Multicollinearity, identification, and estimable functions

Simen Gaure

Abstract. Since there is quite a lot of confusion here and there about what happens when factors are collinear; here is a walkthrough of the identification problems which may arise in models with many dummies, and how lfe handles them. (Or, at the very least, attempts to handle them).

1. Context

The lfe package is used for ordinary least squares estimation, i.e. models which conceptually may be estimated by lm as

\[
\text{lm}(y \sim x_1 + x_2 + \ldots + x_m + f_1 + f_2 + \ldots + f_n)
\]

where \(f_1, f_2, \ldots, f_n\) are factors. The standard method is to introduce a dummy variable for each level of each factor. This is too much as it introduces multicollinearities in the system. Conceptually, the system may still be solved, but there are many different solutions. In all of them, the difference between the coefficients for each factor will be the same.

The ambiguity is typically solved by removing a single dummy variable for each factor, this is termed a reference. This is like forcing the coefficient for this dummy variable to zero, and the other levels are then seen as relative to this zero. Other ways to solve the problem is to force the sum of the coefficients to be zero, or one may enforce some other constraint, typically via the contrasts argument to lm. The default in lm is to have a reference level in each factor, and a common intercept term.

In lfe the same estimation can be performed by

\[
\text{felm}(y \sim x_1 + x_2 + \ldots + x_m | f_1 + f_2 + \ldots + f_n)
\]

Since felm conceptually does exactly the same as lm, the contrasts approach may work there too. Or rather, it is actually not necessary that felm handles it at all, it is only necessary if one needs to fetch the coefficients for the factor levels with getfe.

lfe is intended for very large datasets, with factors with many levels. Then the approach with a single constraint for each factor may sometimes not be sufficient. The standard example in the econometrics literature (see e.g. [2]) is the case with two factors, one for individuals, and one for firms these individuals work for, changing jobs now and then. What happens in practice is that the labour market may be disconnected, so that one set of individuals move between one set of firms, and
another (disjoint) set of individuals move between some other firms. This happens for no obvious reason, and is data dependent, not intrinsic to the model. There may be several such components. I.e. there are more multicollinearities in the system than the obvious ones. In such a case, there is no way to compare coefficients from different connected components, it is not sufficient with a single individual reference. The problem may be phrased in graph theoretic terms (see e.g. [1, 3, 4]), and it can be shown that it is sufficient with one reference level in each of the connected components. This is what lfe does, in the case with two factors it identifies these components, and force one level to zero in one of the factors.

In the examples below, rather small randomly generated datasets are used. lfe is hardly the best solution for these problems, they are solely used to illustrate some concepts. I can assure the reader that no CPUs, sleeping patterns, romantic relationships, trees or cats, nor animals in general, were harmed during data collection and analysis.

2. Identification with two factors

In the case with two factors, identification is well-known. getfe will partition the dataset into connected components, and introduce a reference level in each component:

```r
library(lfe)
set.seed(42)
x1 <- rnorm(20)
f1 <- sample(8,length(x1),replace=TRUE)/10
f2 <- sample(8,length(x1),replace=TRUE)/10
e1 <- sin(f1) + 0.02*f2^2 + rnorm(length(x1))
y <- 2.5*x1 + (e1-mean(e1))
summary(est <- felm(y ~ x1 | f1 + f2))
##
## Call:
## felm(formula = y ~ x1 | f1 + f2)
##
## Residuals:
##    Min     1Q   Median     3Q    Max
## -0.7331 -0.1751    0.0000  0.1139  0.7331
##
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## x1            1.9609     0.2854    6.87   0.001 ***
## f1            0.0200     0.0874     0.23   0.830    
## f2            0.0199     0.0874     0.23   0.830    
## Residual standard error: 0.8097 on 5 degrees of freedom
## Multiple R-squared(full model): 0.9849   Adjusted R-squared: 0.9425
## Multiple R-squared(proj model): 0.9042   Adjusted R-squared: 0.6361
## F-statistic(full model):23.23 on 14 and 5 DF, p-value: 0.000138
## F-statistic(proj model): 47.22 on 1 and 5 DF, p-value: 0.0009982
```
We examine the estimable function produced by `efactory`.

```r
ef <- efactory(est)
is.estimable(ef, est$fe)
## [1] TRUE
gtfe(est)
```

As we can see from the `comp` entry, there are two components, the second one with \(f1=0.1, f1=0.3, f1=0.5 \), and \(f2=0.5 \) and \(f2=0.7 \). A reference is introduced in each of the components, i.e. \(f2.0.2=0 \) and \(f2.0.5=0 \). If we look at the dataset, the component structure becomes clearer:

```r
data.frame(f1, f2, comp = est$cfactor)
```

