Package ‘libcoin’

September 27, 2023

Title Linear Test Statistics for Permutation Inference
Date 2023-09-26
Version 1.0-10
Description Basic infrastructure for linear test statistics and permutation inference in the framework of Strasser and Weber (1999) <https://epub.wu.ac.at/102/>. This package must not be used by end-users. CRAN package ‘coin’ implements all user interfaces and is ready to be used by anyone.

Depends R (>= 3.4.0)
Suggests coin
Imports stats, mvtnorm
LinkingTo mvtnorm
NeedsCompilation yes
License GPL-2
Author Torsten Hothorn [aut, cre] (<https://orcid.org/0000-0001-8301-0471>),
 Henric Winell [aut] (<https://orcid.org/0000-0001-7995-3047>)
Maintainer Torsten Hothorn <Torsten.Hothorn@R-project.org>
Repository CRAN
Date/Publication 2023-09-27 10:30:07 UTC

R topics documented:

ctabs ... 2
doTest ... 2
LinStatExpCov ... 3

Index 6
ctabs
Cross Tabulation

Description
Efficient weighted cross tabulation of two factors and a block

Usage
```r
ctabs(ix, iy = integer(0), block = integer(0), weights = integer(0),
      subset = integer(0), checkNAs = TRUE)
```

Arguments
- **ix**: a integer of positive values with zero indicating a missing.
- **iy**: an optional integer of positive values with zero indicating a missing.
- **block**: an optional blocking factor without missings.
- **weights**: an optional vector of case weights, integer or double.
- **subset**: an optional integer vector indicating a subset.
- **checkNAs**: a logical for switching off missing value checks.

Details
A faster version of `xtabs(weights ~ ix + iy + block, subset)`.

Value
If block is present, a three-way table. Otherwise, a one- or two-dimensional table.

Examples
```r
ctabs(ix = 1:5, iy = 1:5, weights = 1:5 / 5)
```

doTest
Permutation Test

Description
Perform permutation test for a linear statistic

Usage
```r
doTest(object, teststat = c("maximum", "quadratic", "scalar"),
       alternative = c("two.sided", "less", "greater"), pvalue = TRUE,
       lower = FALSE, log = FALSE, PermutatedStatistics = FALSE,
       minbucket = 10L, ordered = TRUE, maxselect = object$xfactor,
       pargs = GenzBretz())
```
LinStatExpCov

Arguments

- **object**: an object returned by `LinStatExpCov`.
- **teststat**: type of test statistic to use.
- **alternative**: alternative for scalar or maximum-type statistics.
- **pvalue**: a logical indicating if a p-value shall be computed.
- **lower**: a logical indicating if a p-value (lower is FALSE) or 1 - p-value (lower is TRUE) shall be returned.
- **log**: a logical, if TRUE probabilities are log-probabilities.
- **PermutedStatistics**: a logical, return permuted test statistics.
- **minbucket**: minimum weight in either of two groups for maximally selected statistics.
- **ordered**: a logical, if TRUE maximally selected statistics assume that the cutpoints are ordered.
- **maxselect**: a logical, if TRUE maximally selected statistics are computed. This requires that X was an implicitly defined design matrix in `LinStatExpCov`.
- **pargs**: arguments as in `GenzBretz`.

Details

Computes a test statistic, a corresponding p-value and, optionally, cutpoints for maximally selected statistics.

Value

A list.

LinStatExpCov
Linear Statistics with Expectation and Covariance

Description

Strasser-Weber type linear statistics and their expectation and covariance under the independence hypothesis

Usage

```r
LinStatExpCov(X, Y, ix = NULL, iy = NULL, weights = integer(0),
    subset = integer(0), block = integer(0), checkNAs = TRUE,
    varonly = FALSE, nresample = 0, standardise = FALSE,
    tol = sqrt(.Machine$double.eps))

lmult(x, object)
```
Arguments

- **X** numeric matrix of transformations.
- **Y** numeric matrix of influence functions.
- **ix** an optional integer vector expanding **X**.
- **iy** an optional integer vector expanding **Y**.
- **weights** an optional integer vector of non-negative case weights.
- **subset** an optional integer vector defining a subset of observations.
- **block** an optional factor defining independent blocks of observations.
- **checkNAs** a logical for switching off missing value checks. This included switching off checks for suitable values of **subset**. Use at your own risk.
- **varonly** a logical asking for variances only.
- **nresample** an integer defining the number of permuted statistics to draw.
- **standardise** a logical asking to standardise the permuted statistics.
- **tol** tolerance for zero variances.
- **x** a contrast matrix to be left-multiplied in case **X** was a factor.
- **object** an object of class "LinStatExpCov".

Details

The function, after minimal preprocessing, calls the underlying C code and computes the linear statistic, its expectation and covariance and, optionally, **nresample** samples from its permutation distribution.

When both **ix** and **iy** are missing, the number of rows of **X** and **Y** is the same, ie the number of observations.

When **X** is missing and **ix** a factor, the code proceeds as if **X** were a dummy matrix of **ix** without explicitly computing this matrix.

Both **ix** and **iy** being present means the code treats them as subsetting vectors for **X** and **Y**. Note that **ix = 0** or **iy = 0** means that the corresponding observation is missing and the first row or **X** and **Y** must be zero.

lmult allows left-multiplication of a contrast matrix when **X** was (equivalent to) a factor.

Value

A list.

References

Examples

wilcox.test(Ozone ~ Month, data = airquality, subset = Month %in% c(5, 8),
 exact = FALSE, correct = FALSE)

aq <- subset(airquality, Month %in% c(5, 8))
X <- as.double(aq$Month == 5)
Y <- as.double(rank(aq$Ozone, na.last = "keep"))
doTest(LinStatExpCov(X, Y))
Index

* htest
 doTest, 2
 LinStatExpCov, 3
* univar
 ctabs, 2
ctabs, 2
doTest, 2
GenzBretz, 3
LinStatExpCov, 3, 3
lmult (LinStatExpCov), 3