Package ‘litteR’

October 13, 2022

Title Litter Analysis
Version 1.0.0
Date 2022-08-26

Description Data sets on various litter types like beach litter, riverain litter, floating litter, and seafloor litter are rapidly growing. This package offers a simple user interface to analyse these litter data in a consistent and reproducible way. It also provides functions to facilitate several kinds of litter analysis, e.g., trend analysis, power analysis, and baseline analysis. Under the hood, these functions are also used by the user interface. See Schulz et al. (2019) <doi:10.1016/j.envpol.2019.02.030> for details. MS-Windows users are advised to run ‘litteR’ in ‘RStudio’. See our vignette: Installation manual for ‘RStudio’ and ‘litteR’.

Depends R (>= 4.0.0)
Imports readr (>= 1.3.1), stringr (>= 1.4.0), dplyr (>= 1.0.0), tidyselect (>= 1.1.0), tidyr (>= 1.1.0), fs (>= 1.4.1), ggplot2 (>= 3.3.1), purrr (>= 0.3.4), rlang (>= 0.4.6), yaml (>= 2.2.1), rmarkdown (>= 2.2), tcltk
Suggests knitr, kableExtra, testthat (>= 2.3.2)
License GPL (>= 3)
Encoding UTF-8
VignetteBuilder knitr
RoxygenNote 7.2.1
NeedsCompilation no
Author Dennis Walvoort [aut, cre, cph], Willem van Loon [aut, cph], Rijkswaterstaat - The Netherlands [cph, fnd, dtc]
Maintainer Dennis Walvoort <dennis.Walvoort@wur.nl>
Repository CRAN
Date/Publication 2022-08-26 19:32:06 UTC
R topics documented:

litteR-package ... 3
adj_boxplot_stats .. 4
create_litter_project .. 5
create_logger .. 5
cv ... 6
enumerate ... 6
enumerate.character .. 7
enumerate.sequenized .. 7
has_write_access .. 8
intercept .. 8
iod ... 9
is_date_format .. 9
is_natural_number .. 10
kendall_s ... 10
kendall_var_s .. 11
list_duplicates ... 11
litter ... 12
mann_kendall ... 13
medcouple ... 14
p_value .. 15
read_litter ... 15
read_litter_types ... 16
read_settings .. 16
recdf ... 17
regional_kendall .. 17
rmad ... 18
roll ... 19
sequenize ... 19
sequenize.integer .. 20
slope .. 20
stat_adj_boxplot .. 21
test_statistic ... 22
theil_sen ... 22
trimean ... 23
validate .. 24
wilcoxon .. 25

Index .. 27
Description

A tool for the analysis of various litter types, e.g., beach litter, riverain litter, floating litter, and seafloor litter.

Details

The easiest way to get convenient with litteR is to create an empty project directory and fill it with example files by calling the function `create_litter_project`. The workhorse function in litteR is called `litter`. This function will start a simple user interface and lets you select an input file (*.csv) and a settings file (*.yaml). It will produce an HTML-report with litter analysis results according to the selected options in the settings file. See the package vignette for more details.

Author(s)

Maintainer: Dennis Walvoort <dennis.walvoort@wur.nl> [copyright holder]

Authors:

- Willem van Loon <willem.van.loon@rws.nl> [copyright holder]

Other contributors:

- Rijkswaterstaat - The Netherlands [copyright holder, funder, data contributor]

References

adj_boxplot_stats

Adjusted Boxplot Statistics

Description

Adjusted boxplot statistics according to Hubert & Vandervieren (2008). The upper whisker extends from the hinge to the largest value no further than the upper fence. Similarly, the lower whisker extends from the hinge to the smallest value no further than the lower fence. See Hubert & Vandervieren (2008, p.5191, Eq.5).

Usage

```r
adj_boxplot_stats(x, ...)
```

Default S3 method:

```r
adj_boxplot_stats(x, ...)
```

Arguments

- `x` numeric vector
- `...` further arguments passed to or from other methods.

Value

Numeric vector consisting of respectively the lower whisker/fence, the first quartile/hinge, the median, the third quartile/hinge, and the upper whisker/fence.

Methods (by class)

- `adj_boxplot_stats(default)`: Adjusted Boxplot Statistics

References

See Also

`stat_adj_boxplot`

Examples

```r
adj_boxplot_stats(rlnorm(100))
```
create_litter_project

Create Project Directory

Description
Fills an empty directory (path) with example files. If the path’ argument is missing or NULL, a Tcl/Tk dialogue will be started.