<table>
<thead>
<tr>
<th></th>
<th>f1</th>
<th>f2</th>
<th>comp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0.7</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0.2</td>
<td>0.6</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0.8</td>
<td>0.6</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0.4</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0.4</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0.6</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0.2</td>
<td>0.6</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>0.4</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>0.5</td>
<td>0.7</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>0.4</td>
<td>0.6</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>0.2</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>0.8</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>0.2</td>
<td>0.8</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>0.3</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>0.8</td>
<td>0.1</td>
<td>1</td>
</tr>
</tbody>
</table>
Observations 1, 10, 12, 17, and 20 belong to component 2; no other observation has \(f_1 \) \(\in \) \{0.1,0.3,0.5\} or \(f_2 \) \(\in \) \{0.5,0.7\}, thus it is clear that coefficients for these cannot be compared to other coefficients. \texttt{lm} is silent about this component structure, hence coefficients are hard to interpret. Though, predictive properties and residuals are the same:

```r
f1 <- factor(f1); f2 <- factor(f2)
summary(lm(y ~ x1 + f1 + f2))
```

```r
## Call:
## lm(formula = y ~ x1 + f1 + f2)
## ## Residuals:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
## 2.095e-01 7.331e-01 1.735e-16 -4.393e-01 -6.495e-01 -5.678e-01 -1.318e-16
## 8.197e-02 -3.123e-16 8.197e-02 -3.469e-17 4.859e-01 -1.636e-01
## -8.366e-02 -2.082e-17 -2.095e-01 7.331e-01 -7.331e-01 -2.706e-16
## ## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6742 0.8930 0.755 0.484267
## x1 1.9609 0.2854 6.872 0.000998 ***
## f10.2 -2.4282 1.4826 -1.638 0.162390
## f10.3 -0.2382 1.5798 -0.151 0.886042
## f10.4 -1.9502 1.6137 -1.208 0.280892
## f10.5 -0.1680 1.1778 -0.143 0.892114
## f10.6 -1.7645 1.6753 -1.053 0.340448
## f10.7 -4.0375 1.5625 -2.584 0.049189 *
## f10.8 -2.4642 1.5037 -1.639 0.162193
## f20.2 2.1776 1.0249 2.125 0.086978 .
## f20.3 2.6178 1.4837 1.764 0.137940
## f20.4 1.2401 1.6508 0.751 0.486366
## f20.5 0.1681 1.3269 0.127 0.904134
## f20.6 1.5816 1.1080 1.428 0.212781
## f20.7 NA NA NA NA
## f20.8 2.1528 1.3808 1.559 0.179716
## --
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## ## Residual standard error: 0.8097 on 5 degrees of freedom
## Multiple R-squared: 0.9849, Adjusted R-squared: 0.9425
## F-statistic: 23.23 on 14 and 5 DF, p-value: 0.001318
```
3. Identification with three or more factors

In the case with three or more factors, there is no general intuitive theory (yet) for handling identification problems. lfe resorts to the simple-minded approach that non-obvious multicollinearities arise among the first two factors, and assumes it is sufficient with a single reference level for each of the remaining factors, i.e. that they in principle could be specified as ordinary dummies. In other words, the order of the factors in the model specification is important. A typical example would be 3 factors; individuals, firms and education:

```r
est <- felm(logwage ~ x1 + x2 | id + firm + edu)
getfe(est)
```

This will result in the same number of references as if using the model

```r
logwage ~ x1 + x2 + edu | id + firm
```

though it may run faster (or slower).

Alternatively, one could specify the model as

```r
logwage ~ x1 + x2 | firm + edu + id
```

This would not account for a partitioning of the labour market along individual/firm, but along firm/education, using a single reference level for the individuals. In this example, there is some reason to suspect that it is not sufficient, depending on how `edu` is specified. There exists no general scheme that sets up suitable reference groups when there are more than two factors. It may happen that the default is sufficient. The function `getfe` will check whether this is so, and it will yield a warning about 'non-estimable function' if not. With some luck it may be possible to rearrange the order of the factors to avoid this situation.

There is nothing special with `lfe` in this respect. You will meet the same problem with `lm`, it will remove a reference level (or dummy-variable) in each factor, but the system will still contain multicollinearities. You may remove reference levels until all the multicollinearities are gone, but there is no obvious way to interpret the resulting coefficients.

To illustrate, the classical example is when you include a factor for age (in years), a factor for observation year, and a factor for year of birth. You pick a reference individual, e.g. `age=50, year=2013 and birth=1963`, but this is not sufficient to remove all the multicollinearities. If you analyze this problem (see e.g. [6]) you will find that the coefficients are only identified up to linear trends. You may force the linear trend between `birth=1963 and birth=1990` to zero, by removing the reference level `birth=1990`, and the system will be free of multicollinearities. In this case the `birth` coefficients have the interpretation as being deviations from a linear trend between 1963 and 1990, though you do not know which linear trend. The `age` and `year` coefficients are also relative to this same unknown trend.

