Package ‘lmeInfo’

July 7, 2022

Type Package

Title Information Matrices for ‘lmeStruct’ and ‘glsStruct’ Objects

Version 0.2.1

Description Provides analytic derivatives and information matrices for fitted linear mixed effects (lme) models and generalized least squares (gls) models estimated using lme() (from package 'nlme') and gls() (from package 'nlme'), respectively. The package includes functions for estimating the sampling variance-covariance of variance component parameters using the inverse Fisher information. The variance components include the parameters of the random effects structure (for lme models), the variance structure, and the correlation structure. The expected and average forms of the Fisher information matrix are used in the calculations, and models estimated by full maximum likelihood or restricted maximum likelihood are supported. The package also includes a function for estimating standardized mean difference effect sizes (Pustejovsky, Hedges, and Shadish (2014) <DOI:10.3102/1076998614547577>) based on fitted lme or gls models.

URL https://jepusto.github.io/lmeInfo/

BugReports https://github.com/jepusto/lmeInfo/issues

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 4.1.0)

Suggests covr, testthat (>= 2.1.0), knitr, rmarkdown, scdhlm, mlmRev, carData, lme4, Matrix, merDeriv

Imports nlme, stats

VignetteBuilder knitr

RoxygenNote 7.1.2

Language en-US

NeedsCompilation no

Author James Pustejovsky [aut] (<https://orcid.org/0000-0003-0591-9465>), Man Chen [aut, cre]
Maintainer Man Chen <manchen9005@gmail.com>

Repository CRAN

Date/Publication 2022-07-06 23:20:12 UTC

R topics documented:

- Bryant2016 ... 2
- CI_g ... 3
- extract_varcomp .. 4
- Fisher_info .. 5
- g_mlm ... 6
- varcomp_vcov ... 8

Index

<table>
<thead>
<tr>
<th>Bryant2016</th>
<th>Bryant et al. (2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Data from a multi-level multiple baseline design conducted by Bryant et al. (2016). The study involved collecting repeated measures of math performance on twelve students nested in three schools. The variables are as follows:

- **Study_ID** Study identifier.
- **school** School identifier.
- **case** Student identifier.
- **session** Measurement occasion.
- **treatment** Indicator for treatment phase.
- **outcome** Texas Early Mathematics Inventory (TEMI-Aim Check) scores.
- **trt_time** Measurement occasion times treatment phase.
- **session_c** Measurement occasion centered at the follow-up time (Measurement occasion 9).

Format

A data frame with 299 rows and 8 variables

Source

CI_g

Calculates a confidence interval for a standardized mean difference effect size

Description

Calculates a confidence interval for a g_mlm object, using either a central t distribution (for a symmetric interval) or a non-central t distribution (for an asymmetric interval).

Usage

CI_g(g, cover = 0.95, bound = 35, symmetric = TRUE)

Arguments

- **g**
an estimated effect size object of class g_mlm.
- **cover**
confidence level.
- **bound**
numerical tolerance for non-centrality parameter in qt.
- **symmetric**
If TRUE (the default), use a symmetric confidence interval. If FALSE, use a non-central t approximation to obtain an asymmetric confidence interval.

Value

A vector of lower and upper confidence bounds.

Examples

```r
library(nlme)
data(Bryant2016, package = "lmeInfo")
Bryant2016_RML1 <- lme(fixed = outcome ~ treatment,
                        random = ~ 1 | school/case,
                        correlation = corAR1(0, ~ session | school/case),
                        data = Bryant2016)
Bryant2016_g1 <- g_mlm(Bryant2016_RML1, p_const = c(0,1), r_const = c(1,1,0,1),
                        infotype = "expected")
CI_g(Bryant2016_g1, symmetric = TRUE)
CI_g(Bryant2016_g1, symmetric = FALSE)
```
extract_varcomp

Extract estimated variance components

Description

Extracts the estimated variance components from a fitted linear mixed effects model (lmeStruct object) or generalized least squares model (glsStruct object).

