Package ‘loo’

March 13, 2019

Type Package

Title Efficient Leave-One-Out Cross-Validation and WAIC for Bayesian Models

Version 2.1.0

Date 2019-03-12

Maintainer Jonah Gabry <jsg2201@columbia.edu>

BugReports https://github.com/stan-dev/loo/issues

Description Efficient approximate leave-one-out cross-validation (LOO) for Bayesian models fit using Markov chain Monte Carlo. The approximation uses Pareto smoothed importance sampling (PSIS), a new procedure for regularizing importance weights. As a byproduct of the calculations, we also obtain approximate standard errors for estimated predictive errors and for the comparison of predictive errors between models. The package also provides methods for using stacking and other model weighting techniques to average Bayesian predictive distributions.

License GPL (>= 3)

LazyData TRUE

Depends R (>= 3.1.2)

Imports graphics, matrixStats (>= 0.52), parallel, stats, checkmate

Suggests bayesplot (>= 1.5.0), brms (>= 2.2.0), ggplot2, knitr, rmarkdown, rstan, rstanarm (>= 2.17.4), rstantools, spdep, testthat

VignetteBuilder knitr

Encoding UTF-8

SystemRequirements pandoc (>= 1.12.3), pandoc-citeproc

RoxygenNote 6.1.1

NeedsCompilation no
Description

This package implements the methods described in Vehtari, Gelman, and Gabry (2017a, 2017b) and Yao et al. (2018). To get started see the loo package vignettes vignettes, loo function for efficient approximate leave-one-out cross-validation (LOO-CV), the psis function for the Pareto smoothed importance sampling (PSIS) algorithm, or loo_model_weights for an implementation of Bayesian stacking of predictive distributions from multiple models.
Details

Leave-one-out cross-validation (LOO-CV) and the widely applicable information criterion (WAIC) are methods for estimating pointwise out-of-sample prediction accuracy from a fitted Bayesian model using the log-likelihood evaluated at the posterior simulations of the parameter values. LOO-CV and WAIC have various advantages over simpler estimates of predictive error such as AIC and DIC but are less used in practice because they involve additional computational steps. This package implements the fast and stable computations for approximate LOO-CV laid out in Vehtari, Gelman, and Gabry (2017a). From existing posterior simulation draws, we compute LOO-CV using Pareto smoothed importance sampling (PSIS; Vehtari, Gelman, and Gabry, 2017b), a new procedure for regularizing and diagnosing importance weights. As a byproduct of our calculations, we also obtain approximate standard errors for estimated predictive errors and for comparing of predictive errors between two models.

We recommend PSIS-LOO-CV instead of WAIC, because PSIS provides useful diagnostics and effective sample size and Monte Carlo standard error estimates.

References

compare

Model comparison

Description

This function will be deprecated in a future release. We recommend using the new `loo_compare` function instead.

Usage

```r
compare(..., x = list())
```

Arguments

- `...` At least two objects returned by `loo` (or `waic`).
- `x` A list of at least two objects returned by `loo` (or `waic`). This argument can be used as an alternative to specifying the objects in `...`.

Details

When comparing two fitted models, we can estimate the difference in their expected predictive accuracy by the difference in `elpd_loo` or `elpd_waic` (or multiplied by -2, if desired, to be on the deviance scale).

When that difference, `elpd_diff`, is positive then the expected predictive accuracy for the second model is higher. A negative `elpd_diff` favors the first model.

When using `compare()` with more than two models, the values in the `elpd_diff` and `se_diff` columns of the returned matrix are computed by making pairwise comparisons between each model and the model with the best ELPD (i.e., the model in the first row). Although the `elpd_diff` column is equal to the difference in `elpd_loo`, do not expect the `se_diff` column to be equal to the difference in `se_elpd_loo`.

To compute the standard error of the difference in ELPD we use a paired estimate to take advantage of the fact that the same set of N data points was used to fit both models. These calculations should be most useful when N is large, because then non-normality of the distribution is not such an issue when estimating the uncertainty in these sums. These standard errors, for all their flaws, should give a better sense of uncertainty than what is obtained using the current standard approach of comparing differences of deviances to a Chi-squared distribution, a practice derived for Gaussian linear models or asymptotically, and which only applies to nested models in any case.
Value

A vector or matrix with class 'compare.loo' that has its own print method. If exactly two objects are provided in ... or x, then the difference in expected predictive accuracy and the standard error of the difference are returned. If more than two objects are provided then a matrix of summary information is returned (see Details).