In the above case, the multicollinearity is obviously built into the model, and it is possible to remove it and find some intuitive interpretation of the coefficients. In the general case, when either `lm` or `getfe` reports a handful of non-obvious spurious multicollinearities between factors with many levels, you probably will not be able to find any reasonable way to interpret coefficients. Of course, certain linear
combinations of coefficients will be unique, i.e. estimable, and these may be found by e.g. the procedures in [5, 8], but the general picture is muddy.

Ife does not provide a solution to this problem, however, getfe will still provide a vector of coefficients which results from finding a non-unique solution to a certain set of equations. To get any sense from this, an estimable function must be applied. The simplest one is to pick a reference for each factor and subtract this coefficient from each of the other coefficients in the same factor, and add it to a common intercept, however in the case this does not result in an estimable function, you are out of luck. If you for some reason believe that you know of an estimable function, you may provide this to getfe via the ef-argument. There is an example in the getfe documentation. You may also test it for estimability with the function is.estimable, this is a probabilistic test which almost never fails (see [4, Remark 6.2]).

4. Specifying an estimable function

A model of the type

\[y \sim x1 + x2 + f1 + f2 + f3 \]

may be written in matrix notation as

\[y = X\beta + D\alpha + \epsilon, \]

where \(X \) is a matrix with columns \(x1 \) and \(x2 \) and \(D \) is matrix of dummies constructed from the levels of the factors \(f1, f2, f3 \). Formally, an estimable function in our context is a matrix operator whose row space is contained in the row space of \(D \). That is, an estimable function may be written as a matrix. Like the contrasts argument to \(\text{lm} \). However, the \texttt{lfe} package uses an R-function instead. That is, \texttt{felm} is called first, it uses the Frisch-Waugh-Lovell theorem to project out the \(D\alpha \) term from (1) (see [4, Remark 3.2]):

\begin{verbatim}
est <- felm(y ~ x1 + x2 | f1 + f2 + f3)
\end{verbatim}

This yields the parameters for \(x1 \) and \(x2 \), i.e. \(\hat{\beta} \). To find \(\hat{\alpha} \), the parameters for the levels of \(f1, f2, f3 \), getfe solves a certain linear system (see [4, eq. (14)]):

\begin{equation}
D\gamma = \rho
\end{equation}

where the vector \(\rho \) can be computed when we have \(\hat{\beta} \). This does not identify \(\gamma \) uniquely, we have to apply an estimable function to \(\gamma \). The estimable function \(F \) is characterized by the property that \(F\gamma_1 = F\gamma_2 \) whenever \(\gamma_1 \) and \(\gamma_2 \) are solutions to equation (2). Rather than coding \(F \) as a matrix, \texttt{lfe} codes it as a function. It is of course possible to let the function apply a matrix, so this is not a material distinction. So, let’s look at an example of how an estimable function may be made:

\begin{verbatim}
library(lfe)
x1 <- rnorm(100)
f1 <- sample(7,100,replace=TRUE)
f2 <- sample(8,100,replace=TRUE)/8
f3 <- sample(10,100,replace=TRUE)/10
e1 <- sin(f1) + 0.02*f2^2 + 0.17*f3^3 + rnorm(100)
y <- 2.5*x1 + (e1-mean(e1))
\end{verbatim}
In this case, with 3 factors we can not be certain that it is sufficient with a single reference in two of the factors, but we try it as an exercise. (`lfe` does not include an intercept, it is subsumed in one of the factors, so it should tentatively be sufficient with a reference for the two others).

The input to our estimable function is a solution \(\gamma \) of equation (2). The argument `addnames` is a logical, set to TRUE when the function should add names to the resulting vector. The coefficients is ordered the same way as the levels in the factors. We should pick a single reference in factors \(f_2,f_3 \), subtract these, and add the sum to the first factor:

```r
ef <- function(gamma, addnames) {
  ref2 <- gamma[[8]]
  ref3 <- gamma[[16]]
  gamma[8:15] <- gamma[8:15]-ref2
  gamma[16:25] <- gamma[16:25]-ref3
  if(addnames) {
    names(gamma) <- c(paste('f1',1:7,sep='.'),
                      paste('f2',1:8,sep='.'),
                      paste('f3',1:10,sep='.'))
  }
  gamma
}

is.estimable(ef, fe=est$fe)
## [1] TRUE
getfe(est, ef=ef)
```
We may compare this to the default estimable function, which picks a reference in each connected component as defined by the two first factors.

```r
getfe(est)
```