Usage

extract_varcomp(mod, separate_variances, vector)

Arguments

mod
Fitted model of class lmeStruct or glsStruct.

separate_variances
Logical indicating whether to return the separate level-1 variance components for each stratum if using varIdent function to allow for different variances per stratum. Default is FALSE.

vector
Logical indicating whether to return the variance components as a numeric vector. Default is FALSE.

Value

If vector = FALSE, an object of class varcomp consisting of a list of estimated variance components. Models that do not include correlation structure parameters or variance structure parameters will have empty lists for those components. If vector = TRUE, a numeric vector of estimated variance components.

If separate_variances = TRUE and if weights = varIdent(form = ~ 1 | Stratum) is specified in the model fitting, separate level-1 variance estimates will be returned for each stratum. If separate_variances = TRUE but if the weighting structure is not specified with varIdent, or if separate_variances = FALSE, then no separate level-1 variance estimates will be returned.

Examples

library(nlme)
data(Bryant2016)
Bryant2016_RML <- lme(fixed = outcome ~ treatment,
 random = ~ 1 | school/case,
 correlation = corAR1(0, ~ session | school/case),
 weights = varIdent(form = ~ 1 | treatment),
 data = Bryant2016)
extract_varcomp(Bryant2016_RML, separate_variances = FALSE)
extrac_varcomp(Bryant2016_RML, separate_variances = TRUE)
extrac_varcomp(Bryant2016_RML, vector = TRUE)
Fisher_info

Calculate expected, observed, or average Fisher information matrix

Description

Calculates the expected, observed, or average Fisher information matrix from a fitted linear mixed effects model (lmeStruct object) or generalized least squares model (glsStruct object).

Usage

Fisher_info(mod, type = "expected", separate_variances = FALSE)

Arguments

mod Fitted model of class lmeStruct or glsStruct.
type Type of information matrix. One of "expected" (the default), "observed", or "average".
separate_variances Logical indicating whether to return the Fisher information matrix for separate level-1 variance components if using varIdent function to allow for different variances per stratum. Default is FALSE.

Value

Information matrix corresponding to variance component parameters of mod.

If separate_variances = TRUE and if weights = varIdent(form = ~ 1 | Stratum) is specified in the model fitting, the Fisher information matrix for separate level-1 variance estimates will be returned. If separate_variances = TRUE but if the weighting structure is not specified with varIdent, or if separate_variances = FALSE, then the Fisher information matrix for the default variance components will be returned.

Examples

library(nlme)
data(Bryant2016)
Bryant2016_RML <- lme(fixed = outcome ~ treatment,
 random = ~ 1 | school/case,
 correlation = corAR1(0, ~ session | school/case),
 data = Bryant2016)
Fisher_info(Bryant2016_RML, type = "expected")
Fisher_info(Bryant2016_RML, type = "average")

Bryant2016_RML2 <- lme(fixed = outcome ~ treatment,
 random = ~ 1 | school/case,
 correlation = corAR1(0, ~ session | school/case),
 weights = varIdent(form = ~ 1 | treatment),
 data = Bryant2016)
`g_mlm`

Fisher_info(Bryant2016_RML2, separate_variances = TRUE)

g_mlm

Calculates adjusted mlm effect size

Description

Estimates a standardized mean difference effect size from a fitted multi-level model, using restricted or full maximum likelihood methods with small-sample correction, as described in Pustejovsky, Hedges, & Shadish (2014).

Usage

```r
g_mlm(
  mod,
  p_const,
  mod_denom = mod,
  r_const = NULL,
  infotype = "expected",
  separate_variances = FALSE,
  ...
)
```

Arguments

- `mod` Fitted model of class `lmeStruct` (estimated using `nlme::lme()` or of class `glsStruct` (estimated using `nlme::gls()`), from which to estimate the numerator of the effect size.
- `p_const` Vector of constants for calculating numerator of effect size. Must be the same length as fixed effects in `mod`.
- `mod_denom` Fitted model of class `lmeStruct` (estimated using `nlme::lme()` or of class `glsStruct` (estimated using `nlme::gls()`), from which to estimate the denominator of the effect size. If not otherwise specified, the same model will be used for the numerator and the denominator calculations.
- `r_const` Vector of constants for calculating denominator of effect size. Must be the same length as the number of variance component parameters in `mod_denom`.
- `infotype` Type of information matrix. One of "expected" (the default), "observed", or "average".
- `separate_variances` Logical indicating whether to incorporate separate level-1 variance components in the calculation of the effect size and standard error for models with a `varIdent()` variance structure. If `TRUE`, make sure the `r_const` matches the parameterization of the variance component as returned by `extract_varcomp(mod, separate_variances = TRUE)`. Default is `FALSE`.
- `...` further arguments.
g_mlm