References

Examples

```r
## Not run:
loo1 <- loo(log_lik1)
loo2 <- loo(log_lik2)
print(compare(loo1, loo2), digits = 3)
print(compare(x = list(loo1, loo2)))

waic1 <- waic(log_lik1)
waic2 <- waic(log_lik2)
compare(waic1, waic2)

## End(Not run)
```

Description

Example pointwise log-likelihood objects to use in demonstrations and tests. See the Value and Examples sections below.

Usage

```r
eexample_loglik_array()
eexample_loglik_matrix()
```

Value

`example_loglik_array` returns a 500 (draws) x 2 (chains) x 32 (observations) pointwise log-likelihood array.

`example_loglik_matrix` returns the same pointwise log-likelihood values as `example_loglik_array` but reshaped into a 1000 (draws*chains) x 32 (observations) matrix.
extract_log_lik

Extract pointwise log-likelihood from a Stan model

Description

Convenience function for extracting the pointwise log-likelihood matrix or array from a fitted Stan model.

Usage

extract_log_lik(stanfit, parameter_name = "log_lik", merge_chains = TRUE)

Arguments

- **stanfit**: A stanfit object (rstan package).
- **parameter_name**: A character string naming the parameter (or generated quantity) in the Stan model corresponding to the log-likelihood.
- **merge_chains**: If TRUE (the default), all Markov chains are merged together (i.e., stacked) and a matrix is returned. If FALSE they are kept separate and an array is returned.

Details

Stan does not automatically compute and store the log-likelihood. It is up to the user to incorporate it into the Stan program if it is to be extracted after fitting the model. In a Stan model, the pointwise log likelihood can be coded as a vector in the transformed parameters block (and then summed up in the model block) or it can be coded entirely in the generated quantities block. We recommend using the generated quantities block so that the computations are carried out only once per iteration rather than once per HMC leapfrog step.

For example, the following is the generated quantities block for computing and saving the log-likelihood for a linear regression model with \(N \) data points, outcome \(y \), predictor matrix \(X \), coefficients \(\beta \), and standard deviation \(\sigma \):

\[
\text{vector}[N] \log_lik; \\
\text{for (n in 1:N) log_lik[n] = normal_lpdf(y[n] | X[n,] * beta, sigma);}
\]
Value
If merge_chains=TRUE, an S by N matrix of (post-warmup) extracted draws, where S is the size of the posterior sample and N is the number of data points. If merge_chains=FALSE, an I by C by N array, where $I \times C = S$.

References

e_loo
Compute weighted expectations

Description
The `e_loo` function computes weighted expectations (means, variances, quantiles) using the importance weights obtained from the PSIS smoothing procedure. The expectations estimated by the `e_loo` function assume that the PSIS approximation is working well. A small Pareto k estimate is necessary, but not sufficient, for `e_loo` to give reliable estimates. Additional diagnostic checks for gauging the reliability of the estimates are in development and will be added in a future release.

Usage
```r
E_loo(x, psis_object, ...)  
```

Default S3 method:
```r
E_loo(x, psis_object, ..., type = c("mean", "variance", "quantile"), probs = NULL, log_ratios = NULL)
```

S3 method for class 'matrix'
```r
E_loo(x, psis_object, ..., type = c("mean", "variance", "quantile"), probs = NULL, log_ratios = NULL)
```

Arguments
- **x**: A numeric vector or matrix.
- **psis_object**: An object returned by `psis`.
- **...**: Arguments passed to individual methods.
- **type**: The type of expectation to compute. The options are "mean", "variance", and "quantile".
- **probs**: For computing quantiles, a vector of probabilities.
- **log_ratios**: Optionally, a vector or matrix (the same dimensions as x) of raw (not smoothed) log ratios. If working with log-likelihood values, the log ratios are the negative of those values. If log_ratios is specified we are able to compute Pareto k diagnostics specific to `e_loo`.
Value

A named list with the following components:

value The result of the computation.

For the matrix method, value is a vector with ncol(x) elements, with one exception: when type is "quantile" and multiple values are specified in probs the value component of the returned object is a length(probs) by ncol(x) matrix.