<table>
<thead>
<tr>
<th>effect</th>
<th>obs</th>
<th>comp</th>
<th>fe</th>
<th>idx</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1.1</td>
<td>-0.74124610</td>
<td>16</td>
<td>f1</td>
<td>1</td>
</tr>
<tr>
<td>f1.2</td>
<td>0.00000000</td>
<td>19</td>
<td>f1</td>
<td>2</td>
</tr>
<tr>
<td>f1.3</td>
<td>-1.24899817</td>
<td>15</td>
<td>f1</td>
<td>3</td>
</tr>
<tr>
<td>f1.4</td>
<td>-1.37410823</td>
<td>12</td>
<td>f1</td>
<td>4</td>
</tr>
<tr>
<td>f1.5</td>
<td>-2.29581558</td>
<td>10</td>
<td>f1</td>
<td>5</td>
</tr>
<tr>
<td>f1.6</td>
<td>-0.87912247</td>
<td>16</td>
<td>f1</td>
<td>6</td>
</tr>
<tr>
<td>f1.7</td>
<td>-0.44063058</td>
<td>12</td>
<td>f1</td>
<td>7</td>
</tr>
<tr>
<td>f2.0.125</td>
<td>1.29667656</td>
<td>11</td>
<td>f2</td>
<td>0.125</td>
</tr>
<tr>
<td>f2.0.25</td>
<td>1.00710691</td>
<td>15</td>
<td>f2</td>
<td>0.25</td>
</tr>
<tr>
<td>f2.0.375</td>
<td>1.46530454</td>
<td>14</td>
<td>f2</td>
<td>0.375</td>
</tr>
<tr>
<td>f2.0.5</td>
<td>0.63836607</td>
<td>11</td>
<td>f2</td>
<td>0.5</td>
</tr>
<tr>
<td>f2.0.625</td>
<td>1.55028985</td>
<td>12</td>
<td>f2</td>
<td>0.625</td>
</tr>
<tr>
<td>f2.0.75</td>
<td>1.72377105</td>
<td>12</td>
<td>f2</td>
<td>0.75</td>
</tr>
<tr>
<td>f2.0.875</td>
<td>1.04734613</td>
<td>14</td>
<td>f2</td>
<td>0.875</td>
</tr>
<tr>
<td>f2.1</td>
<td>0.52435275</td>
<td>11</td>
<td>f2</td>
<td>1</td>
</tr>
<tr>
<td>f3.0.1</td>
<td>-0.56906514</td>
<td>8</td>
<td>f3</td>
<td>0.1</td>
</tr>
<tr>
<td>f3.0.2</td>
<td>-0.57395364</td>
<td>11</td>
<td>f3</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Multicollinearity, Identification, and Estimable Functions

We see that the default has some more information. It uses the level names, and some more information, added like this:

```r
efactory(est)
## function (v, addnames)
## {
##   esum <- sum(v[extrarefs])
##   df <- v[refsubs]
##   sub <- ifelse(is.na(df), 0, df)
##   df <- v[refsuba]
##   add <- ifelse(is.na(df), 0, df + esum)
##   v <- v - sub + add
##   if (addnames) {
##     names(v) <- nm
##     attr(v, "extra") <- list(obs = obs, comp = comp, fe = fef,
##       idx = idx)
##   }
##   v
## }
## <bytecode: 0x55edc624aef0>
## <environment: 0x55edc5ec5568>
```

I.e., when asked to provide level names, it is also possible to add additional information as a list (or `data.frame`) as an attribute 'extra'. The vectors `extrarefs, refsubs, refsuba` etc. are precomputed by `efactory` for speed efficiency.

Here is the above example, but we create an intercept instead, and don’t report the zero-coefficients, so that it closely resembles the output from `lm`.

```r
f1 <- factor(f1); f2 <- factor(f2); f3 <- factor(f3)
ef <- function(gamma, addnames) {
  ref1 <- gamma[[1]]
  ref2 <- gamma[[8]]
  ref3 <- gamma[[16]]
  # put the intercept in the first coordinate
  gamma[[1]] <- ref1+ref2+ref3
gamma[2:7] <- gamma[2:7]-ref1
  gamma[8:14] <- gamma[9:15]-ref2
  gamma[15:23] <- gamma[17:25]-ref3
  length(gamma) <- 23
  if(addnames) {
```

