlmnet()  # used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.
)
```

Arguments

- `lavaanModel`: model of class lavaan
- `regularized`: vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use `getLavaanParameters(model)` with your lavaan model object
- `lambdas`: numeric vector: values for the tuning parameter lambda
- `method`: which optimizer should be used? Currently implemented are ista and glmnet. With ista, the control argument can be used to switch to related procedures (currently gist).
- `modifyModel`: used to modify the lavaanModel. See ?modifyModel.
- `control`: used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.

Details

Identical to `regsem`, models are specified using `lavaan`. Currently, most standard SEM are supported. lessSEM also provides full information maximum likelihood for missing data. To use this functionality, fit your `lavaan` model with the argument `sem(..., missing = 'ml')`. lessSEM will then automatically switch to full information maximum likelihood as well.

Ridge regularization:

Regularized SEM

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Model of class regularizedSEM

Examples

```r
library(lessSEM)

# Identical to regsem, lessSEM builds on the lavaan # package for model specification. The first step # therefore is to implement the model in lavaan.

dataset <- simulateExampleData()
lavaanSyntax <- "
f =~ 11*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
    16*y6 + 17*y7 + 18*y8 + 19*y9 + 110*y10 +
    111*y11 + 112*y12 + 113*y13 + 114*y14 + 115*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
)
```
Regularization:

lsem <- ridge(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 # names of the regularized parameters:
 regularized = paste0("l", 6:15),
 lambdas = seq(0,1,length.out = 20))

use the plot-function to plot the regularized parameters:
plot(lsem)

the coefficients can be accessed with:
coef(lsem)

elements of lsem can be accessed with the @ operator:
lsem@parameters[1,]

Advanced

Switching the optimizer
Use the "method" argument to switch the optimizer. The control argument
must also be changed to the corresponding function:
lsemIsta <- ridge(
 lavaanModel = lavaanModel,
 regularized = paste0("l", 6:15),
 lambdas = seq(0,1,length.out = 20),
 method = "ista",
 control = controlIsta())

Note: The results are basically identical:
lsemIsta@parameters - lsem@parameters

Description

This function allows for regularization of models built in lavaan with the ridge penalty. Its elements can be accessed with the "@" operator (see examples).

Usage

ridgeBfgs(
 lavaanModel,
 regularized,
 lambdas = NULL,
modifyModel = lessSEM::modifyModel(),
control = lessSEM::controlBFGS()
)

Arguments

lavaanModel model of class lavaan
regularized vector with names of parameters which are to be regularized. If you are unsure
what these parameters are called, use getLavaanParameters(model) with your
lavaan model object
lambdas numeric vector: values for the tuning parameter lambda
modifyModel used to modify the lavaanModel. See ?modifyModel.
control used to control the optimizer. This element is generated with the controlBFGS
function. See ?controlBFGS for more details.

Details

For more details, see:

Value

Model of class regularizedSEM

Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan
package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()
\[
lavaanSyntax <- "
f <- 11*x1 + 12*y2 + 13*x3 + 14*y4 + 15*x5 +
16*x6 + 17*y7 + 18*x8 + 19*y9 + 110*x10 +
111*x11 + 112*y12 + 113*x13 + 114*y14 + 115*x15
f <- 1*f
"
\]

lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
meanstructure = TRUE,
std.lv = TRUE)
Regularization:

names of the regularized parameters:
regularized = paste0("l", 6:15)

lsem <- ridgeBfgs(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 regularized = regularized,
 lambdas = seq(0,1,length.out = 50))

plot(lsem)

the coefficients can be accessed with:
coef(lsem)

elements of lsem can be accessed with the @ operator:
lsem@parameters[1,]

Description

Implements scad regularization for structural equation models. The penalty function is given by:

Equation Omitted in Pdf Documentation.

Usage