For the default/vector method the value component is scalar, with one exception: when type is "quantile" and multiple values are specified in probs the value component is a vector with length(probs) elements.

pareto_k Function-specific diagnostic.

If log_ratios is not specified when calling E_loo, pareto_k will be NULL. Otherwise, for the matrix method it will be a vector of length ncol(x) containing estimates of the shape parameter k of the generalized Pareto distribution. For the default/vector method, the estimate is a scalar.

Examples

Use rstanarm package to quickly fit a model and get both a log-likelihood
matrix and draws from the posterior predictive distribution
library("rstanarm")

data from help("lm")
ctl <- c(4.17, 5.58, 5.18, 6.11, 4.50, 4.61, 5.17, 4.53, 5.33, 5.14)
trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)
d <- data.frame(
 weight = c(ctl, trt),
 group = gl(2, 10, 20, labels = c("Ctl", "Trt"))
)
fit <- stan_glm(weight ~ group, data = d)
yrep <- posterior_predict(fit)
dim(yrep)

log_ratios <- -1 * log_lik(fit)
dim(log_ratios)

r_eff <- relative_eff(exp(-log_ratios), chain_id = rep(1:4, each = 1000))
psis_object <- psis(log_ratios, r_eff = r_eff, cores = 2)

E_loo(yrep, psis_object, type = "mean")
E_loo(yrep, psis_object, type = "var")
E_loo(yrep, psis_object, type = "quantile", probs = 0.5) # median
E_loo(yrep, psis_object, type = "quantile", probs = c(0.1, 0.9))

To get Pareto k diagnostic with E_loo we also need to provide the negative
log-likelihood values using the log_ratios argument.
E_loo(yrep, psis_object, type = "mean", log_ratios = log_ratios)
Estimate parameters of the Generalized Pareto distribution

Description

Estimate the parameters k and σ of the generalized Pareto distribution (assuming location parameter is 0), given a sample x. By default the Pareto fit uses a prior for k, which will stabilize estimates for very small sample sizes and low effective sample sizes in the case of MCMC samples. The weakly informative prior is a Gaussian prior centered at 0.5.

Usage

gpdfit(x, wip = TRUE, min_grid_pts = 30, sort_x = TRUE)

Arguments

- **x**: A numeric vector. The sample from which to estimate the parameters.
- **wip**: Logical indicating whether to adjust k based on a weakly informative Gaussian prior centered on 0.5. Defaults to TRUE.
- **min_grid_pts**: The minimum number of grid points used in the fitting algorithm. The actual number used is min_grid_pts + floor(sqrt(length(x))).
- **sort_x**: If TRUE (the default), the first step in the fitting algorithm is to sort the elements of x. If x is already sorted in ascending order then sort_x can be set to FALSE to skip the initial sorting step.

Details

Here the parameter k is the negative of k in Zhang & Stephens (2009).

Value

A named list with components k and sigma.

References

See Also

psis, pareto-k-diagnostic, loo-package
kfold-generic
Generic function for K-fold cross-validation for developers

Description

For developers of modeling packages, **loo** includes a generic function `kfold` so that methods may be defined for K-fold CV without name conflicts between packages. See, e.g., the `kfold.stanreg` method in **rstanarm** and the `kfold.brmsfit` method in **brms**.

Usage

```r
kfold(x, ...)  
is.kfold(x)
```

Arguments

- `x` A fitted model object.
- `...` Arguments to pass to specific methods.

Value

For developers defining a `kfold` method for a class "foo", the `kfold.foo` function should return a list with class `c("kfold", "loo")` with at least the elements

- "estimates": a 1x2 matrix with column names "Estimate" and "SE" containing the ELPD estimate and its standard error.
- "pointwise": an Nx1 matrix with column name "elpd_kfold" containing the pointwise contributions for each data point.

kfold-helpers
Helper functions for K-fold cross-validation

Description

These functions can be used to generate indexes for use with K-fold cross-validation. See the **Details** section for explanations.

Usage

```r
kfold_split_random(K = 10, N = NULL)  
kfold_split_stratified(K = 10, x = NULL)  
kfold_split_grouped(K = 10, x = NULL)
```
Arguments

K The number of folds to use.
N The number of observations in the data.
X A discrete variable of length N with at least K levels (unique values). Will be coerced to `factor`.

