Package ‘linERR’

February 23, 2016

Type Package

Title Linear Excess Relative Risk Model

Version 1.0

Date 2016-02-23

Encoding UTF-8

Author David Moriña (ISGlobal, Centre for Research in Environmental Epidemiology)

Maintainer David Moriña Soler <david.morina@uab.cat>

Description Fits a linear excess relative risk model by maximum likelihood, possibly including several variables and allowing for lagged exposures.

Depends R (>= 3.1.1), survival, stats4

License GPL (>= 2)

NeedsCompilation yes

Repository CRAN

Date/Publication 2016-02-23 13:46:03

R topics documented:

linERR-package .. 2
cohort1 .. 3
ERRci .. 3
fit.linERR ... 4

Index 7
linERR-package

Fits the linear excess relative risk model

Description

Usual approaches to the analysis of cohort and case control data often follow from risk-set sampling designs, where at each failure time a new risk set is defined, including the index case and all the controls that were at risk at that time. That kind of sampling designs are usually related to the Cox proportional hazards model, available in most standard statistical packages but limited to log-linear models (except Epicure, (Preston et al., 1993)) of the form \(\log(\phi(z, \beta)) = \beta_1 \cdot z_1 + \ldots + \beta_k \cdot z_k \), where \(z \) is a vector of explanatory variables and \(\phi \) is the rate ratio. This implies exponential dose-response trends and multiplicative interactions, which may not be the best exposure-response representation in some cases, such as radiation exposures. One model of particular interest, especially in radiation environmental and occupational epidemiology is the ERR model, \(\phi(z, \beta) = 1 + \alpha \cdot f(dose) \). The ERR model represents the excess relative rate per unit of exposure and \(z_1, \ldots, z_k \) are covariates. Estimation of a dose-response trend under a linear relative rate model implies that for every 1-unit increase in the exposure metric, the rate of disease increases (or decreases) in an additive fashion. The modification of the effect of exposure in linear relative rate models by a study covariate \(m \) can be assessed by including a log-linear subterm for the linear exposure effect (Preston et al., 2003; Ron et al., 1995), implying a model of the form \(\phi(z, \beta) = e^{\beta_0 + \beta_1 \cdot z_1 + \ldots + \beta_k \cdot z_k} (1 + \alpha \cdot f(dose)) \).

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>linERR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2016-02-23</td>
</tr>
<tr>
<td>License:</td>
<td>GPL version 2 or newer</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>

Author(s)

David Moriña, ISGlobal, Centre for Research in Environmental Epidemiology (CREAL)

Maintainer: David Moriña <david.morina@uab.cat>

References

See Also

fitlinerr, ERRci

cohort1

Simulated cohort data

Description

This data corresponds to a simulated cohort with a follow-up of 32 years, including the annual radiation dose received by each subject.

Usage

cohort1

Format

A data frame with 1000 rows and 70 columns.

ERRci

Profile likelihood based confidence intervals

Description

The standard procedure for computing a confidence interval for a parameter β (Wald-type CI), based on $\hat{\beta} \pm z_{1-\alpha/2} SE(\hat{\beta})$ may work poorly if the distribution of the parameter estimator is markedly skewed or if the standard error is a poor estimate of the standard deviation of the estimator. Profile likelihood confidence intervals don’t assume normality of the estimator and perform better for small sample sizes or skewed estimates than Wald-type confidence intervals.

Usage

ERRci(object, prob = 0.95)

Arguments

- **object**: An object of class fitlinerr.
- **prob**: Level of confidence, defaults to 0.95.

Value

A numeric vector containing the $prob$ profile likelihood based confidence interval.
Fits linear ERR model

