Package ‘lnmCluster’

October 13, 2022

Type Package

Title Perform Logistic Normal Multinomial Clustering for Microbiome Compositional Data

Version 0.3.1

Maintainer Wangshu Tu <wangshu.tu@carleton.ca>

Description An implementation of logistic normal multinomial (LNM) clustering. It is an extension of LNM mixture model proposed by Fang and Subedi (2020) <arXiv:2011.06682>, and is designed for clustering compositional data. The package includes 3 extended models: LNM Factor Analyzer (LNM-FA), LNM Bicluster Mixture Model (LNM-BMM) and Penalized LNM Factor Analyzer (LNM-FA). There are several advantages of LNM models: 1. LNM provides more flexible covariance structure; 2. Factor analyzer can reduce the number of parameters to estimate; 3. Bicluster can simultaneously cluster subjects and taxa, and provides significant biological insights; 4. Penalty term allows sparse estimation in the covariance matrix. Details for model assumptions and interpretation can be found in papers: Tu and Subedi (2021) <arXiv:2101.01871> and Tu and Subedi (2022) <doi:10.1002/sam.11555>.

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.1.2

Imports mclust, foreach, MASS, stringr, gtools, pgmm, utils

Suggests knitr, rmarkdown, testthat, mvtnorm

VignetteBuilder knitr

Depends R (>= 3.50)

LinkingTo Rcpp

NeedsCompilation yes

Author Wangshu Tu [aut, cre],
Sanjeena Dang [aut],
Yuan Fang [aut]

Repository CRAN

Date/Publication 2022-07-20 17:50:02 UTC
R topics documented:

- `initial_variational_gaussian` 2
- `initial_variational_lasso` 3
- `initial_variational_PGMM` 4
- `lnmbiclust` ... 5
- `lnmfa` .. 7
- `Mico_bi_jensens` .. 8
- `Mico_bi_lasso` .. 10
- `Mico_bi_PGMM` .. 12
- `model_selection` .. 13
- `model_selection_lasso` 14
- `model_selection_PGMM` 15
- `plnmfa` .. 16

Index

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>initial_variational_gaussian</code></td>
<td>2</td>
</tr>
<tr>
<td><code>initial_variational_lasso</code></td>
<td>3</td>
</tr>
<tr>
<td><code>initial_variational_PGMM</code></td>
<td>4</td>
</tr>
<tr>
<td><code>lnmbiclust</code></td>
<td>5</td>
</tr>
<tr>
<td><code>lnmfa</code></td>
<td>7</td>
</tr>
<tr>
<td><code>Mico_bi_jensens</code></td>
<td>8</td>
</tr>
<tr>
<td><code>Mico_bi_lasso</code></td>
<td>10</td>
</tr>
<tr>
<td><code>Mico_bi_PGMM</code></td>
<td>12</td>
</tr>
<tr>
<td><code>model_selection</code></td>
<td>13</td>
</tr>
<tr>
<td><code>model_selection_lasso</code></td>
<td>14</td>
</tr>
<tr>
<td><code>model_selection_PGMM</code></td>
<td>15</td>
</tr>
<tr>
<td><code>plnmfa</code></td>
<td>16</td>
</tr>
</tbody>
</table>

Description

Gives default initial guesses for logistic-normal multinomial biclustering algorithm.

Usage

```r
initial_variational_gaussian(W_count, G, Q_g, cov_str, X)
```

Arguments

- `W_count` The microbiome count matrix that you want to analyze.
- `G` The number of component
- `Q_g` The number of biclusters for each component, a vector.
- `cov_str` The covariance structure you choose, there are 16 different models belongs to this family:UUU, UUG, UUD, UUC, UGU, UGG, UGD, UGC, GUU, GUG, GUD, GUC, GGU, GGG, GGD, GGC.
- `X` The regression covariates matrix, which generated by model.matrix.

Value

- `new_pi_g` Initial guess of proportion
- `new_mu_g` Initial guess of mean vector
- `new_sig_g` Initial guess of covariance matrix for each component
- `new_T_g` Initial guess of covariance of latent variable: u
initial_variational_lasso

new_B_g Initial guess of bicluster membership
new_D_g Initial guess of error matrix
new_m Initial guess of variational mean
new_V Initial guess of variational variance
new_beta_g Initial guess of covariates coefficients.

initial_variational_lasso

Gives default initial guesses for penalized logistic-normal multinomial Factor analyzer algorithm.