Details

kfold_split_random splits the data into K groups of equal size (or roughly equal size).

For a categorical variable X, kfold_split_stratified splits the observations into K groups ensuring that relative category frequencies are approximately preserved.

For a grouping variable X, kfold_split_grouped places all observations in X from the same group/level together in the same fold. The selection of which groups/levels go into which fold (relevant when there are more folds than groups) is randomized.

Value

An integer vector of length N where each element is an index in 1:K.

Examples

```r
ids <- kfold_split_random(K = 5, N = 20)
print(ids)
table(ids)

x <- sample(c(0, 1), size = 200, replace = TRUE, prob = c(0.05, 0.95))
table(x)
ids <- kfold_split_stratified(K = 5, x = x)
print(ids)
table(ids, x)

grp <- gl(n = 50, k = 15, labels = state.name)
length(grp)
head(table(grp))

ids_10 <- kfold_split_grouped(K = 10, x = grp)
(tab_10 <- table(grp, ids_10))
colSums(tab_10)

ids_9 <- kfold_split_grouped(K = 9, x = grp)
(tab_9 <- table(grp, ids_9))
colSums(tab_9)
```
Efficient approximate leave-one-out cross-validation (LOO)

Description

The `loo` methods for arrays, matrices, and functions compute PSIS-LOO CV, efficient approximate leave-one-out (LOO) cross-validation for Bayesian models using Pareto smoothed importance sampling (PSIS). This is an implementation of the methods described in Vehtari, Gelman, and Gabry (2017a, 2017b).

The `loo_i` function enables testing log-likelihood functions for use with the `loo` function method.

Usage

```
loo(x, ...)                    # S3 method for class 'array'
loo(x, ..., r_eff = NULL, save_psis = FALSE, 
     cores = getOption("mc.cores", 1))

# S3 method for class 'matrix'
loo(x, ..., r_eff = NULL, save_psis = FALSE, 
     cores = getOption("mc.cores", 1))

# S3 method for class 'function'
loo(x, ..., data = NULL, draws = NULL, 
     r_eff = NULL, save_psis = FALSE, cores = getOption("mc.cores", 1))

loo_i(i, llfun, ..., data = NULL, draws = NULL, r_eff = NULL)

is.loo(x)

is.psis_loo(x)
```

Arguments

- `x` A log-likelihood array, matrix, or function. See the Methods (by class) section below for a detailed description of how to specify the inputs for each method.
- `r_eff` Vector of relative effective sample size estimates for the likelihood (\(\exp(\log_{\text{lik}})\)) of each observation. This is related to the relative efficiency of estimating the normalizing term in self-normalizing importance sampling when using posterior draws obtained with MCMC. If MCMC draws are used and `r_eff` is not provided then the reported PSIS effective sample sizes and Monte Carlo error estimates will be over-optimistic. If the posterior draws are independent then `r_eff=1` and can be omitted. See the `relative_eff` helper function for computing `r_eff`.
save_psis Should the "psis" object created internally by loo be saved in the returned object? The loo function calls psis internally but by default discards the (potentially large) "psis" object after using it to compute the LOO-CV summaries. Setting save_psis to TRUE will add a psis_object component to the list returned by loo. Currently this is only needed if you plan to use the E_loo function to compute weighted expectations after running loo.

cores The number of cores to use for parallelization. This defaults to the option mc.cores which can be set for an entire R session by options(mc.cores = NUMBER). The old option loo.cores is now deprecated but will be given precedence over mc.cores until loo.cores is removed in a future release. As of version 2.0.0 the default is now 1 core if mc.cores is not set, but we recommend using as many (or close to as many) cores as possible. Note for Windows 10 users: it is recommended to avoid using the .Rprofile file to set mc.cores (using the cores argument or setting mc.cores interactively or in a script is fine).

data, draws, ... For the loo function method and the loo_i function, the data, posterior draws, and other arguments to pass to the log-likelihood function. See the Methods (by class) section below for details on how to specify these arguments.

i For loo_i, an integer in 1:N.

llfun For loo_i, the same as x for the looNfunction method. A log-likelihood function as described in the Methods (by class) section.