Usual approaches to the analysis of cohort and case control data often follow from risk-set sampling designs, where at each failure time a new risk set is defined, including the index case and all the controls that were at risk at that time. That kind of sampling designs are usually related to the Cox proportional hazards model, available in most standard statistical packages but limited to log-linear models (except Epicure, (Preston et al., 1993)) of the form $\log(\phi(z, \beta)) = \beta_1 \cdot z_1 + \cdots + \beta_k \cdot z_k$, where z is a vector of explanatory variables and ϕ is the rate ratio. This implies exponential dose-response trends and multiplicative interactions, which may not be the best exposure-response representation in some cases, such as radiation exposures. One model of particular interest, especially in radiation environmental and occupational epidemiology is the ERR model, $\phi(z, \beta) = 1 + \alpha \cdot f(\text{dose})$. The ERR model represents the excess relative rate per unit of exposure and z_1, \ldots, z_k are covariates. Estimation of a dose-response trend under a linear relative rate model implies that for every 1-unit increase in the exposure metric, the rate of disease increases (or decreases) in an additive fashion. The modification of the effect of exposure in linear relative rate models by a study covariate m can be assessed by including a log-linear subterm for the linear exposure effect (Preston et al., 2003; Ron et al., 1995), implying a model of the form $\phi(z, \beta) = e^{\beta_0 + \beta_1 \cdot z_1 + \cdots + \beta_k \cdot z_k}(1 + \alpha \cdot f(\text{dose}))$.

Examples

```r
data(cohort1)
fit.1 <- fit.linERR(Surv(entryage, exitage, leu) ~ dose1 + dose2 + dose3 + dose4 + dose5 + dose6 +
                     dose7 + dose8 + dose9 + dose10 + dose11 + dose12 + dose13 + dose14 +
                     dose15 + dose16 + dose17 + dose18 + dose19 + dose20 +
                     dose21 + dose22 + dose23 + dose24 + dose25 + dose26 +
                     dose27 + dose28 + dose29 + dose30 + dose31 + dose32, data = cohort1, beta = NULL,
                     ages = cohort1[, 7:38], lag = 2)
ERRci(fit.1, prob = 0.9)
```
Usage

```r
fit.linERR(formula, beta = NULL, data, ages, lag = 0)
```

Arguments

- **formula**: An object of class `formula` (or one that can be coerced to that class), i.e. a symbolic description of the model to be fitted. The response must be a survival object as returned by the `Surv()` function, and the log-linear and linear terms are separated by the character “|”. Stratum are defined using the `strata()` function.

- **beta**: Starting values for parameter estimates. Its default value is `NULL`.

- **data**: Data frame that contains the cohort.

- **ages**: Age at each exposure.

- **lag**: Lag to be applied. Its default value is zero.

Value

An object of class `fit.linERR`, essentially a named list. The elements of this list are detailed below

- **lowb**: Low boundary of the parameter in the linear part.

- **beta**: Initial values for the estimates.

- **max.exp**: Maximum number of exposures.

- **covariates1**: Covariates in the loglinear part.

- **data_2**: Original data restructured as a list.

- **rsets_2**: Risk sets restructured as a list.

- **doses_2**: Doses at each exposure restructured as a list.

- **ages_2**: Ages at each exposure restructured as a list.

- **vcov**: Variance-covariance matrix.

- **aic**: Akaike’s Information Criteria.

- **call**: Call to the function.

- **llike**: Maximum log-likelihood.

- **deviance**: Deviance of the model.

Author(s)

David Moriña, ISGlobal, Centre for Research in Environmental Epidemiology (CREAL)

References

See Also

ERRci, linERR-package

Examples

data(cohort1)
fit.1 <- fit.linERR(Surv(entryage, exitage, leu) ~ sex + dose1+dose2+dose3+dose4+dose5+dose6+
 dose7+dose8+dose9+dose10+dose11+dose12+dose13+dose14+dose15+dose16+
 dose17+dose18+dose19+dose20+dose21+dose22+dose23+dose24+dose25+dose26+
 dose27+dose28+dose29+dose30+dose31+dose32, data=cohort1, beta=NULL,
 ages=cohort1[, 7:38], lag=2)
Index

*Topic datasets
cohort1, 3

*Topic linERR
ERRci, 3
fit.linERR, 4
linERR-package, 2

*Topic models
ERRci, 3
fit.linERR, 4
linERR-package, 2

*Topic regression
ERRci, 3
fit.linERR, 4
linERR-package, 2

*Topic survival
ERRci, 3
fit.linERR, 4
linERR-package, 2

cohort1, 3
ERRci, 3, 4, 6
fit.linERR, 3, 4
linERR (linERR-package), 2
linERR-package, 2