Package ‘live’

January 15, 2020

Type Package

Title Local Interpretable (Model-Agnostic) Visual Explanations

Version 1.5.13

Description Interpretability of complex machine learning models is a growing concern. This package helps to understand key factors that drive the decision made by complicated predictive model (so called black box model). This is achieved through local approximations that are either based on additive regression like model or CART like model that allows for higher interactions. The methodology is based on Tulio Ribeiro, Singh, Guestrin (2016) <doi:10.1145/2939672.2939778>. More details can be found in Staniak, Biecek (2018) <doi:10.32614/RJ-2018-072>.

URL https://github.com/ModelOriented/live

BugReports https://github.com/ModelOriented/live/issues

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

Depends R (>= 3.0.2)

Suggests knitr, rmarkdown, testthat, glmnet, covr, DALEX, RWeka, mda, modeltools

VignetteBuilder knitr

Imports mlr, dplyr, breakDown, data.table, forestmodel, shiny, MASS, ggplot2, gower, e1071

NeedsCompilation no

Author Mateusz Staniak [cre, aut], Przemysław Biecek [aut]

Maintainer Mateusz Staniak <mateusz.staniak@math.uni.wroc.pl>

Repository CRAN

Date/Publication 2020-01-15 06:30:17 UTC
R topics documented:

 add_predictions . 2
 euclidean_kernel . 3
 fit_explanation . 4
 gaussian_kernel . 5
 identity_kernel . 6
 live . 6
 live_shiny . 7
 local_approximation . 7
 local_permutation_importance . 8
 plot.live_explainer . 10
 plot.local_permutation_importance . 11
 print.live_explainer . 11
 print.live_explorer . 12
 print.local_permutation_importance . 12
 sample_locally . 13
 wine . 14

Index 15

add_predictions Add black box predictions to generated dataset

Description

Add black box predictions to generated dataset

Usage

add_predictions(
 to_explain,
 black_box_model,
 data = NULL,
 predict_fun = predict,
 hyperparams = list(),

)

Arguments

 to_explain List return by sample_locally function.
 black_box_model String with mlr signature of a learner or a model with predict interface.
 data Original data frame used to generate new dataset. Need not be provided when a trained model is passed in black_box_model argument.
euclidean_kernel

Either a "predict" function that returns a vector of the same type as response or custom function that takes a model as a first argument, and data used to calculate predictions as a second argument and returns a vector of the same type as response. Will be used only if a model object was provided in the black_box argument.

hyperparams

Optional list of (hyper)parameters to be passed to mlr::makeLearner.

... Additional parameters to be passed to predict function.

Value

list of class "live_explorer" consisting of

- **data**
 Dataset generated by sample_locally function with response variable.

- **target**
 Name of the response variable.

- **model**
 Black box model which is being explained.

- **explained_instance**
 Instance that is being explained.

- **sampling_method**
 Name of used sampling method

- **fixed_variables**
 Names of variables which were not sampled

- **sdevations**
 Standard deviations of numerical variables

Examples

```r
## Not run:
# Train a model inside add_predictions call.
local_exploration1 <- add_predictions(dataset_for_local_exploration,
black_box_model = "regr.svm",
data = wine)

# Pass trained model to the function.
svm_model <- svm(quality ~., data = wine)
local_exploration2 <- add_predictions(dataset_for_local_exploration,
black_box_model = svm_model)

## End(Not run)
```

euclidean_kernel

LIME kernel equal to the inverse of euclidean distance.

Description

LIME kernel equal to the inverse of euclidean distance.
Usage

euclidean_kernel(explained_instance, simulated_instance)

Arguments

explained_instance
explained instance
simulated_instance
new observation

Value
numeric

fit_explanation
Fit white box model to the simulated data.

Description
Fit white box model to the simulated data.

Usage

fit_explanation(
 live_object,
 white_box = "regr.lm",
 kernel = gaussian_kernel,
 standardize = FALSE,
 selection = FALSE,
 response_family = "gaussian",
 predict_type = "response",
 hyperpars = list()
)

Arguments

live_object List return by add_predictions function.
white_box String, learner name recognized by mlr package.
kernel function which will be used to calculate distance between simulated observations and explained instance.
standardize If TRUE, numerical variables will be scaled to have mean 0, variance 1 before fitting explanation model.
selection If TRUE, variable selection based on glmnet implementation of LASSO will be performed.
response_family family argument to glmnet (and then glm) function. Default value is "gaussian"
gaussian_kernel

predict_type Argument passed to mlr::makeLearner() argument "predict.type". Defaults to "response".

hyperpars Optional list of values of hyperparameters of a model.