Details The loo function is an S3 generic and methods are provided for computing LOO from 3-D pointwise log-likelihood arrays, pointwise log-likelihood matrices, and log-likelihood functions. The array and matrix methods are most convenient, but for models fit to very large datasets the looNfunction method is more memory efficient and may be preferable.

Value The loo methods return a named list with class c("psis_loo", "loo") and components:

estimates A matrix with two columns (Estimate, SE) and four rows (elpd_loo, mcse_elpd_loo, p_loo, looic). This contains point estimates and standard errors of the expected log pointwise predictive density (elpd_loo), the Monte Carlo standard error of elpd_loo (mcse_elpd_loo), the effective number of parameters (p_loo) and the LOO information criterion looic (which is just \(-2 \times \text{elpd}_\text{loo}\), i.e., converted to deviance scale).

pointwise A matrix with four columns (and number of rows equal to the number of observations) containing the pointwise contributions of each of the above measures (elpd_loo, mcse_elpd_loo, p_loo, looic).

diagnostics A named list containing two vectors:

- pareto_k: Estimates of the shape parameter k of the generalized Pareto fit to the importance ratios for each leave-one-out distribution. See the pareto-k-diagnostic page for details.
- n_eff: PSIS effective sample size estimates.
psis_object This component will be NULL unless the save_psis argument is set to TRUE when calling loo. In that case psis_object will be the object of class "psis" that is created when the loo function calls psis internally to do the PSIS procedure.

The loo_i function returns a named list with components pointwise and diagnostics. These components have the same structure as the pointwise and diagnostics components of the object returned by loo except they contain results for only a single observation.

Methods (by class)

• array: An I by C by N array, where I is the number of MCMC iterations per chain, C is the number of chains, and N is the number of data points.

• matrix: An S by N matrix, where S is the size of the posterior sample (with all chains merged) and N is the number of data points.

• function: A function f that takes arguments data_i and draws and returns a vector containing the log-likelihood for a single observation i evaluated at each posterior draw. The function should be written such that, for each observation i in 1:N, evaluating f(data_i = data[i, , drop=FALSE], draws = draws) results in a vector of length S (size of posterior sample). The log-likelihood function can also have additional arguments but data_i and draws are required.

If using the function method then the arguments data and draws must also be specified in the call to loo:

– data: A data frame or matrix containing the data (e.g. observed outcome and predictors) needed to compute the pointwise log-likelihood. For each observation i, the ith row of data will be passed to the data_i argument of the log-likelihood function.

– draws: An object containing the posterior draws for any parameters needed to compute the pointwise log-likelihood. Unlike data, which is indexed by observation, for each observation the entire object draws will be passed to the draws argument of the log-likelihood function.

– The ... can be used to pass additional arguments to your log-likelihood function. These arguments are used like the draws argument in that they are recycled for each observation.

Defining loo methods in a package

Package developers can define loo methods for fitted models objects. See the example loo.stanfit method in the Examples section below for an example of defining a method that calls loo.array. The loo.stanreg method in rstanarm is an example of defining a method that calls loo.function.

References

See Also

- The **loo** package vignettes for demonstrations.
- **psis** for the underlying Pareto Smoothed Importance Sampling (PSIS) procedure used in the LOO-CV approximation.
- **pareto-k-diagnostic** for convenience functions for looking at diagnostics.
- **compare** for model comparison.

Examples

```r
### Array and matrix methods (using example objects included with loo package)
# Array method
llarr <- example_loglik_array()
rel_n_eff <- relative_eff(exp(llarr))
loo(llarr, r_eff = rel_n_eff, cores = 2)

# Matrix method
llmat <- example_loglik_matrix()
rel_n_eff <- relative_eff(exp(llmat), chain_id = rep(1:2, each = 500))
loo(llmat, r_eff = rel_n_eff, cores = 2)

### Not run:
### Usage with stanfit objects
# see ?extract_log_lik
log_lik1 <- extract_log_lik(stanfit1, merge_chains = FALSE)
rel_n_eff <- relative_eff(exp(log_lik1))
loo(log_lik1, r_eff = rel_n_eff, cores = 2)

### End(Not run)

### Using log-likelihood function instead of array or matrix
set.seed(124)

# Simulate data and draw from posterior
N <- 50; K <- 10; S <- 100; a0 <- 3; b0 <- 2
p <- rbeta(1, a0, b0)
y <- rbinom(N, size = K, prob = p)
a <- a0 + sum(y); b <- b0 + N * K - sum(y)
fake_posterior <- as.matrix(rbeta(S, a, b))
dim(fake_posterior) # S x 1
fake_data <- data.frame(y,K)
dim(fake_data) # N x 2

llfun <- function(data_i, draws) {
    # each time called internally within loo the arguments will be equal to:
    # data_i: ith row of fake_data (fake_data[i, drop=FALSE])
    # draws: entire fake_posterior matrix
dbinom(data_i$y, size = data_i$K, prob = draws, log = TRUE)
}
```
Use the loo.i function to check that llfun works on a single observation
before running on all obs. For example, using the 3rd obs in the data:
loo_3 <- loo.i(i = 3, llfun = llfun, data = fake_data, draws = fake_posterior, r_eff = NA)
print(loo_3$pointwise[, "elpd_loo"])