Usage
create_litter_project(path = NULL)

Arguments
path (Existing) directory name

create_logger
Simple Logger

Description
Logger, in the spirit of loggers like log4j. Implemented logging levels are DEBUG, INFO, WARN, ERROR (in increasing order of specificity. Logging events can be filtered to show only events with a minimum specificity.

Usage
create_logger(con = stdout(), level = c("DEBUG", "INFO", "WARN", "ERROR"))

Arguments
con connection to write logging data to
level log only events of this level and those that are more specific (see details)

Value
Anonymous logging functions

Examples

logger <- create_logger(level = "INFO")
logger$info("starting specific computation")
logger$info("Today is {Sys.Date()}")
cv Coefficient of Variation

Description
Coefficient of Variation

Usage
```r
cv(x, na.rm = FALSE)
```

Arguments
- `x` a numeric vector
- `na.rm` logical. Should missing values be removed?

Value
coefficient of variation (numeric vector of length 1).

References

enumerate Enumerate Objects

Description
Generic function for enumerating objects

Usage
```r
enumerate(x, ...)
```

S3 method for class 'numeric'
```r
enumerate(x, ...)
```

Arguments
- `x` object to enumerate
- `...` further arguments passed to or from other methods.

Methods (by class)
- `enumerate(numeric)`: enumerate numeric vector.
enumerate.character

Enumerate Character Vector

Description
Collapsing a character vector of length n, to a character vector of length 1.

Usage
```
## S3 method for class 'character'
enumerate(x, ...)
```

Arguments
- `x` character vector
- `...` further arguments passed to or from other methods.

Value
character vector of length 1, with elements separated by a comma except for the last element which is prepended by "and".

Examples
```
enumerate("apples")
enumerate(c("apples", "oranges"))
enumerate(c("apples", "oranges", "pears"))
```

enumerate.sequenized

Convert Sequenized Output to Character String

Description
Convert Sequenized Output to Character String

Usage
```
## S3 method for class 'sequenized'
enumerate(x, ...)
```

Arguments
- `x` object of class sequenized.
- `...` further arguments passed to or from other methods.
Value

string representation (character vector of length 1) of a sequenized object

See Also

sequenize.integer

has_write_access

Check Write Permission

Description

Simple wrapper for `file.access` with mode=2

Usage

`has_write_access(path)`

Arguments

- `path` filename

Value

TRUE if write access, FALSE if not

intercept

Intercept

Description

Extract the intercept from object `x`.

Usage

`intercept(x, ...)`

Arguments

- `x` object
- `...` further arguments passed to or from other methods.

Value

estimate of the intercept (numeric vector of length 1).
iod

Index of Dispersion

Description
A normalized measure of the dispersion of a probability distribution.

Usage
iod(x, na.rm = FALSE)

Arguments
x a numeric vector
na.rm logical. Should missing values be removed?

Value
index of dispersion (numeric vector of length 1).

References

is_date_format
Check Date Format

Description
Checks if the data format x complies with format.

Usage
is_date_format(x, format = "%Y-%m-%d")

Arguments
x object of class character or Date
format required date format (see strptime)

Value
TRUE if x complies with format, and FALSE otherwise.

Examples
is_date_format("2019-05-14", "%Y-%m-%d")
is_natural_number Test for Natural Numbers

Description
Test for natural numbers according to ISO 80000-2, that is the set 0, 1, 2, ...

Usage
is_natural_number(x)

Arguments
x numeric vector

Value
TRUE in case x is a natural number, FALSE otherwise.

Examples
stopifnot(!is_natural_number(3.1))
stopifnot(!is_natural_number(2.99))
stopifnot(is_natural_number(3))
stopifnot(all(is_natural_number(0:9)))
stopifnot(sum(is_natural_number(c(1, 2.5, 3))) == 2)

kendall_s Mann-Kendall S Statistic

Description
Mann-Kendall S Statistic

Usage
kendall_s(x, t = seq_along(x))

Arguments
x observations
t time index

References
kendall_var_s

See Also

`kendall_var_s`

Mann-Kendall Variance of S Statistic

Description

Mann-Kendall Variance of S Statistic

Usage

`kendall_var_s(x, t = seq_along(x))`

Arguments

- `x` observations
- `t` time index

References

list_duplicates

List Duplicates

Description

Lists all duplicates as a list of tuples.