```r
scad(
    lavaanModel,
    regularized,
    lambdas,
    thetas,
    modifyModel = lessSEM::modifyModel(),
    method = "glmnet",
    control = lessSEM::controlGlmnet()
)
```

Arguments

- `lavaanModel` model of class lavaan
- `regularized` vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use `getLavaanParameters(model)` with your lavaan model object
- `lambdas` numeric vector: values for the tuning parameter lambda
thetas parameters whose absolute value is above this threshold will be penalized with a constant (theta)

modifyModel used to modify the lavaanModel. See ?modifyModel.

method which optimizer should be used? Currently implemented are ista and glmnet. With ista, the control argument can be used to switch to related procedures (currently gist).

control used to control the optimizer. This element is generated with the controlIsta (see ?controlIsta)

Details

Identical to regsem, models are specified using lavaan. Currently, most standard SEM are supported. lessSEM also provides full information maximum likelihood for missing data. To use this functionality, fit your lavaan model with the argument sem(..., missing = 'ml'). lessSEM will then automatically switch to full information maximum likelihood as well.

scad regularization:

Regularized SEM

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Model of class regularizedSEM

Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan
package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ l1*y1 + l2*y2 + l3*y3 + l4*y4 + l5*y5 +
 l6*y6 + l7*y7 + l8*y8 + l9*y9 + l10*y10 +
 l11*y11 + l12*y12 + l13*y13 + l14*y14 + l15*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
 meanstructure = TRUE,
 std.lv = TRUE)

Regularization:

lsem <- scad(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 # names of the regularized parameters:
 regularized = paste0("l", 6:15),
 lambdas = seq(0,1,length.out = 20),
 thetas = seq(2.01,5,length.out = 5))

the coefficients can be accessed with:
coef(lsem)

if you are only interested in the estimates and not the tuning parameters, use
coef(lsem)@estimates
or
estimates(lsem)

elements of lsem can be accessed with the @ operator:
lsem@parameters[1,]

fit Measures:
fitIndices(lsem)

The best parameters can also be extracted with:
coef(lsem, criterion = "AIC")
or
estimates(lsem, criterion = "AIC")
optional: plotting the paths requires installation of plotly
plot(lsem)

scadPenalty_C(scadPenalty_C

Description
scadPenalty_C

Usage
scadPenalty_C(par, lambda_p, theta)

Arguments
- **par** single parameter value
- **lambda_p** lambda value for this parameter
- **theta** theta value for this parameter

Value
penalty value

SEMCpp

Description
internal SEM representation

Fields
- **new** Creates a new SEMCpp.
- **fill** fills the SEM with the elements from an Rcpp::List
- **addTransformation** adds transformation to a model
- **implied** Computes implied means and covariance matrix
- **fit** Fits the model. Returns objective value of the fitting function
- **getParameters** Returns a data frame with model parameters.
- **getEstimator** returns the estimator used in the model (e.g., fiml)
- **getParameterLabels** Returns a vector with unique parameter labels as used internally.
getGradients Returns a matrix with scores.
getScores Returns a matrix with scores.
getHessian Returns the hessian of the model. Expects the labels of the parameters and the values of the parameters as well as a boolean indicating if these are raw. Finally, a double (eps) controls the precision of the approximation.
computeTransformations compute the transformations.
setTransformationGradientStepSize change the step size of the gradient computation for the transformations.

show, cvRegularizedSEM-method

Show method for objects of class cvRegularizedSEM.

Description

Show method for objects of class cvRegularizedSEM.

Usage

```r
## S4 method for signature 'cvRegularizedSEM'
show(object)
```

Arguments

- `object`: object of class cvRegularizedSEM

Value

No return value, just prints estimates

show, gpRegularized-method

show

Description

show

Usage

```r
## S4 method for signature 'gpRegularized'
show(object)
```

Arguments

- `object`: object of class gpRegularized
show.logLikelihood-method

Value

No return value, just prints estimates

description

show

Usage

S4 method for signature 'logLikelihood'
show(object)

Arguments

object object of class logLikelihood

Value

No return value, just prints estimates

description

show

Usage

S4 method for signature 'logLikelihood'
show(object)

Arguments

object object of class logLikelihood

Value

No return value, just prints estimates
Description
show

Usage
```r
## S4 method for signature 'Rcpp_mgSEM'
show(object)
```

Arguments
- `object`: object of class `Rcpp_mgSEM`

Value
No return value, just prints estimates

Description
show

Usage
```r
## S4 method for signature 'Rcpp_SEMCpp'
show(object)
```

Arguments
- `object`: object of class `Rcpp_SEMCpp`

Value
No return value, just prints estimates
show,regularizedSEM-method

Description
show

Usage
```r
## S4 method for signature 'regularizedSEM'
show(object)
```

Arguments
- `object` object of class regularizedSEM

Value
No return value, just prints estimates

show,regularizedSEMMixedPenalty-method

Description
show

Usage
```r
## S4 method for signature 'regularizedSEMMixedPenalty'
show(object)
```

Arguments
- `object` object of class regularizedSEM

Value
No return value, just prints estimates
show, stabSel-method

Description

show

Usage