Description

Gives default initial guesses for penalized logistic-normal multinomial Factor analyzer algorithm.

Usage

initial_variational_lasso(W_count, G, Q_g, cov_str, X)

Arguments

- **W_count**
 The microbiome count matrix that you want to analyze.
- **G**
 The number of component
- **Q_g**
 A specific number of latent dimension.
- **cov_str**
 The covariance structure you choose, there are 2 different models belongs to this family: UUU, GUU.
- **X**
 The regression covariates matrix, which generated by model.matrix.

Value

- **new_pi_g**
 Initial guess of proportion
- **new_mu_g**
 Initial guess of mean vector
- **new_sig_g**
 Initial guess of covariance matrix for each component
- **new_B_g**
 Initial guess of loading matrix.
- **new_T_g**
 The identity matrix of latent variable: u
- **new_D_g**
 Initial guess of error matrix
- **new_m**
 Initial guess of variational mean
- **new_V**
 Initial guess of variational variance
- **new_beta_g**
 Initial guess of covariates coefficients.
initial_variational_PGMM

Gives default initial guesses for logistic-normal multinomial Factor analyzer algorithm.

Description

Gives default initial guesses for logistic-normal multinomial Factor analyzer algorithm.

Usage

```r
initial_variational_PGMM(W_count, G, Q_g, cov_str, X)
```

Arguments

- `W_count`: The microbiome count matrix that you want to analyze.
- `G`: The number of component
- `Q_g`: The number of latent dimensions for each component, a vector.
- `cov_str`: The covariance structure you choose, there are 8 different models belongs to this family: UUU, UUG, UUD, UUC, GUU, GUG, GUD, GUC.
- `X`: The regression covariates matrix, which generated by model.matrix.

Value

- `new_pi_g`: Initial guess of proportion
- `new_mu_g`: Initial guess of mean vector
- `new_sig_g`: Initial guess of covariance matrix for each component
- `new_B_g`: Initial guess of loading matrix.
- `new_T_g`: The identity matrix of latent variable: u
- `new_D_g`: Initial guess of error matrix
- `new_m`: Initial guess of variational mean
- `new_V`: Initial guess of variational variance
- `new_beta_g`: Initial guess of covariates coefficients.
lnmbiclust

Logistic Normal Multinomial Biclustering algorithm

Description

Main function that can do LNM biclustering and select the best model based on BIC, AIC or ICL.

Usage

```r
dlmbiclust(W_count, range_G, range_Q, model, criteria, iter, permutation, X)
```

Arguments

- `W_count`: The microbiome count matrix
- `range_G`: All possible number of components. A vector.
- `range_Q`: All possible number of bicluster for each component. A vector
- `model`: The covariance structure you choose, there are 16 different models belongs to this family: UUU, UUG, UUD, UUC, UGU, UGG, UGD, UGC, GUU, GUG, GUD, GUC, GGU, GGG, GGD, GGC. You can choose more than 1 covariance structure to do model selection.
- `criteria`: one of AIC, BIC or ICL. The best model is depends on the criteria you choose. The default is BIC
- `iter`: Max iterations, default is 150.
- `permutation`: Only has effect when model contains UUU, UUG, UUD or UUC. If TRUE, it assume the number of biclusters could be different for different components. If FALSE, it assume the number of biclusters are the same cross all components. Default is FALSE.
- `X`: The regression covariate matrix, which is generated by `model.matrix`.

Value

- `z_ig`: Estimated latent variable z
- `cluster`: Component labels
- `mu_g`: Estimated component mean
- `pi_g`: Estimated component proportion
- `B_g`: Estimated bicluster membership
- `T_g`: Estimated covariance of latent variable u
- `D_g`: Estimated error covariance
- `COV`: Estimated sparsity component covariance
- `beta_g`: Estimated covariate coefficients
- `sigma`: Estimated original component covariance
- `overall_loglik`: Complete log likelihood value for each iteration
ICL ICL value
BIC BIC value
AIC AIC value

all_fitted_model display all names of fitted models in a data.frame.