Usage

`list_duplicates(x, ...)`

S3 method for class 'character'

`list_duplicates(x, ...)`

S3 method for class 'tbl'

`list_duplicates(x, ...)`

S3 method for class 'data.frame'

`list_duplicates(x, ...)`
Arguments

 x object of class character, tibble or data.frame

 ... further arguments passed to or from other methods.

Value

 list of row numbers with duplicates

Methods (by class)

 • list_duplicates(character): list duplicates for a character vector.
 • list_duplicates(tbl): lists duplicates for a tibble.
 • list_duplicates(data.frame): lists duplicates for a data.frame.

Examples

 list_duplicates(c("a", "b", "c")) # list()
 list_duplicates(c("a", "b", "a", "c")) # list(c(1, 3))

Description

 Starts a graphical user interface for analysing litter data. A Tcl/Tk-dialogue will be started if one or more arguments are missing.

Usage

 litter(filename = NULL)

Arguments

 filename name of file containing settings (see vignette for details)

Details

 For details, see our vignette by typing: vignette("litter-manual")

Value

 directory name (invisibly) where all results are stored.
mann_kendall

Mann Kendall

Description
Performs Mann-Kendall non-parametric test for trend.

Usage

```r
mann_kendall(x, t = seq_along(x), type = c("both", "increasing", "decreasing"))
```

S3 method for class `mann_kendall`

`test_statistic(x, ...)`

`p_value(x, ...)`

Arguments

- `x`: numeric vector representing a time-series.
- `t`: time index (a numeric vector, or a vector of class `Date`).
- `type`: direction to test (both, increasing, or decreasing).
- `...`: further arguments passed to or from other methods.

Value
object of class Mann-Kendall.

Methods (by generic)

- `test_statistic(mann_kendall)`: Extracts Mann Kendall tau
- `p_value(mann_kendall)`: Extract p-value

See Also

`test_statistic, p_value, cor.test, regional_kendall`

Examples

```r
# create mann_kendall object
mk <- mann_kendall(c(9, 4, 7, 5, 3), type = "decreasing")
mk <- mann_kendall(
  x = c(9, 4, 7, 5, 3),
  t = c(1, 3, 2, 5, 9),
  type = "decreasing")
```
get test statistic tau
test_statistic(mk)

get p-value
p_value(mk)

medcouple
Medcouple

Description

Robust statistic that quantifies the skewness of univariate distributions.

Usage

```r
medcouple(x, ...)
```

```r
## Default S3 method:
medcouple(x, ...)
```

Arguments

- `x` numeric vector
- `...` further arguments passed to or from other methods.

Value

medcouple (numeric vector of length 1).

Methods (by class)

- `medcouple(default)`: default method

Note

This is a naive, but robust and simple implementation. For a more efficient implementation see package `robustbase` and the references section below.

References

p_value

<table>
<thead>
<tr>
<th>p_value</th>
<th>p-value</th>
</tr>
</thead>
</table>

Description

Extract p-value.

Usage

```r
p_value(x, ...)
```

Arguments

- `x` object
- `...` further arguments passed to or from other methods.

Value

p-value of a test (numeric vector of length 1).

read_litter

Read Litter Data

Description

Reads litter data from various formats. Currently only the OSPAR data snapshot format, and a wide format are supported. See the package vignette for more details.

Usage

```r
read_litter(filename, logger = create_logger(level = "INFO"), type_names)
```

Arguments

- `filename` name of litter file
- `logger` optional logger object (see `create_logger`)
- `type_names` character vector of allowed type_names

Value

tibble with litter data in long format
read_litter_types
Read Type Names

Description

Read the file that links type names to group codes. See the package vignette for more details.

Usage

```r
read_litter_types(filename, logger = create_logger(level = "INFO"))
```

Arguments

- `filename`: name of type file
- `logger`: optional logger object (see `create_logger`)

Value

A tibble with a look-up-table of type names and group codes.

read_settings
Read Settings File

Description

Reads settings file. See tutorial for its format.

Usage

```r
read_settings(filename, logger = create_logger(level = "INFO"))
```

Arguments

- `filename`: name of litter file
- `logger`: optional logger object (see `create_logger`)

Value

A validated settings file.
recdf
Sample From an ECDF

Description
Type stable implementation of an Empirical Cumulative Distribution Function (ECDF) sampler.