```r
## S4 method for signature 'stabSel'
show(object)
```

Arguments

- `object` object of class stabSel

Value

No return value, just prints estimates

simulateExampleData

Description

simulate data for a simple CFA model

Usage

```r
simulateExampleData(
  N = 100,
  loadings = c(rep(1, 5), rep(0.4, 5), rep(0, 5)),
  percentMissing = 0
)
```

Arguments

- `N` number of persons in the data set
- `loadings` loadings of the latent variable on the manifest observations
- `percentMissing` percentage of missing data

Value

data set for a single-factor CFA.

Examples

```r
y <- lessSEM::simulateExampleData()
```
smoothAdaptiveLasso

Description

This function allows for regularization of models built in lavaan with the smooth adaptive lasso penalty. The returned object is an S4 class; its elements can be accessed with the "@" operator (see examples).

Usage

smoothAdaptiveLasso(
 lavaanModel,
 regularized,
 weights = NULL,
 lambdas,
 epsilon,
 tau,
 modifyModel = lessSEM::modifyModel(),
 control = lessSEM::controlBFGS()
)

Arguments

lavaanModel model of class lavaan
regularized vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object
weights labeled vector with weights for each of the parameters in the model. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object. If set to NULL, the default weights will be used: the inverse of the absolute values of the unregularized parameter estimates
lambdas numeric vector: values for the tuning parameter lambda
epsilon epsilon > 0; controls the smoothness of the approximation. Larger values = smoother
tau parameters below threshold tau will be seen as zeroed
modifyModel used to modify the lavaanModel. See ?modifyModel.
control used to control the optimizer. This element is generated with the controlBFGS function. See ?controlBFGS for more details.

Details

For more details, see:

Value

Model of class regularizedSEM

Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan
package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ 1*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
 16*y6 + 17*y7 + 18*y8 + 19*y9 + 110*y10 +
 111*y11 + 112*y12 + 113*y13 + 114*y14 + 115*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
meanstructure = TRUE,
std.lv = TRUE)

Regularization:
names of the regularized parameters:
regularized = paste0("l", 6:15)

define adaptive lasso weights:
We use the inverse of the absolute unregularized parameters
(this is the default in adaptiveLasso and can also specified
by setting weights = NULL)
weights <- 1/abs(getLavaanParameters(lavaanModel))
weights[!names(weights) %in% regularized] <- 0

lsem <- smoothAdaptiveLasso(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 regularized = regularized,
 weights = weights,
 epsilon = 1e-10,
 tau = 1e-4,
 lambdas = seq(0,1,length.out = 50))
use the plot-function to plot the regularized parameters:
plot(lsem)

the coefficients can be accessed with:
coef(lsem)

elements of lsem can be accessed with the @ operator:
lsem@parameters[1,]

AIC and BIC:
AIC(lsem)
BIC(lsem)

The best parameters can also be extracted with:
coef(lsem, criterion = "AIC")
coef(lsem, criterion = "BIC")

smoothElasticNet

smoothElasticNet

Description

This function allows for regularization of models built in lavaan with the smooth elastic net penalty. Its elements can be accessed with the "@" operator (see examples).

Usage

```r
smoothElasticNet(
  lavaanModel, regularized, lambdas = NULL, nLambdas = NULL, alphas, epsilon, tau, modifyModel = lessSEM::modifyModel(), control = lessSEM::controlBFGS()
)
```

Arguments

- `lavaanModel`: model of class lavaan
- `regularized`: vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use `getLavaanParameters(model)` with your lavaan model object
- `lambdas`: numeric vector: values for the tuning parameter lambda
smoothElasticNet

nLambdas alternative to lambda: If alpha = 1, lessSEM can automatically compute the first lambda value which sets all regularized parameters to zero. It will then generate nLambda values between 0 and the computed lambda.

alphas numeric vector with values of the tuning parameter alpha. Must be between 0 and 1. 0 = ridge, 1 = lasso.

epsilon > 0; controls the smoothness of the approximation. Larger values = smoother

tau parameters below threshold tau will be seen as zeroed

modifyModel used to modify the lavaanModel. See ?modifyModel.

control used to control the optimizer. This element is generated with the controlBFGS function. See ?controlBFGS for more details.

Details

For more details, see:

Value

Model of class regularizedSEM

Examples