Examples

#generate toy data with n=100, K=5,
#set up parameters
n<-100
p<-5
mu1<-c(-2.8,-1.3,-1.6,-3.9,-2.6)
B1<-matrix(c(1,0,1,0,1,0,1,0,1,0),nrow = p, byrow=TRUE)
T1<-diag(c(2.9,0.5))
D1<-diag(c(0.52, 1.53, 0.56, 0.19, 1.32))
cov1<-B1%*%T1%*%t(B1)+D1
mu2<-c(1.5,-2.7,-1.1,-0.4,-1.4)
B2<-matrix(c(1,0,1,0,0,1,0,1,0,1),nrow = p, byrow=TRUE)
T2<-diag(c(0.2,0.003))
D2<-diag(c(0.01, 0.62, 0.45, 0.01, 0.37))
cov2<-B2%*%T2%*%t(B2)+D2

#generate normal distribution
library(mvtnorm)
simp<-rmultinom(n,1,c(0.6,0.4))
lab<-as.factor(apply(t(simp),1,which.max))
df<-matrix(0,nrow=n,ncol=p)
for (i in 1:n) {
 if(lab[i]==1){df[i,]<-rmvnorm(1,mu1,sigma = cov1)}
 else if(lab[i]==2){df[i,]<-rmvnorm(1,mu2,sigma = cov2)}
}

#apply inverse of additive log ratio and transform normal to count data
f_df<-cbind(df,0)
z<-exp(f_df)/rowSums(exp(f_df))
W_count<-matrix(0,nrow=n,ncol=p+1)
for (i in 1:n) {
 W_count[i,]<-rmultinom(1,runif(1,10000,20000),z[i,])
}

#'if run one model let range_Q be an integer
res<-lnmbiclust(W_count,2,2,model="UUU")

#following will run 2 combinations of Q: 2 2, and 3 3 with G=2.
res<-lnmbiclust(W_count,2,range_Q=c(2:3),model="UUU")

#if run model selection let range_Q and range_G be a vector.
#model selection for all 16 models with G=1 to 3, Q=1 to 3.
res<-lnmbiclust(W_count,c(1:3),c(1:3))
Description

Main function that can do LNM factor analyzer and select the best model based on BIC, AIC or ICL.

Usage

```r
lnmfa(W_count, range_G, range_Q, model, criteria, iter, X)
```

Arguments

- `W_count`: The microbiome count matrix
- `range_G`: All possible number of components. A vector.
- `range_Q`: All possible number of bicluster for each component. A vector.
- `model`: The covariance structure you choose, there are 8 different models belongs to this family: UUU, UUG, UUD, UUC, GUU, GUG, GUD, GUC. You can choose more than 1 covariance structure to do model selection.
- `criteria`: one of AIC, BIC or ICL. The best model is depends on the criteria you choose. The default is BIC.
- `iter`: Max iterations, default is 150.
- `X`: The regression covariate matrix, which is generated by `model.matrix`.

Value

- `z_ig`: Estimated latent variable z
- `cluster`: Component labels
- `mu_g`: Estimated component mean
- `pi_g`: Estimated component proportion
- `B_g`: Estimated bicluster membership
- `D_g`: Estimated error covariance
- `COV`: Estimated component covariance
- `beta_g`: Estimated covariate coefficients
- `overall_loglik`: Complete log likelihood value for each iteration
- `ICL`: ICL value
- `BIC`: BIC value
- `AIC`: AIC value
- `all_fitted_model`: Display all names of fitted models in a data.frame.
Examples

#generate toy data with n=100, K=5,
#set up parameters
n<-100
p<-5
mu1<-c(-2.8,-1.3,-1.6,-3.9,-2.6)
B1<-matrix(c(1,0,1,0,1,0,0,1,0,1),nrow = p, byrow=TRUE)
T1<-diag(c(2.9,0.5))
D1<-diag(c(0.52, 1.53, 0.56, 0.19, 1.32))
cov1<-B1%*%T1%*%t(B1)+D1
mu2<-c(1.5,-2.7,-1.1,-0.4,-1.4)
B2<-matrix(c(1,0,1,0,0,1,0,1,0,1),nrow = p, byrow=TRUE)
T2<-diag(c(0.2,0.003))
D2<-diag(c(0.01, 0.62, 0.45, 0.01, 0.37))
cov2<-B2%*%T2%*%t(B2)+D2

#generate normal distribution
library(mvtnorm)
simp<-rmultinom(n,1,c(0.6,0.4))
lab<-as.factor(apply(t(simp),1,which.max))
for (i in 1:n) {
 if(lab[i]==1){df[i,]<-rmvnorm(1,mu1,sigma = cov1)}
 else if(lab[i]==2){df[i,]<-rmvnorm(1,mu2,sigma = cov2)}
}

#apply inverse of additive log ratio and transform normal to count data
z<-exp(f_df)/rowSums(exp(f_df))
for (i in 1:n) { W_count[i,]<-rmultinom(1,runif(1,10000,20000),z[i,])

res<-lnmfa(W_count,2,2,range_Q=c(2:3),model="UUU")
res<-lnmfa(W_count,c(1:3),c(1:3))
Description

run main microbiome bicluster algorithm.