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f3.0.3</td>
<td>-0.77455917</td>
<td>10</td>
<td>2</td>
<td>f3</td>
</tr>
<tr>
<td>f3.0.4</td>
<td>-0.11937564</td>
<td>7</td>
<td>2</td>
<td>f2</td>
</tr>
<tr>
<td>f3.0.5</td>
<td>0.16086124</td>
<td>11</td>
<td>2</td>
<td>f3</td>
</tr>
<tr>
<td>f3.0.6</td>
<td>0.12878066</td>
<td>7</td>
<td>2</td>
<td>f3</td>
</tr>
<tr>
<td>f3.0.7</td>
<td>0.00000000</td>
<td>14</td>
<td>2</td>
<td>f3</td>
</tr>
<tr>
<td>f3.0.8</td>
<td>0.01435191</td>
<td>13</td>
<td>2</td>
<td>f2</td>
</tr>
<tr>
<td>f3.0.9</td>
<td>-0.45524415</td>
<td>5</td>
<td>2</td>
<td>f3</td>
</tr>
<tr>
<td>f3.1</td>
<td>-0.56373688</td>
<td>14</td>
<td>2</td>
<td>f3</td>
</tr>
</tbody>
</table>
```r
names(gamma) <- c('(Intercept)', paste('f1', levels(f1)[2:7], sep=''),
                paste('f2', levels(f2)[2:8], sep=''),
                paste('f3', levels(f3)[2:10], sep=''))
}
gamma
getfe(est, ef=ef, bN=1000, se=TRUE)
## effect   se
## (Intercept) -0.013634682  0.5114435
## f12          0.741246102  0.3160189
## f13         -0.507752065  0.3373377
## f14         -0.632862126  0.3572938
## f15        -1.554569472  0.3811126
## f16        -0.137876368  0.3402928
## f17         0.300615524  0.3485067
## f20.25      -0.289569657  0.4047196
## f20.375     0.168627982  0.3873691
## f20.5       -0.658310496  0.4638782
## f20.625     0.253613289  0.4170575
## f20.75     -0.427094489  0.4318387
## f20.875   -0.249330434  0.406819
## f21        -0.772323808  0.4004357
## f30.2       -0.004888501  0.4376401
## f30.3      -0.205494035  0.4464411
## f30.4      -0.049691331  0.4965956
## f30.5       0.729926375  0.4339349
## f30.6      -0.697845804  0.4643069
## f30.7       0.569065141  0.4218616
## f30.8       0.583417050  0.4345362
## f30.9       0.113820992  0.5315648
## f31        -0.005328265  0.415621

# compare with lm
summary(lm(y ~ x1 + f1 + f2 + f3))
## Call:
## lm(formula = y ~ x1 + f1 + f2 + f3)
## Residuals:
##    Min  1Q Median  3Q    Max
##-2.18822 -0.55222  0.09278  0.62858  2.31181
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.013635  0.579452 -0.024 0.981289
## x1          2.553781  0.102637 24.884 <2e-16 ***
## f12         0.741246  0.385522  1.923 0.058264 .
## f13        -0.507752  0.393773  -1.289 0.201151
```
Table 1

| | Estimate | Std. Error | t value | Pr(>|t|) |
|---|----------|------------|---------|----------|
| f14 | -0.632862 | 0.420832 | -1.504 | 0.136768 |
| f15 | -1.554569 | 0.444675 | -3.496 | 0.000792 *** |
| f16 | -0.137876 | 0.387709 | -0.356 | 0.723111 |
| f17 | 0.300616 | 0.417071 | 0.721 | 0.473257 |
| f20.25 | -0.289570 | 0.455406 | -0.636 | 0.526785 |
| f20.375 | 0.168628 | 0.472982 | 0.369 | 0.713340 |
| f20.5 | -0.658310 | 0.516023 | -1.276 | 0.205934 |
| f20.625 | 0.253613 | 0.475630 | 0.533 | 0.595440 |
| f20.75 | 0.427094 | 0.503638 | 0.848 | 0.399090 |
| f20.875 | -0.249330 | 0.458179 | -0.544 | 0.587913 |
| f21 | -0.772324 | 0.460361 | -1.678 | 0.097524 . |
| f30.2 | -0.004889 | 0.491509 | -0.010 | 0.992091 |
| f30.3 | -0.205494 | 0.510660 | -0.402 | 0.688513 |
| f30.4 | 0.449689 | 0.567468 | 0.792 | 0.430565 |
| f30.5 | 0.729926 | 0.504571 | 1.447 | 0.152113 |
| f30.6 | 0.697846 | 0.546266 | 1.277 | 0.205320 |
| f30.7 | 0.569065 | 0.466883 | 1.219 | 0.226667 |
| f30.8 | 0.583417 | 0.473972 | 1.231 | 0.222152 |
| f30.9 | 0.113821 | 0.584693 | 0.196 | 0.846172 |
| f31 | 0.005328 | 0.467270 | 0.011 | 0.990932 |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

5. Non-estimability

We consider another example. To ensure spurious relations there are almost as many factor levels as there are observations, and it will be hard to find enough estimable function to interpret all the coefficients. The coefficient for x_1 is still estimated, but with a large standard error. Note that this is an illustration of non-obvious non-estimability which may occur in much larger datasets, the author does not endorse using this kind of model for the kind of data you find below.

```r
set.seed(55)
x1 <- rnorm(25)
f1 <- sample(9,length(x1),replace=TRUE)
f2 <- sample(8,length(x1),replace=TRUE)
f3 <- sample(8,length(x1),replace=TRUE)
e1 <- sin(f1) + 0.02*f2^2 + 0.17*f3^3 + rnorm(length(x1))
y <- 2.5*x1 + (e1-mean(e1))
summary(est <- felm(y ~ x1 | f1 + f2 + f3))
```

Call:
```
  felm(formula = y ~ x1 | f1 + f2 + f3)
```
Residuals:
Min 1Q Median 3Q Max
-0.43725 -0.09946 0.00000 0.05047 0.38973
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
x1 0.9735 1.3111 0.743 0.593
##
Residual standard error: 1.146 on 1 degrees of freedom
Multiple R-squared(full model): 0.9999 Adjusted R-squared: 0.9977
Multiple R-squared(proj model): 0.3554 Adjusted R-squared: -14.47
F-statistic(full model):447.3 on 23 and 1 DF, p-value: 0.03731
F-statistic(proj model): 0.5514 on 1 and 1 DF, p-value: 0.5934
*** Standard errors may be too high due to more than 2 groups and exactDOF=FALSE