Value

List of class "live_explainer" that consists of

data Dataset used to fit explanation model (may have less column than the original)
model Fitted explanation model
explained_instance Instance that is being explained
weights Weights used in model fitting
selected_variables Names of selected variables

Examples

Not run:
fitted_explanation <- fit_explanation(local_exploration1, "regr.lm", selection = TRUE)

End(Not run)

gaussian_kernel *LIME kernel from the original article with sigma = 1.*

Description

LIME kernel from the original article with sigma = 1.

Usage

gaussian_kernel(explained_instance, simulated_instance)

Arguments

explained_instance explained instance

simulated_instance new observation

Value

numeric
identity_kernel

LIME kernel that treats all observations as equally similar to observation of interest.

Description

LIME kernel that treats all observations as equally similar to observation of interest.

Usage

```r
identity_kernel(explained_instance, simulated_instance)
```

Arguments

- `explained_instance`
 - explained instance
- `simulated_instance`
 - new observation

Value

numeric

live

live: visualizing interpretable models to explain black box models.

Description

This package aims to help locally fit and visualize interpretable models similarly to LIME methodology. Interface provided by mlr package is used. Tools are provided to create a simulated dataset of similar observations, fit chosen white box models (GLM and CART in particular) and visualize them. The methodology is based on Tulio Ribeiro, Singh, Guestrin (2016) [doi:10.1145/2939672.2939778]. More details can be found in Staniak, Biecek (2018) [doi:10.32614/RJ-2018-072].

Important functions

- `sample_locally` generates a dataset that will be used for local exploration. `add_predictions` adds black box model predictions to simulated dataset. `fit_explanation` fits a chosen white box model to simulated dataset. generic `plot` function visualizes fitted model. `local_approximation` function can be used with DALEX explainers to perform all the steps of local model exploration.

Example datasets

- `wine` Data on wine quality taken from Modeling wine preferences by data mining from physico-chemical properties
live_shiny

Function that starts a Shiny app which helps use LIVE.

Description

Function that starts a Shiny app which helps use LIVE.

Usage

live_shiny(train_data, black_box_model, target, explained_data = train_data)

Arguments

train_data dataset from which observations will be sampled.
black_box_model Pre-trained model with predict interface.
target character, name of the response variable.
explained_data Data frame with predictions to explain.

Value

shiny app

local_approximation

Fit local model around the observation: shortcut for DALEX explainer objects

Description

Fit local model around the observation: shortcut for DALEX explainer objects

Usage

local_approximation(
 explainer,
 observation,
 target_variable_name,
 n_new_obs,
 local_model = "regr.lm",
 select_variables = F,
 predict_type = "response",
 kernel_type = gaussian_kernel,
 ...
)

)
Arguments

explainer a model to be explained, preprocessed by the DALEX::explain function
observation a new observation for which predictions need to be explained
target_variable_name name of the response variable as a character
n_new_obs Number of observation in the simulated dataset
local_model Character specifying mlr learner to be used as a local model
select_variables If TRUE, variable selection will be performed while fitting the local linear model
predict_type Argument passed to mlr::makeLearner() argument "predict.type" while fitting the local model. Defaults to "response"
kernel_type Function which will be used to calculate distances from simulated observation to explained instance

Value

object of class live_explainer. More details in fit_explanation function help.

Examples

```r
## Not run:
data('wine')
library(randomForest)
library(DALEX)
rf <- randomForest(quality~., data = wine)
expl <- explain(rf, wine, wine$quality)
live_expl <- local_approximation(expl, wine[5, ], "quality", 500)
## End(Not run)
```

Description

This function calculates local variable importance (variable drop-out) by finding top_n observations closest to the explained instance, performing permutation variable importance and using weighted mean square error as loss function with weights equal to 1 - Gower distances of the closest observations to the explained instance.
local_permutation_importance

Usage

local_permutation_importance(
 explained_instance,
 data,
 explained_var,
 model,
 top_n = nrow(data)
)

Arguments

explained_instance Data frame with one observation for which prediction will be explained
data Data from with the same columns as explained_instance
explained_var Character with the names of response variable
model Model to be explained
top_n Number of observation that will be used to calculate local variable importance

Value

list of class "local_permutation_importance" that consists of

residuals Data frame with names of variables in the dataset ("label") and values of drop-out loss ("dropout_loss")
weighted_local_mse Value of weighted MSE for the whole dataset with weights given by 1 - Gower distance from the explained instance
explained_instance Explained instance as a data frame

Examples

Not run:
local_permutation_importance(wine[5,], wine,
 randomForest(quality~., data = wine),
 top_n = 1000)

End(Not run)
plot.live_explainer
Plotting white box models.