Usage

```r
Mico_bi_jensens(
    W_count,
    G,
    Q_g,
    pi_g,
    mu_g,
    sig_g,
    V,
    m,
    B_g,
    T_g,
    D_g,
    cov_str,
    iter,
    const,
    beta_g,
    X
)
```

Arguments

- **W_count**: The microbiome count matrix that you want to analyze.
- **G**: The number of component
- **Q_g**: The number of biclusters for each component, a vector.
- **pi_g**: A vector of initial guesses of component proportion
- **mu_g**: A list of initial guess of mean vector
- **sig_g**: A list of initial guess of covariance matrix for each component
- **V**: A list of initial guess of variational variance
- **m**: A list of initial guess of variational mean
- **B_g**: A list of initial guess of bicluster membership
- **T_g**: A list of initial guess of covariance of latent variable: u
- **D_g**: A list of initial guess of error matrix
- **cov_str**: The covariance structure you choose; there are 16 different models belong to this family: UUU, UUG, UUD, UUC, UGU, UGG, UGD, UGC, GUU, GUG, GUD, GUC, GGU, GGG, GGD, GGC.
- **iter**: Max iterations, default is 150.
- **const**: the permutation constant in multinomial distribution. Calculated before the main algorithm in order to save computation time.
- **beta_g**: initial guess of covariates coefficients.
- **X**: The regression covariates matrix, which generates by model.matrix.
Value

- \(z_{ig} \): Estimated latent variable \(z \)
- cluster: Component labels
- \(\mu_g \): Estimated component mean
- \(\pi_g \): Estimated component proportion
- \(B_g \): Estimated bicluster membership
- \(T_g \): Estimated covariance of latent variable \(u \)
- \(D_g \): Estimated error covariance
- \(COV \): Estimated sparsity component covariance
- \(beta_g \): Estimated covariates coefficients.
- \(\sigma \): Estimated original component covariance
- overall_loglik: Complete log likelihood value for each iteration
- ICL: ICL value
- BIC: BIC value
- AIC: AIC value

Description

Main function will perform PLNM factor analyzer and return parameters

Usage

```r
Mico_bi_lasso(W_count, G, Q_g, pi_g, mu_g, sig_g, V, m, B_K, T_K, D_K, cov_str, tuning, iter, const,
```
Arguments

\begin{itemize}
\item \texttt{W_count} The microbiome count matrix
\item \texttt{G} All possible number of components. A vector.
\item \texttt{Q_g} A specific number of latent dimension.
\item \texttt{pi_g} A vector of initial guesses of component proportion
\item \texttt{mu_g} A list of initial guess of mean vector
\item \texttt{sig_g} A list of initial guess of covariance matrix for each component
\item \texttt{V} A list of initial guess of variational variance
\item \texttt{m} A list of initial guess of variational mean
\item \texttt{B_K} A list of initial guess of loading matrix.
\item \texttt{T_K} A list of identity matrix with dimension q.
\item \texttt{D_K} A list of initial guess of error matrix
\item \texttt{cov_str} The covariance structure you choose, there are 2 different models belongs to this family: UUU and GUU. You can choose more than 1 covariance structure to do model selection.
\item \texttt{tuning} length G vector with range 0-1, define the tuning parameter for each component
\item \texttt{iter} Max iterations, default is 150.
\item \texttt{const} the permutation constant in multinomial distribution. Calculated before the main algorithm in order to save computation time.
\item \texttt{beta_g} initial guess of covariates coefficients.
\item \texttt{X} The regression covariates matrix, which generates by model.matrix.
\end{itemize}

Value

\begin{itemize}
\item \texttt{z_ig} Estimated latent variable \(z \)
\item \texttt{cluster} Component labels
\item \texttt{mu_g} Estimated component mean
\item \texttt{pi_g} Estimated component proportion
\item \texttt{B_g} Estimated sparsity loading matrix
\item \texttt{D_g} Estimated error covariance
\item \texttt{COV} Estimated component covariance
\item \texttt{beta_g} Estimated covariates coefficients.
\item \texttt{overall_loglik} Complete log likelihood value for each iteration
\item \texttt{ICL} ICL value
\item \texttt{BIC} BIC value
\item \texttt{AIC} AIC value
\end{itemize}

tuning display the tuning parameter you specified.
Description

run main microbiome Factor Analyzer algorithm.