Usage
```r
recdf(x, n)
```

Arguments
- `x`: numeric vector
- `n`: number of draws

Value
vector of `n` elements of the same type as `x`

See Also
- `ecdf`

Examples
```r
recdf(1:5, 10)
```

regional_kendall
Regional Kendall Test for Trend

Description
Performs Regional Kendall non-parametric test for trend.

Usage
```r
regional_kendall(
  x,
  t = seq_along(x),
  r = rep.int(1, length(x)),
  type = c("both", "increasing", "decreasing")
)
```

```r
## S3 method for class 'regional_kendall'

### test_statistic(x, ...)
```
S3 method for class 'regional_kendall'
p_value(x, ...)

Arguments

- **x**: observations
- **t**: time index
- **r**: region index
- **type**: direction to test (both, increasing, or decreasing).
- **...**: further arguments passed to or from other methods.

Methods (by generic)

- `test_statistic(regional_kendall)`: Extracts Regional Kendall Z
- `p_value(regional_kendall)`: Extract Regional Kendall p-value

References

See Also

`mann_kendall`

rmad

Relative Median Absolute Deviation

Description

This is the Median Absolute Deviation divided by the median and is similar to the coefficient of variation.

Usage

`rmad(x, na.rm = FALSE)`

Arguments

- **x**: a numeric vector
- **na.rm**: logical. Should missing values be removed?

Value

Relative median absolute deviation (numeric vector of length 1).

References

https://en.wikipedia.org/wiki/Median_absolute_deviation
roll

Rolling Statistics

Description

Applies function `fun` within a rolling (moving) window of size `w` to vector numeric vector `x`.

Usage

```r
roll(x, w = 3, fun = mean)
```

Arguments

- `x`: numeric vector (time-series)
- `w`: width of moving window
- `fun`: function to be applied

Value

vector of length `length(x)-w`

sequenize

Sequenize Objects

Description

Generic function for sequenizing objects

Usage

```r
sequenize(x, ...)
```

Arguments

- `x`: object to sequenize
- `...`: further arguments passed to or from other methods.

See Also

[sequenize.integer](doc)
Sequenize Integer Sequence

Description

Compression of integer sequences to 'start-end' notation. For instance `c(1:5, 8:9)` becomes "1-5, 8-9".

Usage

```r
## S3 method for class 'integer'
sequenize(x, ...)
```

Arguments

- `x`: vector of integers.
- `...`: further arguments passed to or from other methods.

Value

object of class sequenized

Note

The elements of `x` should be unique and in ascending order.

Examples

```r
sequenize(c(1:4, 8:9))
```

Slope

Description

Extract slope.

Usage

```r
slope(x, ...)
```

Arguments

- `x`: object
- `...`: further arguments passed to or from other methods.
Value

estimate of the slope (numeric vector of length 1).

Description

Computes adjusted boxplot statistics to be used by ggplot2. See Hubert & Vandervieren (2008, p.5191, Eq.5).

Usage

```r
stat_adj_boxplot()
stat_adj_boxplot_outlier()
```

Functions

- `stat_adj_boxplot_outlier()`: add outliers to adjusted boxplot

References

See Also

`adj_boxplot_stats, stat_adj_boxplot_outlier`

Examples

```r
library(ggplot2)

d <- data.frame(x = gl(2, 50), y = rnorm(100))
ggplot(data = d, mapping = aes(x = x, y = y)) +
  stat_adj_boxplot()
```
test_statistic

Description

Extract test statistic.

Usage

```r
test_statistic(x, ...)
```

Arguments

- `x` object
- `...` further arguments passed to or from other methods.

Value

test statistic of a test (numeric vector of length 1).

See Also

- `test_statistic.wilcoxon`
- `test_statistic.mann_kendall`

theil_sen

Theil Sen Slope Estimator

Description

Theil Sen Slope Estimator

Usage

```r
theil_sen(x, y, ...)
```

S3 method for class 'theil_sen'

```r
slopes(x, ...)
```

S3 method for class 'theil_sen'

```r
intercept(x, ...)
```

Arguments

- `x` time vector (numeric, or Date).
- `y` numeric value.
- `...` further arguments passed to or from other methods.
trimean

Value

object of class Theil_Sen.

Methods (by generic)

- slope(theil_sen): Extract slope.
- intercept(theil_sen): Extract intercept.