Use loo.function method (setting r_eff=NA since this posterior not obtained via MCMC)
loo_with_fn <- loo(llfun, draws = fake_posterior, data = fake_data, r_eff = NA)

If we look at the elpd_loo contribution from the 3rd obs it should be the
same as what we got above with the loo.i function and i=3:
print(loo_with_fn$pointwise[3, "elpd_loo"])
print(loo_3$pointwise[, "elpd_loo"])

Check that the loo.matrix method gives same answer as loo.function method
log_lik_matrix <- sapply(1:N, function(i) {
 llfun(data_i = fake_data[i, drop=FALSE], draws = fake_posterior)
})
loo_with_mat <- loo(log_lik_matrix, r_eff = NA)
all.equal(loo_with_mat$estimates, loo_with_fn$estimates) # should be TRUE!

Not run:
For package developers: defining loo methods

An example of a possible loo method for 'stanfit' objects (rstan package).
A similar method is planned for a future release of rstan (or is already
released, depending on when you are reading this). In order for users
to be able to call loo(stanfit) instead of loo.stanfit(stanfit) the
NAMESPACE needs to be handled appropriately (roxygen2 and devtools packages
are good for that).

loo.stanfit <-
function(x,
 pars = "log_lik",
 ...,
 save_psis = FALSE,
 cores = getOption("mc.cores", 1)) {
 stopifnot(length(pars) == 1L)
 LLaArray <- loo::extract_log_lik(stanfit = x,
 parameter_name = pars,
 merge_chains = FALSE)
 r_eff <- loo::relative_eff(x = exp(LLaArray), cores = cores)
 loo::loo.array(LLaArray,
 r_eff = r_eff,
 cores = cores,
 save_psis = save_psis)
}

End(Not run)
Description

Small datasets for use in loo examples and vignettes. The Kline and milk datasets are also included in the rethinking package (McElreath, 2016a), but we include them here as rethinking is not yet on CRAN.

Format

Kline Small dataset from Kline and Boyd (2010) on tool complexity and demography in Oceanic islands societies. This data is discussed in detail in McElreath (2016a,2016b). (Link to variable descriptions)

milk Small dataset from Hinde and Milligan (2011) on primate milk composition. This data is discussed in detail in McElreath (2016a,2016b). (Link to variable descriptions)

References

Examples

```r
str(Kline)
str(milk)
```

ELPD and elpd_loo

The ELPD is the theoretical expected log pointwise predictive density for a new dataset (Eq 1 in VGG2017a), which can be estimated, e.g., using cross-validation. elpd_loo is the Bayesian LOO estimate of the expected log pointwise predictive density (Eq 4 in VGG2017a) and is a sum of N individual pointwise log predictive densities. Probability densities can be smaller or larger than 1, and thus log predictive densities can be negative or positive. For simplicity the ELPD acronym is used also for expected log pointwise predictive probabilities for discrete models. Probabilities are always equal or less than 1, and thus log predictive probabilities are 0 or negative.
Standard error of elpd_loo

As elpd_loo is defined as the sum of N independent components (Eq 4 in VGG2017a), we can compute the standard error by using the standard deviation of the N components and multiplying by \sqrt{N} (Eq 23 in VGG2017a). This standard error is a coarse description of our uncertainty about the predictive performance for unknown future data. When N is small or there is severe model misspecification, the current SE estimate is overoptimistic and the actual SE can even be twice as large. Even for moderate N, when the SE estimate is an accurate estimate for the scale, it ignores the skewness. When making model comparisons, the SE of the component-wise (pairwise) differences should be used instead (see the se_diff section below and Eq 24 in VGG2017a).

