Package ‘longsurr’

October 13, 2022

Type Package

Title Longitudinal Surrogate Marker Analysis

Version 1.0

Description Assess the proportion of treatment effect explained by a longitudinal surrogate marker as described in Agniel D and Parast L (2021) <doi:10.1111/biom.13310>.

License GPL

Imports stringr, splines, mgcv, Rsurrogate, dplyr, here, tidyr, fs,
 KernSmooth, stats, fdapace, grf, lme4, mvnfast, plyr, tibble,
 magrittr, glue, purrr, readr, refund, fda, fda.usc

NeedsCompilation no

Author Layla Parast [aut, cre],
 Denis Agniel [aut]

Maintainer Layla Parast <parast@austin.utexas.edu>

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2022-09-29 10:00:02 UTC

R topics documented:

 estimate_surrogate_value .. 2
 full_data .. 3
 presmooth_data ... 4

Index 5
estimate_surrogate_value

Estimate the surrogate value of a longitudinal marker

Description

Estimate the surrogate value of a longitudinal marker

Usage

```r
estimate_surrogate_value(y_t, y_c, X_t, X_c, method = c("gam", "linear", "kernel"), k = 3, var = FALSE, bootstrap_samples = 50, alpha = 0.05)
```

Arguments

- `y_t`: vector of n1 outcome measurements for treatment group
- `y_c`: vector of n0 outcome measurements for control or reference group
- `X_t`: n1 x T matrix of longitudinal surrogate measurements for treatment group, where T is the number of time points
- `X_c`: n0 x T matrix of longitudinal surrogate measurements for control or reference group, where T is the number of time points
- `method`: method for dimension-reduction of longitudinal surrogate, either 'gam', 'linear', or 'kernel'
- `k`: number of eigenfunctions to use in semimetric
- `var`: logical, if TRUE then standard error estimates and confidence intervals are provided
- `bootstrap_samples`: number of bootstrap samples to use for standard error estimation, used if var = TRUE, default is 50
- `alpha`: alpha level, default is 0.05

Value

A tibble containing estimates of the treatment effect (Deltahat), the residual treatment effect (Deltahat_S), and the proportion of treatment effect explained (R); if var = TRUE, then standard errors of Deltahat_S and R are also provided (Deltahat_S_se and R_se), and quantile-based 95% confidence intervals for Deltahat_S and R are provided (Deltahat_S_ci_l [lower], Deltahat_S_ci_h [upper], R_ci_l [lower], R_ci_u [upper])

References

```r
library(dplyr)
data(full_data)

wide_ds <- full_data %>%
dplyr::select(id, a, tt, x, y) %>%
tidyr::spread(tt, x)

wide_ds_0 <- wide_ds %>% filter(a == 0)
wide_ds_1 <- wide_ds %>% filter(a == 1)
X_t <- wide_ds_1 %>%
dplyr::select(`-1`:`1`) %>%
as.matrix
y_t <- wide_ds_1 %>%
pull(y)
X_c <- wide_ds_0 %>%
dplyr::select(`-1`:`1`) %>%
as.matrix
y_c <- wide_ds_0 %>%
pull(y)

estimate_surrogate_value(y_t = y_t, y_c = y_c, X_t = X_t, X_c = X_c,
method = 'gam', var = FALSE)
estimate_surrogate_value(y_t = y_t, y_c = y_c, X_t = X_t, X_c = X_c,
method = 'linear', var = TRUE, bootstrap_sample = 50)
```

full_data
Example data to illustrate functions

Description
Simulated nonsmooth data to illustrate functions

Usage
```r
data("full_data")
```

Format
A data frame with 10100 observations on the following 5 variables.

- **id** a unique person ID
- **a** treatment group, 0 or 1
- **tt** time
- **x** surrogate marker value
- **y** primary outcome
presmooth_data

Pre-smooth sparse longitudinal data

Usage

presmooth_data(obs_data, ...)

Arguments

obs_data data.frame or tibble containing the observed data, with columns id identifying the individual measured, tt identifying the time of the observation, x the value of the surrogate at time tt, and a indicating 1 for treatment arm and 0 for control arm.

... additional arguments passed on to fpca

Value

list containing matrices X_t and X_c, which are the smoothed surrogate values for the treated and control groups, respectively, for use in downstream analyses

Examples

library(dplyr)
data(full_data)
obs_ds <- group_by(full_data, id)
obs_data <- sample_n(obs_ds, 5)
obs_data <- ungroup(obs_data)

head(obs_data)
presmooth_X <- presmooth_data(obs_data)
Index

* datasets
 full_data, 3

estimate_surrogate_value, 2

full_data, 3

presmooth_data, 4