```r
library(lessSEM)

# Identical to regsem, lessSEM builds on the lavaan
# package for model specification. The first step
# therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ 11*y1 + 12*y2 + 13*y3 + 14*y4 + 15*y5 +
   16*y6 + 17*y7 + 18*y8 + 19*y9 + 20*y10 +
   21*y11 + 22*y12 + 23*y13 + 24*y14 + 25*y15
f ~~ %*%f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
   data = dataset,
   meanstructure = TRUE,
   control = controlBFGS)
```

std.lv = TRUE)

Regularization:
names of the regularized parameters:
regularized = paste0("l", 6:15)

lsem <- smoothElasticNet(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 regularized = regularized,
 epsilon = 1e-10,
 tau = 1e-4,
 lambdas = seq(0,1,length.out = 5),
 alphas = seq(0,1,length.out = 3))

the coefficients can be accessed with:
coef(lsem)

elements of lsem can be accessed with the @ operator:
lsem@parameters[1,]

smoothLasso

Description

This function allows for regularization of models built in lavaan with the smoothed lasso penalty. The returned object is an S4 class; its elements can be accessed with the "@" operator (see examples). We don’t recommend using this function. Use lasso() instead.

Usage

smoothLasso(
 lavaanModel, regularized, lambdas, epsilon, tau,
 modifyModel = lessSEM::modifyModel(), control = lessSEM::controlBFGS()
)

Arguments

lavaanModel model of class lavaan
regularized vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object
smoothLasso

lambda: numeric vector: values for the tuning parameter lambda
epsilon: epsilon > 0; controls the smoothness of the approximation. Larger values = smoother
tau: parameters below threshold tau will be seen as zeroed
modifyModel: used to modify the lavaanModel. See ?modifyModel.
control: used to control the optimizer. This element is generated with the controlBFGS function. See ?controlBFGS for more details.

Details

For more details, see:

Value

Model of class regularizedSEM

Examples

library(lessSEM)

Identical to regsem, lessSEM builds on the lavaan package for model specification. The first step
therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ \text{1} * y_1 + \text{12} * y_2 + \text{13} * y_3 + \text{14} * y_4 + \text{15} * y_5 +
\text{16} * y_6 + \text{17} * y_7 + \text{18} * y_8 + \text{19} * y_9 + \text{110} * y_{10} +
\text{111} * y_{11} + \text{112} * y_{12} + \text{113} * y_{13} + \text{114} * y_{14} + \text{115} * y_{15}
f ~~ \text{1} * \text{f}
"

lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
meanstructure = TRUE,
std.lv = TRUE)

Regularization:

lsem <- smoothLasso(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 # names of the regularized parameters:
stabilitySelection

Description

Provides rudimentary stability selection for regularized SEM. Stability selection has been proposed by Meinshausen & Bühlmann (2010) and was extended to SEM by Li & Jacobucci (2021). The problem that stability selection tries to solve is the instability of regularization procedures: Small changes in the data set may result in different parameters being selected. To address this issue, stability selection uses random subsamples from the initial data set and fits models in these subsamples. For each parameter, we can now check how often it is included in the model for a given set of tuning parameters. Plotting these probabilities can provide an overview over which of the parameters are often removed and which remain in the model most of the time. To get a final selection, a threshold t can be defined: If a parameter is in the model t% of the time, it is retained.

Usage

stabilitySelection(
 modelSpecification,
 subsampleSize,
 numberOfSubsamples = 100,
 threshold = 70,
 maxTries = 10 * numberOfSubsamples
)
Arguments

- **modelSpecification**
 a call to one of the penalty functions in lessSEM. See examples for details
- **subsampleSize**
 number of subjects in each subsample. Must be smaller than the number of subjects in the original data set
- **numberOfSubsamples**
 number of times the procedure should subsample and recompute the model. According to Meinshausen & Bühlmann (2010), 100 seems to work quite well and is also the default in regsem
- **threshold**
 percentage of models, where the parameter should be contained in order to be in the final model
- **maxTries**
 fitting models in a subset may fail. maxTries sets the maximal number of subsets to try.

Value

estimates for each subsample and aggregated percentages for each parameter

References

Examples