Usage

```r
Mico_bi_PGMM(
    W_count,
    G,
    Q_g,
    pi_g,
    mu_g,
    sig_g,
    V,
    m,
    B_K,
    T_K,
    D_K,
    cov_str,
    iter,
    const,
    beta_g,
    X
)
```

Arguments

- `W_count`: The microbiome count matrix that you want to analyze.
- `G`: The number of component.
- `Q_g`: The number of latent dimensions for each component, a vector.
- `pi_g`: A vector of initial guesses of component proportion.
- `mu_g`: A list of initial guess of mean vector.
- `sig_g`: A list of initial guess of covariance matrix for each component.
- `V`: A list of initial guess of variational variance.
- `m`: A list of initial guess of variational mean.
- `B_K`: A list of initial guess of loading matrix.
- `T_K`: A list of identity matrix with dimension q.
- `D_K`: A list of initial guess of error matrix.
- `cov_str`: The covariance structure you choose, there are 8 different models belongs to this family: UUU, UUG, UUD, UUC, GUU, GUG, GUD, GUC.
Model Selection

iter Max iterations, default is 150.
const the permutation constant in multinomial distribution. Calculated before the main algorithm in order to save computation time.
beta_g initial guess of covariates coefficients.
X The regression covariates matrix, which generates by model.matrix.

Value

z_ig Estimated latent variable z
cluster Component labels
mu_g Estimated component mean
pi_g Estimated component proportion
B_g Estimated loading matrix.
D_g Estimated error covariance
COV Estimated component covariance
beta_g Estimated covariates coefficients.
overall_loglik Complete log likelihood value for each iteration
ICL ICL value
BIC BIC value
AIC AIC value

Description

fit several models for lnmbicluster along with 3 criteria values: AIC BIC and ICL

Usage

model_selection(W_count, range_G, range_Q, model, permutation, iter, const, X)

Arguments

W_count The microbiome count matrix that you want to analyze.
range_G All possible number of component groups, a vector.
range_Q All possible number of bicluster groups Q, a vector.
model A vector of string that contain cov_str you want to select. Default is all 16 models.
permutation Only has effect when model contains UUU, UUG, UUD or UUC. If TRUE, it assume the number of biclusters could be different for different components. If FALSE, it assume the number of biclusters are the same cross all components.
model_selection_lasso

Arguments

W_count The microbiome count matrix that you want to analyze.
K A specific number of component
Q_K A specific number of latent dimension.
model A specific model name, UUU or GUU
range_tuning A range of tuning parameters specified, ranged from 0-1.
iter Max iterations, default is 150.
const Constant permutation term in multinomial distribution.
X The regression covariates matrix, which generates from model.matrix.

Value

A dataframe that contain the cov_str, K, Q, AIC, BIC, ICL values for model. There may be a lot rows if large K and Q, because of lots of combinations: it is a sum of a geometric series with multiplier max(Q) from 1 to max(K).

Description

fit several models for plnmfa along with 3 criteria values: AIC BIC and ICL

Usage

model_selection_lasso(W_count, K, Q_K, model, range_tuning, iter, const, X)
Model selections for \texttt{lnmfa}

Description

fit several models for \texttt{lnmfa} along with 3 criteria values: AIC, BIC and ICL.

Usage

```r
model_selection_PGMM(
  \_W_count,
  range_G,
  range_Q,
  model,
  permutation,
  iter,
  const,
  X
)
```

Arguments

- _W_count: The microbiome count matrix that you want to analyze.
- range_G: All possible number of component groups, a vector.
- range_Q: All possible number of bicluster groups Q, a vector.
- model: A vector of string that contain cov_str you want to select. Default is all 8 models.
- permutation: Only has effect when model contains UUU, UUG, UUD or UUC. If TRUE, it assume the number of latent dimension could be different for different components. If FALSE, it assume the number of latent dimension are the same cross all components.
- iter: Max iterations, defaul is 150.
- const: Constant permutation term in multinomial distribution.
- X: The regression covariates matrix, which generates from model.matrix.