Monte Carlo SE of elpd_loo

The Monte Carlo standard error is the estimate for the computational accuracy of MCMC and importance sampling used to compute elpd_loo. Usually this is negligible compared to the standard describing the uncertainty due to finite number of observations (Eq 23 in VGG2017a).

p_loo (effective number of parameters)

p_loo is the difference between elpd_loo and the non-cross-validated log posterior predictive density. It describes how much more difficult it is to predict future data than the observed data. Asymptotically under certain regularity conditions, p_loo can be interpreted as the effective number of parameters. In well behaving cases $p_{\text{loo}} < N$ and $p_{\text{loo}} < p$, where p is the total number of parameters in the model. $p_{\text{loo}} > N$ or $p_{\text{loo}} > p$ indicates that the model has very weak predictive capability and may indicate a severe model misspecification. See below for more on interpreting p_loo when there are warnings about high Pareto k diagnostic values.

Pareto k estimates

The Pareto k estimate is a diagnostic for Pareto smoothed importance sampling (PSIS), which is used to compute components of elpd_loo. In importance-sampling LOO (the full posterior distribution is used as the proposal distribution). The Pareto k diagnostic estimates how far an individual leave-one-out distribution is from the full distribution. If leaving out an observation changes the posterior too much then importance sampling is not able to give reliable estimate. If $k < 0.5$, then the corresponding component of elpd_loo is estimated with high accuracy. If $0.5 < k < 0.7$ the accuracy is lower, but still ok. If $k > 0.7$, then importance sampling is not able to provide useful estimate for that component/observation. Pareto k is also useful as a measure of influence of an observation. Highly influential observations have high k values. Very high k values often indicate model misspecification, outliers or mistakes in data processing. See Section 6 of Gabry et al. (2019) for an example.

Interpreting p_loo when Pareto k is large: If $k > 0.7$ then we can also look at the p_loo estimate for some additional information about the problem:

- If $p_{\text{loo}} < p$ (the total number of parameters in the model), then the model is likely to be misspecified. Posterior predictive checks (PPCs) are then likely to also detect the problem. Try using an overdispersed model, or add more structural information (nonlinearity, mixture model, etc.).
- If $p_{\text{loo}} < p$ and the number of parameters p is relatively large compared to the number of observations (e.g., $p > N/5$), it is likely that the model is so flexible or the population prior
so weak that it’s difficult to predict the left out observation (even for the true model). This happens, for example, in the simulated 8 schools (in VGG2017a), random effect models with a few observations per random effect, and Gaussian processes and spatial models with short correlation lengths.

- If $p_{\text{loo}} > p$, then the model is likely to be badly misspecified. If the number of parameters $p<<n$, then PPCs are also likely to detect the problem. See the case study at https://avehtari.github.io/modelselection/roaches.html for an example. If p is relatively large compared to the number of observations, say $p>N/5$ (more accurately we should count number of observations influencing each parameter as in hierarchical models some groups may have few observations and other groups many), it is possible that PPCs won’t detect the problem.

elpd_diff

elpd_diff is the difference in elpd_loo for two models. If more than two models are compared, the difference is computed relative to the model with highest elpd_loo.

se_diff

The standard error of component-wise differences of elpd_loo (Eq 24 in VGG2017a) between two models. This SE is smaller than the SE for individual models due to correlation (i.e., if some observations are easier and some more difficult to predict for all models).

References

Usage

```r
loo_compare(x, ...)
```

```r
## Default S3 method:
loo_compare(x, ...)
```

```r
## S3 method for class 'compare.loo'
pdf(x, ..., digits = 1, simplify = TRUE)
```

Arguments

- `x`: An object of class "loo" or a list of such objects.
- `...`: Additional objects of class "loo".
- `digits`: For the print method only, the number of digits to use when printing.
- `simplify`: For the print method only, should only the essential columns of the summary matrix be printed? The entire matrix is always returned, but by default only the most important columns are printed.