```r
library(lessSEM)

# Identical to regsem, lessSEM builds on the lavaan package for model specification. The first step
# therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ Y1 + Y2 + Y3 + Y4 + Y5 +
    Y6 + Y7 + Y8 + Y9 + Y10 +
    Y11 + Y12 + Y13 + Y14 + Y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
                           data = dataset,
                           meanstructure = TRUE,
                           std.lv = TRUE)

# Stability selection
```

stabilitySelection 205
stabSel <- stabilitySelection(
 # IMPORTANT: Wrap your call to the penalty function in an rlang::expr-Block:
 modelSpecification =
 rlang::expr(
 lasso(
 # pass the fitted lavaan model
 lavaanModel = lavaanModel,
 # names of the regularized parameters:
 regularized = paste0("l", 6:15),
 # in case of lasso and adaptive lasso, we can specify the number of lambda
 # values to use. lessSEM will automatically find lambda_max and fit
 # models for nLambda values between 0 and lambda_max. For the other
 # penalty functions, lambdas must be specified explicitly
 nLambdas = 50)
),
 subsampleSize = 80,
 numberOfSubsamples = 5, # should be set to a much higher number (e.g., 100)
 threshold = 70
)
stabSel
plot(stabSel)
summary, cvRegularizedSEM-method

summary method for objects of class cvRegularizedSEM.

Description
summary method for objects of class cvRegularizedSEM.

Usage
S4 method for signature 'cvRegularizedSEM'
summary(object, ...)

Arguments

object object of class cvRegularizedSEM
... not used

Value
No return value, just prints estimates

summary, gpRegularized-method

summary

Description
summary

Usage
S4 method for signature 'gpRegularized'
summary(object, ...)

Arguments

object object of class gpRegularized
... not used

Value
No return value, just prints estimates
summary,regularizedSEM-method

Description
summary

Usage
S4 method for signature 'regularizedSEM'
summary(object, ...)

Arguments
object object of class regularizedSEM
... not used

Value
No return value, just prints estimates

summary,regularizedSEMMixedPenalty-method

Description
summary

Usage
S4 method for signature 'regularizedSEMMixedPenalty'
summary(object, ...)

Arguments
object object of class regularizedSEMMixedPenalty
... not used

Value
No return value, just prints estimates
variances

variances

Description

Extract the labels of all variances found in a lavaan model.

Usage

`variances(lavaanModel)`

Arguments

- `lavaanModel`: fitted lavaan model

Value

vector with parameter labels

Examples

```r
# The following is adapted from ?lavaan::sem
library(lessSEM)
model <- '  # latent variable definitions
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + a*y2 + b*y3 + c*y4
dem65 =~ y5 + a*y6 + b*y7 + c*y8

  # regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60

  # residual correlations
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8
',

fit <- sem(model, data = PoliticalDemocracy)