Value

A list with the following components

- **p_beta**: Numerator of effect size
- **r_theta**: Squared denominator of effect size
- **delta_AB**: Unadjusted (mlm) effect size estimate
- **nu**: Estimated denominator degrees of freedom
- **J_nu**: Biased correction factor for effect size estimate
- **kappa**: Scaled standard error of numerator
- **g_AB**: Corrected effect size estimate
- **SE_g_AB**: Approximate standard error estimate
- **cnvg_warn**: Indicator that model did not converge
- **theta**: Estimated variance component parameters
- **info_inv**: Inversed information matrix

References

Examples

```r
library(nlme)
data(Bryant2016, package = "lmeInfo")
Bryant2016_RML1 <- lme(fixed = outcome ~ treatment,
                         random = ~ 1 | school/case,
                         correlation = corAR1(0, ~ session | school/case),
                         data = Bryant2016)
Bryant2016_g1 <- g_mlm(Bryant2016_RML1, p_const = c(0,1), r_const = c(1,1,0,1),
                        infotype = "expected")
print(Bryant2016_g1)
summary(Bryant2016_g1)

Bryant2016_RML2 <- lme(fixed = outcome ~ treatment,
                         random = ~ 1 | school/case,
                         correlation = corAR1(0, ~ session | school/case),
                         weights = varIdent(form = ~ 1 | treatment),
                         data = Bryant2016)
Bryant_g <- g_mlm(Bryant2016_RML2, p_const = c(0,1), r_const = c(1,1,0,0,1))
Bryant_g_baseline <- g_mlm(Bryant2016_RML2,
                         p_const = c(0,1),
                         r_const = c(1,1,0,1,0),
                         separate_variances = TRUE)
Bryant_g_treatment <- g_mlm(Bryant2016_RML2,
                         p_const = c(0,1),
                         r_const = c(1,1,0,0,1),
                         separate_variances = TRUE)
```
Description

Estimate the sampling variance-covariance of variance component parameters from a fitted linear mixed effects model (lmeStruct object) or generalized least squares model (glsStruct object) using the inverse Fisher information.

Usage

```
varcomp_vcov(mod, type = "expected", separate_variances = FALSE)
```

Arguments

- **mod** Fitted model of class lmeStruct or glsStruct.
- **type** Type of information matrix. One of "expected" (the default), "observed", or "average".
- **separate_variances** Logical indicating whether to return the Fisher information matrix for separate level-1 variance components if using varIdent function to allow for different variances per stratum. Default is FALSE.

Value

Sampling variance-covariance matrix corresponding to variance component parameters of `mod`.

Examples

```
library(nlme)
data(Bryant2016)
Bryant2016_RML <- lme(fixed = outcome ~ treatment,
  random = ~ 1 | school/case,
  correlation = corAR1(0, ~ session | school/case),
  data = Bryant2016)
varcomp_vcov(Bryant2016_RML, type = "expected")

Bryant2016_RML2 <- lme(fixed = outcome ~ treatment,
  random = ~ 1 | school/case,
  correlation = corAR1(0, ~ session | school/case),
  weights = varIdent(form = ~ 1 | treatment),
  data = Bryant2016)
varcomp_vcov(Bryant2016_RML2, type = "expected")
```
data = Bryant2016)
varcomp_vcov(Bryant2016_RML2, separate_variances = TRUE)
Index

* datasets
 Bryant2016, 2

Bryant2016, 2

CI_g, 3

extract_varcomp, 4

Fisher_info, 5

g_mlm, 6

qt, 3

varcomp_vcov, 8