The default estimable function fails, and the coefficients from `getfe` are not usable. `getfe` yields a warning in this case.

```r
ef <- efactory(est)
is.estimable(ef, est$fe)
## Warning in is.estimable(ef, est$fe): non-estimable function, largest error 2e-04 in coordinate 4 ("f1.4")
## [1] FALSE
```

Indeed, the rank-deficiency is larger than expected. There are more spurious relations between the factors than what can be accounted for by looking at components in the two first factors. In this low-dimensional example we may find the matrix D of equation (2), and its (column) rank deficiency is larger than 2.

```r
f1 <- factor(f1); f2 <- factor(f2); f3 <- factor(f3)
D <- makeDmatrix(list(f1,f2,f3))
dim(D)
## [1] 25 25
ncol(D) - as.integer(rankMatrix(D))
## [1] 3
```

Alternatively we can use an internal function in `lfe` for finding the rank deficiency directly.

```r
lfe:::rankDefic(list(f1,f2,f3))
## [1] 3
```

This rank-deficiency also has an impact on the standard errors computed by `felm`. If the rank-deficiency is small relative to the degrees of freedom the standard errors are scaled slightly upwards if we ignore the rank deficiency, but if it is large, the impact on the standard errors can be substantial. The above mentioned rank-computation procedure can be activated by specifying `exactDOF=TRUE` in the call to `felm`, but it may be time-consuming if the factors have many levels. Computing the rank does not in itself help us find estimable functions for `getfe`.
summary(est <- felm(y ~ x1 | f1 + f2 + f3, exactDOF=TRUE))
##
Call:
felm(formula = y ~ x1 | f1 + f2 + f3, exactDOF = TRUE)
##
Residuals:
Min 1Q Median 3Q Max
-0.43725 -0.09946 0.00000 0.05047 0.38973
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
x1 0.9735 0.9271 1.05 0.404
f32 0.4317 1.0394 0.415 0.718239
f33 5.1696 1.1358 4.552 0.045034 *
f34 9.8295 2.1756 4.518 0.045659 *
f35 19.0791 1.3493 14.140 0.004964 **
f36 34.7134 2.3414 14.826 0.004519 **
f37 55.0727 1.4197 38.791 0.000664 ***
f38 NaN NA NaN NaN
##
Residual standard error: 0.8105 on 2 degrees of freedom
Multiple R-squared(full model): 0.9999 Adjusted R-squared: 0.9988
Multiple R-squared(proj model): 0.3554 Adjusted R-squared: -6.735
F-statistic(full model):935.2 on 22 and 2 DF, p-value: 0.001069
F-statistic(proj model): 1.103 on 1 and 2 DF, p-value: 0.4038

We can get an idea what happens if we keep the dummies for f3. In this case, with 2 factors, lfe will partition the dataset into connected components and account for all the multicollinearities among the factors f1 and f2 just as above, but this is not sufficient. The interpretation of the resulting coefficients is not straightforward.

summary(est <- felm(y ~ x1 + f3 | f1 + f2, exactDOF=TRUE))
Warning in chol.default(mat, pivot = TRUE, tol = tol): the matrix is either rank-deficient or indefinite
Warning in chol.default(mat, pivot = TRUE, tol = tol): the matrix is either rank-deficient or indefinite
##
Call:
felm(formula = y ~ x1 + f3 | f1 + f2, exactDOF = TRUE)
##
Residuals:
Min 1Q Median 3Q Max
-0.43725 -0.09946 0.00000 0.05047 0.38973
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
x1 0.9735 0.9271 1.05 0.403842
f32 0.4317 1.0394 0.415 0.718239
f33 5.1696 1.1358 4.552 0.045034 *
f34 9.8295 2.1756 4.518 0.045659 *
f35 19.0791 1.3493 14.140 0.004964 **
f36 34.7134 2.3414 14.826 0.004519 **
f37 55.0727 1.4197 38.791 0.000664 ***
f38 NaN NA NaN NaN