Description

Plotting white box models.

Usage

```r
## S3 method for class 'live_explainer'
plot(x, type = "waterfall", ...)
```

Arguments

- `x` List returned by `fit_explanation` function.
- `type` `chr`, "forest" or "waterfall" depending on which type of plot is to be created. If `lm/glm` model is used as interpretable approximation.
- `...` Additional parameters that will be passed to `plot.broken` or `plot` method. In particular, when number of features is large, `top_features` argument can be set in `plot.broken`.

Value

`plot` (ggplot2 or base)

Examples

```r
## Not run:
# Forest plot for regression
plot(fitted_explanation1, type = "forest")
# Waterfall plot
plot(fitted_explanation1, type = "waterfall")
# Plot decision tree
plot(fitted_explanation2)
```

End(Not run)
Description

Plot local permutation importance

Usage

S3 method for class 'local_permutation_importance'
plot(x, ...)

Arguments

x Object of class local_permutation_importance
...
Optional arguments, currently ignored

Value

ggplot2 object

Description

Generic print function for live explainer

Usage

S3 method for class 'live_explainer'
print(x, ...)

Arguments

x Object created using fit_explanation function
...
other arguments
print.live_explorer
Generic print function for class live_explorer

Description

Generic print function for class live_explorer

Usage

```r
## S3 method for class 'live_explorer'
print(x, ...)
```

Arguments

- `x`: Object created by sample_locally function or add_predictions function
- `...`: Other arguments

print.local_permutation_importance

Print method for local_permutation_importance class

Description

Print method for local_permutation_importance class

Usage

```r
## S3 method for class 'local_permutation_importance'
print(x, ...)
```

Arguments

- `x`: Object of class local_permutation_importance
- `...`: Optional arguments, currently ignored
sample_locally

Generate dataset for local exploration.

Description
Generate dataset for local exploration.

Usage
sample_locally(
data, explained_instance, explained_var, size, method = "live", fixed_variables = NULL, seed = NULL, ...
)

Arguments

data: Data frame from which new dataset will be simulated.
explained_instance: One row data frame with the same variables as in data argument. Local exploration will be performed around this observation.
explained_var: Name of a column with the variable to be predicted.
size: Number of observations is a simulated dataset.
method: If "live", new observations will be created by changing one value per observation. If "permute", new observation will be created by permuting all columns of data. If "normal", numerical features will be sampled from multivariate normal distribution specified by ... arguments mu and Sigma.
fixed_variables: names or numeric indexes of columns which will not be changed while sampling.
seed: Seed to set before sampling. If NULL, results will not be reproducible.
...

Value
list of class "live_explorer" consisting of
data: Dataset generated by sample_locally function with response variable.
target: Name of the response variable.
explained_instance: Instance that is being explained.
sampling_method
Name of used sampling method
fixed_variables
Names of variables which were not sampled
sdevations
Standard deviations of numerical variables

Examples

Not run:
dataset_for_local_exploration <- sample_locally(data = wine,
explained_instance = wine[5,],
explained_var = "quality",
size = 50)

End(Not run)

wine
Red wine characteristics and quality.

Description
Popular dataset related to wine samples from north Portugal.

Usage
wine

Format
Data frame with 1599 rows and 12 columns.

References
Index

*Topic datasets
 wine, 14

add_predictions, 2, 6
euclidean_kernel, 3
fit_explanation, 4, 6
gaussian_kernel, 5
identity_kernel, 6
live, 6
live_shiny, 7
local_approximation, 6, 7
local_permutation_importance, 8
plot, 6
plot.live_explainer, 10
plot.local_permutation_importance, 11
print.live_explainer, 11
print.live_explorer, 12
print.local_permutation_importance, 12
sample_locally, 6, 13
wine, 14