Value

A dataframe that contain the cov_str, K, Q, AIC, BIC, ICL values for model. There may be a lot rows if large K and Q, because of lots of combinations: it is a sum of a geometric series with multiplier max(Q) from 1 to max(K).
plnmfa

Penalized Logistic Normal Multinomial factor analyzer algorithm

Description

Main function that can do PLNM factor analyzer and select the best model based on BIC, AIC or ICL.

Usage

plnmfa(W_count, range_G, range_Q, model, criteria, range_tuning, iter, X)

Arguments

- **W_count**: The microbiome count matrix
- **range_G**: All possible number of components. A vector.
- **range_Q**: A specific number of latent dimension.
- **model**: The covariance structure you choose, there are 2 different models belongs to this family: UUU and GUU. You can choose more than 1 covariance structure to do model selection.
- **criteria**: one of AIC, BIC or ICL. The best model is depends on the criteria you choose. The default is BIC
- **range_tuning**: A range of tuning parameters specified, ranged from 0-1.
- **iter**: Max iterations, default is 150.
- **X**: The regression covariate matrix, which is generated by model.matrix.

Value

- **z_ig**: Estimated latent variable z
- **cluster**: Component labels
- **mu_g**: Estimated component mean
- **pi_g**: Estimated component proportion
- **B_g**: Estimated bicluster membership
- **D_g**: Estimated error covariance
- **COV**: Estimated component covariance
- **beta_g**: Estimated covariate coefficients
- **overall_loglik**: Complete log likelihood value for each iteration
- **ICL**: ICL value
- **BIC**: BIC value
- **AIC**: AIC value
- **all_fitted_model**: display all names of fitted models in a data.frame.
Examples

```r
# generate toy data with n=100, K=5,
# set up parameters
n<-100
p<-5
mu1<-c(-2.8,-1.3,-1.6,-3.9,-2.6)
B1<-matrix(c(1,0,1,0,1,0,1,0,1,0),nrow = p, byrow=TRUE)
T1<-diag(c(2.9,0.5))
D1<-diag(c(0.52, 1.53, 0.56, 0.19, 1.32))
cov1<-B1%*%T1%*%t(B1)+D1
mu2<-c(1.5,-2.7,-1.1,-0.4,-1.4)
B2<-matrix(c(1,0,1,0,0,1,0,1,0,1),nrow = p, byrow=TRUE)
T2<-diag(c(0.2,0.003))
D2<-diag(c(0.01, 0.62, 0.45, 0.01, 0.37))
cov2<-B2%*%T2%*%t(B2)+D2

# generate normal distribution
library(mvtnorm)
simp<-rmultinom(n,1,c(0.6,0.4))
lab<-as.factor(apply(t(simp),1,which.max))
df<-matrix(0,nrow=n,ncol=p)
for (i in 1:n) {
  if(lab[i]==1){df[i,]<-rmvnorm(1,mu1,sigma = cov1)}
  else if(lab[i]==2){df[i,]<-rmvnorm(1,mu2,sigma = cov2)}
}

# apply inverse of additive log ratio and transform normal to count data
f_df<-cbind(df,0)
z<-exp(f_df)/rowSums(exp(f_df))
W_count<-matrix(0,nrow=n,ncol=p+1)
for (i in 1:n) {
  W_count[i,]<-rmultinom(1,runif(1,10000,20000),z[i,])
}

#if run one model let range_G, and range_tuning be an integer
# remember you can always overspecify Q, so don't suggest to run models with a range of Q.
res<-plnmfa(W_count,2,2,model="UUU",range_tuning=0.6)

#if run model selection let any \code{range_} parameters be a vector.
res<-plnmfa(W_count,c(2:3),3,range_tuning=seq(0.5,0.8,by=0.1))
```
Index

initial_variational_gaussian, 2
initial_variational_lasso, 3
initial_variational_PGMM, 4

lnmbiclust, 5
lnmfa, 7

Mico_bi_jensens, 8
Mico_bi_lasso, 10
Mico_bi_PGMM, 12
model_selection, 13
model_selection_lasso, 14
model_selection_PGMM, 15

plnmfa, 16