In this particular example, we may use a different order of the factors, and we see that by partitioning the dataset on the factors \(f_1, f_3 \) instead of \(f_1, f_2 \), there are 2 connected components (the factor \(f_2 \) gets its own comp-code, but this is not a graph theoretic component number, it merely indicates that there is a separate reference among these).
Below is the same estimation in \texttt{lm}. We see that the coefficient for \texttt{x1} is identical to the one from \texttt{felm}, but there is no obvious relation between e.g. the coefficients for \texttt{f1}; the difference \texttt{f14-f15} is not the same for \texttt{lm} and \texttt{felm}. Since these are in different components, they are not comparable. But of course, if we compare in the same component, e.g. \texttt{f16-f17} or take a combination which actually occurs in the dataset, it is unique (estimable):

\begin{verbatim}
data.frame(f1,f2,f3)[1,]
\end{verbatim}

I.e. if we add the coefficients \texttt{f1.2 + f2.6 + f3.3} and include the intercept for \texttt{lm}, we will get the same number for both \texttt{lm} and \texttt{felm}. That is, for predicting the actual dataset, estimability plays no role, we obtain the same residuals anyway. It is only for predicting outside of the dataset estimability is important.
summary(est <- lm(y ~ x1 + f1 + f2 + f3))
##
Call:
lm(formula = y ~ x1 + f1 + f2 + f3)
##
Residuals:
1 2 3 4 5 6 7
8 9 10 11 12 13 14
3.883e-01 -2.873e-01 1.485e-01 3.378e-01 1.388e-16 -5.047e-02 5.047e-02
15 16 17 18 19 20 21
1.485e-01 -9.714e-17 3.897e-01 -4.899e-02 -2.398e-01 -3.393e-01 -1.110e-16
22 23 24 25
4.899e-02 -1.485e-01 1.110e-16 3.897e-01
##
Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) -24.38862 1.12021 -21.772 7.02e-10 ***
x1 0.97347 0.92714 1.0503 0.40384
f12 -1.51328 1.27120 -1.1902 0.35600
f13 -0.43832 1.02290 -0.4291 0.71002
f14 79.15498 2.25693 35.0730 4.31e-09 ***
f15 -3.42614 0.99162 1.4386 0.35749
f16 1.34500 2.88786 0.4662 0.68719
f17 -0.23855 0.99160 -0.2410 0.83225
f18 -0.57006 0.97014 -0.5879 0.55682
f19 -2.21711 1.20120 -1.8367 0.13938
f22 -0.23369 2.28687 -0.1022 0.91958
f23 3.93578 2.07099 1.8959 0.34869
f24 -3.81572 1.46572 -2.6088 0.03139 *
f25 -1.05909 1.22385 -0.8705 0.39075
f26 0.27024 0.99094 0.2726 0.78476
f27 1.33592 1.11188 1.2005 0.23234
f28 3.64878 1.49170 2.4465 0.01876 *
f32 0.43164 1.03934 0.4148 0.67841
f33 5.16958 1.35818 3.8034 0.00076 **
f34 9.82954 2.17556 4.5187 0.00000 ***
f35 19.07912 1.34933 14.1400 5.41e-04 **
f36 34.71347 2.84142 14.3555 2.06e-05 ***
f37 55.07267 1.41970 38.7988 8.12e-10 ***
f38 NA NA NA NA
##
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 1 ' ' 1
##
Residual standard error: 0.8105 on 2 degrees of freedom
Multiple R-squared: 0.9999, Adjusted R-squared: 0.9988
F-statistic: 935.2 on 22 and 2 DF, p-value: 0.0001069
6. Weeks-Williams partitions

There is a partial solution to the non-estimability problem in [8]. Their idea is to partition the dataset into components in which all differences between factor levels are estimable. The components are connected components of a subgraph of an e-dimensional grid graph where e is the number of factors. That is, a graph is constructed with the observations as vertices, two observations are adjacent (in a graph theoretic sense) if they differ in at most one of the factors. The dataset is then partitioned into (graph theoretic) connected components. It’s a finer partitioning than the above, and consequently introduces more reference levels than is necessary for identification. I.e. it does not find all estimable functions, but in some cases (e.g. in [7]) the largest component will be sufficiently large for proper analysis. It is of course always a question whether such an endogenous selection of observations will yield a dataset which results in unbiased coefficients. This partitioning can be done by the `compfactor` function with argument `WW=TRUE`:

```r
fe <- list(f1,f2,f3)
wwcomp <- compfactor(fe, WW=TRUE)
```

It has more levels than the rank deficiency

```r
lfe:::rankDefic(fe)
## [1] 3
nlevels(wwcomp)
## [1] 17
```

and each of its components are contained in a component of the previously considered components, no matter which two factors we consider. For the case of two factors, the concepts coincide.

```r
nlevels(interaction(compfactor(fe),wwcomp))
## [1] 17
# pick the largest component:
wwdata <- data.frame(y, x1, f1, f2, f3)[wwcomp==1, ]
print(wwdata)
## y x1 f1 f2 f3
## 2 28.45513 -1.812376850 2 7 7
## 3 30.61452 0.151582984 3 6 7
## 5 32.35977 0.001908206 1 7 7
## 11 31.19345 -0.048910950 3 7 7
## 14 34.32095 -0.36073148 1 8 7
## 20 12.57960 0.993654777 3 7 6
```

That is, we can start in one of the observations and travel through all of them by changing just one of $f1,f2,f3$ at a time. Though, in this particular example, there are more parameters than there are observations, so an estimation would not be feasible.