References

https://en.wikipedia.org/wiki/Theil-Sen_estimator

Examples

create theil_sen object
ts <- theil_sen(1:5, c(1, 2, 3, 5, 9))

get slope
slope(ts)

get intercept
intercept(ts)

Tukey's Trimean

Description

Robust centrality measure estimated as the weighted average of the three quartiles: \((Q_1 + 2Q_2 + Q_3)/4\), where \(Q_1, Q_2\) and \(Q_3\) are the first, second and third quartiles respectively.

Usage

trimean(x, ...)

Default S3 method:
trimean(x, ...)

Arguments

- `x` numeric vector
- `...` further arguments passed to or from other methods.

Value

trimean (numeric value of length 1).
Methods (by class)

- `trimean(default)`: Tukey's trimean

References

https://en.wikipedia.org/wiki/Trimean

Examples

```r
stopifnot(trimean(0:100) == mean(0:100))
stopifnot(trimean(0:100) == median(0:100))
```

validate

Validation of LitteR File Formats

Description

Generic function for validation of file formats.

Usage

```r
validate(x, ...)
```

S3 method for class `litter`

```r
validate(x, type_names, logger = create_logger(level = "INFO"), ...)
```

S3 method for class `litter_types`

```r
validate(x, logger = create_logger(level = "INFO"), ...)
```

S3 method for class `settings`

```r
validate(x, logger = create_logger(level = "INFO"), ...)
```

Arguments

- `x` object to validate
- `...` further arguments passed to or from other methods.
- `type_names` character vector of permissible types
- `logger` optional logger object (see `create_logger`)

Value

- validated object of class `wide`
- validated object of class `litter_types`
- validated settings (list)
Methods (by class)

- validate(litter): validate litter data.
- validate(litter_types): validate litter_types file
- validate(settings): validate settings file

Description

Constructor for a Wilcoxon test (simple wrapper for \texttt{wilcox.test}).

Usage

\begin{verbatim}
wilcoxon(x, type = c("both", "greater", "less"), mu = 0)

S3 method for class 'wilcoxon'
test_statistic(x, ...)

S3 method for class 'wilcoxon'
p_value(x, ...)
\end{verbatim}

Arguments

- \texttt{x}: numeric vector representing a time-series.
- \texttt{type}: direction to test (both, increasing, or decreasing).
- \texttt{mu}: baseline value (null hypothesis)
- \texttt{...}: further arguments passed to or from other methods.

Value

Object of class \texttt{wilcoxon}.

Methods (by generic)

- \texttt{test_statistic(wilcoxon)}: Extract test statistic \(V \)
- \texttt{p_value(wilcoxon)}: Extract p-value

See Also

\texttt{wilcox.test, p_value, test_statistic}
Examples

```r
# create wilcoxon object
w <- wilcoxon(c(9, 4, 7, 5, 3), type = "less")

# get test statistic V
test_statistic(w)

# get p-value
p_value(w)
```
Index

adj_boxplot_stats, 4, 21
character, 12
connection, 5
cor.test, 13
create_litter_project, 3, 5
create_logger, 5, 15, 16, 24
cv, 6
data.frame, 12
Date, 13
edcdf, 17
enumerate, 6
enumerate.character, 7, 7
enumerate.sequenized, 7
file.access, 8
has_write_access, 8
intercept, 8
intercept.theilSen (theilSen), 22
iod, 9
is_date_format, 9
is_natural_number, 10
kendall_s, 10
kendall_var_s, 11, 11
list, 12
list_duplicates, 11
litter (litter-package), 3
litter, 3, 12
litter-package, 3
mann_kendall, 13, 18
medcouple, 14
p_value, 13, 15, 25
p_value.mann_kendall (mann_kendall), 13
p_value.regional_kendall (regional_kendall), 17
p_value.wilcoxon (wilcoxon), 25
read_litter, 15
read_litter_types, 16
read_settings, 16
recdf, 17
regional_kendall, 13, 17
rmad, 18
roll, 19
sequenize, 19
sequenize.integer, 8, 19, 20
slope, 20
slope.theilSen (theilSen), 22
stat_adj_boxplot, 4, 21
stat_adj_boxplot_outlier, 21
stat_adj_boxplot_outlier (stat_adj_boxplot), 21
strptime, 9
test_statistic, 13, 22, 25
test_statistic.mann_kendall, 22
test_statistic.mann_kendall (mann_kendall), 13
test_statistic.regional_kendall (regional_kendall), 17
test_statistic.wilcoxon, 22
test_statistic.wilcoxon (wilcoxon), 25
theilSen, 22
tibble, 12
trimean, 23
validate, 24
wilcox.test, 25
wilcoxon, 25