variances(fit)
```
Index

.adaptBreakingForWls, 5
.checkPenalties, 6
.labelLavaanParameters, 6
.updateLavaan, 7
.useElasticNet, 7

adaptiveLasso, 8
addCappedL1, 11
addElasticNet, 13
addLasso, 15
addLsp, 17
addMcp, 19
addScad, 21
AIC, gpRegularized-method, 23
AIC, Rcpp mgSEM-method, 24
AIC, Rcpp SEMCpp-method, 24
AIC, regularizedSEM-method, 25
AIC, regularizedSEMMixedPenalty-method, 25

bfgs, 26
bfgsEnet, 27
bfgsEnetMgSEM, 27
bfgsEnetSEM, 28
BIC, gpRegularized-method, 28
BIC, Rcpp mgSEM-method, 29
BIC, Rcpp SEMCpp-method, 29
BIC, regularizedSEM-method, 30
BIC, regularizedSEMMixedPenalty-method, 30

callFitFunction, 31
cappedL1, 31
coeff, cvRegularizedSEM-method, 34
coeff, gpRegularized-method, 34
coeff, Rcpp mgSEM-method, 35
coeff, Rcpp SEMCpp-method, 35
coeff, regularizedSEM-method, 36
coeff, regularizedSEMMixedPenalty-method, 36

controlBFGS, 37
controlLmnet, 39
controlLista, 40
covariances, 42
createSubsets, 43
curveLambda, 43
cvAdaptiveLasso, 44
cvCappedL1, 47
cvElasticNet, 50
cvLasso, 53
cvLsp, 55
cvMcp, 58
cvRegularizedSEM-class, 61
cvRidge, 62
cvRidgeBfgs, 64
cvScad, 67
cvScaler, 69
cvSmoothAdaptiveLasso, 70
cvSmoothElasticNet, 72
cvSmoothLasso, 75
elasticNet, 77
estimates, 80
estimates, cvRegularizedSEM-method, 81
estimates, regularizedSEM-method, 81
estimates, regularizedSEMMixedPenalty-method, 82

fit, 82
fitIndices, 83
fitIndices, cvRegularizedSEM-method, 84
fitIndices, regularizedSEM-method, 84
fitIndices, regularizedSEMMixedPenalty-method, 85

getLavaanParameters, 85
getTuningParameterConfiguration, 86
glmnetCappedL1MgSEM, 87
glmnetCappedL1SEM, 88
glmnetEnetGeneralPurpose, 88
glmnetEnetGeneralPurposeCpp, 89
glmnetEnetMgSEM, 89
glmnetEnetSEM, 90
glmnetLspMgSEM, 90
glmnetLspSEM, 91
glmnetMcpMgSEM, 91
glmnetMcpSEM, 92
glmnetMixedMgSEM, 92
glmnetMixedPenaltyGeneralPurpose, 93
glmnetMixedPenaltyGeneralPurposeCpp, 93
glmnetMixedSEM, 94
glmnetScadMgSEM, 94
glmnetScadSEM, 95
gpAdaptiveLasso, 95
gpCappedL1, 102
gpCappedL1Cpp, 106
gpElasticNet, 109
gpElasticNetCpp, 113
gpLasso, 117
gpLassoCpp, 120
gpLsp, 124
gpLspCpp, 127
gpMcp, 130
gpMcpCpp, 133
gpRegularized-class, 137
gpRidge, 138
gpRidgeCpp, 141
gpScad, 144
gpScadCpp, 147
istaCappedL1mgSEM, 151
istaCappedL1SEM, 151
istaEnetGeneralPurpose, 152
istaEnetGeneralPurposeCpp, 152
istaEnetMgSEM, 153
istaEnetSEM, 153
istaLSPMgSEM, 154
istaLSPSEM, 154
istaMcpMgSEM, 155
istaMcpSEM, 155
istaMixedPenaltyGeneralPurpose, 156
istaMixedPenaltyGeneralPurposeCpp, 156
istaMixedPenaltyMgSEM, 157
istaMixedPenaltySEM, 157
istaScadMgSEM, 158
istaScadSEM, 158
lasso, 159
lavaan2ls1xLabels, 162
lessSEM2Lavaan, 163
lessSEMCoeff-class, 164
loadings, 164
logicalMatch, 165
logLik,Rcpp_mgSEM-method, 166
logLik,Rcpp_SEMCpp-method, 166
logLikelihood-class, 167
lsp, 167
makePtrs, 170
mcp, 171
mcpPenalty_C, 173
mgSEM, 174
mixedPenalty, 175
modifyModel, 177
newTau, 178
plot,cvRegularizedSEM,missing-method, 180
plot,gpRegularized,missing-method, 180
plot,regularizedSEM,missing-method, 181
plot,stabSel,missing-method, 181
regressions, 182
regsem2LavaanParameters, 183
regularizedSEM-class, 184
regularizedSEMmixedPenalty-class, 184
ridge, 185
ridgeBfgs, 187
scad, 189
scadPenalty_C, 192
SEMCpp, 192
show,cvRegularizedSEM-method, 193
show,gpRegularized-method, 193
show,lessSEMCoeff-method, 194
show,logLikelihood-method, 194
show,Rcpp_mgSEM-method, 195
show,Rcpp_SEMCpp-method, 195
show,regularizedSEM-method, 196
show,regularizedSEMMixedPenalty-method, 196
show,stabSel-method, 197
simulateExampleData, 197
smoothAdaptiveLasso, 198
smoothElasticNet, 200
smoothLasso, 202
stabilitySelection, 204
stabSel-class, 206
summary, cvRegularizedSEM-method, 207
summary, gpRegularized-method, 207
summary, regularizedSEM-method, 208
summary, regularizedSEMFixedPenalty-method, 208

variances, 209