`efactory` cannot easily be modified to produce an estimable function corresponding to WW components. The reason is that `efactory`, and the logic in `getfe`, work on partitions of factor levels, not on partitions of the dataset, these are the same for the two-factor case.
WW partitions have the property that if you pick any two of the factors and partition a WW-component into the previously mentioned non-WW partitions, there will be only one component, hence you may use any of the estimable functions from `efactory` on each partition. That is, a way to use WW partitions with `felm` is to do the whole analysis on the largest WW-component. `felm` may still be used on the whole dataset, and it may yield different results than what you get by analysing the largest WW-component.

Here is a larger example:

```r
set.seed(135)
x <- rnorm(10000)
f1 <- sample(1000, length(x), replace=TRUE)
f2 <- (f1 + sample(18, length(x), replace=TRUE)) %% 500
f3 <- (f2 + sample(9, length(x), replace=TRUE)) %% 500
y <- x + 1e-4*f1 + sin(f2^2) + cos(f3)^3 + 0.5*rnorm(length(x))
dataset <- data.frame(y, x, f1, f2, f3)
summary(est <- felm(y ~ x | f1 + f2 + f3, data=dataset, exactDOF=TRUE))

## Call:
## felm(formula = y ~ x | f1 + f2 + f3, data = dataset, exactDOF = TRUE)
##
## Residuals:
##     Min      1Q  Median      3Q     Max
## -1.63055 -0.29857 -0.00236 0.30599 1.79423
##
## Coefficients:
##                 Estimate Std. Error   t value     Pr(>|t|)
## (Intercept) 0.9985523   0.0055478 180.08444 < 2.22e-16 ***
##
## Residual standard error: 0.4957 on 8001 degrees of freedom
## Multiple R-squared(full model): 0.9058 Adjusted R-squared: 0.8822
## F-statistic(full model): 38.49 on 1998 and 8001 DF, p-value: < 2.2e-16
##
## Multiple R-squared(proj model): 0.8019 Adjusted R-squared: 0.7524
## F-statistic(proj model): 3.239e+04 on 1 and 8001 DF, p-value: < 2.2e-16
```

We count the number of connected components in `f1, f2`, and see that this is sufficient to ensure estimability

```r
nlevels(est$cfactor)
## [1] 1
is.estimable(efactory(est), est$fe)
## [1] TRUE
nrow(alpha <- getfe(est))
## [1] 2000
```
It has rank deficiency one less than the number of factors:

```r
lfe:::rankDefic(est$fe)
## [1] 2
```

Then we analyse the largest WW-component

```r
wwcomp <- compfactor(est$fe, WW=TRUE)
nlevels(wwcomp)
## [1] 933
wwset <- wwcomp == 1
sum(wwset)
## [1] 3129
summary(wwest <- felm(y ~ x | f1 + f2 + f3,
                      data=dataset, subset=wwset, exactDOF=TRUE))
```

We see that we get the same coefficient for x in this case. This is not surprising, there is no obvious reason to believe that our selection of observations is skewed in this randomly created dataset.

This one has the same rank deficiency:

```r
lfe:::rankDefic(wwest$fe)
## [1] 2
```

but a smaller number of identifiable coefficients.

```r
nrow(wwalpha <- getfe(wwest))
## [1] 816
```

We may compare effects which are common to the two methods:
head(wwalpha)
effect obs comp fe idx
f1.35 1.9324241 1 f1 35
f1.38 0.8049655 3 f1 38
f1.40 0.2392413 3 f1 40
f1.41 1.0896624 2 f1 41
f1.42 0.6428771 4 f1 42
f1.43 1.4268411 4 f1 43

alpha[c(35,38,40:43),]
effect obs comp fe idx
f1.35 0.9581560 10 f1 35
f1.38 0.6367389 9 f1 38
f1.40 0.8802631 12 f1 40
f1.41 0.8586243 13 f1 41
f1.42 0.8983645 13 f1 42
f1.43 1.2634715 12 f1 43

but there is no obvious relation between e.g. f1.35 – f1.36, they are very
different in the two estimations. The coefficients are from different datasets, and
the standard errors are large (≈ 0.7) with this few observations for each factor level.
The number of identified coefficients for each factor varies (these figures contain the
two references):

table(wwalpha[,‘fe’])
f1 f2 f3
417 198 201

References
Linked Longitudinal Employer-Employee Data, Tech. Report TP-2002-06, U.S. Census Bureau,
2002.
[4] S. Gaure, OLS with Multiple High Dimensional Category Variables, Computational Statistics
and Data Analysis 66 (2013), 8–18.
Cohort Analysis: An Illustration of the Problems in Assessing Interaction in One Observation
A Three-Way High-Dimensional Fixed Effects Regression Model., IZA Discussion Paper 7276,
Institute for the Study of Labor (IZA), March 2013.
Cross Classification, Technometrics 6 (1964), no. 3, 319–324.

Ragnar Frisch Centre for Economic Research, Oslo, Norway