Details

When comparing two fitted models, we can estimate the difference in their expected predictive accuracy by the difference in \(\text{elpd}_{\text{loo}} \) or \(\text{elpd}_{\text{waic}} \) (or multiplied by \(-2\), if desired, to be on the deviance scale).

When using `loo_compare()`, the returned matrix will have one row per model and several columns of estimates. The values in the `elpd_diff` and `se_diff` columns of the returned matrix are computed by making pairwise comparisons between each model and the model with the largest ELPD (the model in the first row). For this reason the `elpd_diff` column will always have the value 0 in the first row (i.e., the difference between the preferred model and itself) and negative values in subsequent rows for the remaining models.

To compute the standard error of the difference in ELPD — which should not be expected to equal the difference of the standard errors — we use a paired estimate to take advantage of the fact that the same set of \(N \) data points was used to fit both models. These calculations should be most useful when \(N \) is large, because then non-normality of the distribution is not such an issue when estimating the uncertainty in these sums. These standard errors, for all their flaws, should give a better sense of uncertainty than what is obtained using the current standard approach of comparing differences of deviances to a Chi-squared distribution, a practice derived for Gaussian linear models or asymptotically, and which only applies to nested models in any case.

Value

A matrix with class "compare.loo" that has its own print method. See the Details section for more.

References

Examples

```r
## Not run:
loo1 <- loo(log_lik1)
loo2 <- loo(log_lik2)
print(loo_compare(loo1, loo2), digits = 3)
print(loo_compare(x = list(loo1, loo2)))

waic1 <- waic(log_lik1)
waic2 <- waic(log_lik2)
loo_compare(waic1, waic2)

## End(Not run)
```

```r

## Stack

```r

Pseudo-BMA

```r

## Pseudo-BMA+

```r

Arguments

- `x`: A list of pointwise log-likelihood matrices or "psis_loo" objects (objects returned by `loo`), one for each model. Each matrix/object should have dimensions `S` by `N`, where `S` is the size of the posterior sample (with all chains merged) and `N` is the number of data points. If `x` is a list of log-likelihood matrices then `loo`
is called internally on each matrix. Currently the `loo_model_weights` function
is not implemented to be used with results from K-fold CV, but you can still
obtain weights using K-fold CV results by calling the `stacking_weights` function
directly.

... Unused, except for the generic to pass arguments to individual methods.

method
Either "stacking" or "pseudobma", indicating which method to use for obtaining
the weights. "stacking" refers to stacking of predictive distributions and
"pseudobma" refers to pseudo-BMA+ weighting (or plain pseudo-BMA weight-
ing if BB is FALSE).

optim_method
The optimization method to use if method="stacking". It can be chosen from
"Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN" and "Brent". The de-
fault method is "BFGS".

optim_control
If method="stacking", a list of control parameters for optimization. See [constrOptim](https://www.rdocumentation.org/packages/fmincon/versions/0.0.2/topics/constrOptim) for details.

BB
Logical used when "method"="pseudobma". If TRUE (the default), the Bayesian
bootstrap will be used to adjust the pseudo-BMA weighting, which is called
pseudo-BMA+ weighting. It helps regularize the weight away from 0 and 1, so
as to reduce the variance.

BB_n
For pseudo-BMA+ weighting only, the number of samples to use for the Bayesian
bootstrap. The default is 1000.

alpha
Positive scalar shape parameter in the Dirichlet distribution used for the Bayesian
bootstrap. The default is 1, which corresponds to a uniform distribution on the
simplex space.

r_eff_list
Optionally, a list of relative effective sample size estimates for the likelihood
(exp(log_lik)) of each observation in each model. See [psis](https://psis.rprevia.org/) and [relative_eff](https://github.com/psis/psis) helper function for computing r_eff. If x is a list of "psis_loo" objects then
r_eff_list is ignored.

cores
The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores = NUMBER).
The old option loo.cores is now deprecated but will be given precedence over
mc.cores until loo.cores is removed in a future release. **As of version 2.0.0 the default is now 1 core if mc.cores is not set, but we recommend using as many (or close to as many) cores as possible.** Note for Windows 10 users: it is recommended to avoid using the .Rprofile file to set mc.cores (using the
cores argument or setting mc.cores interactively or in a script is fine).

lpd_point
A matrix of pointwise leave-one-out (or K-fold) log likelihoods evaluated for
different models. It should be a N by K matrix where N is sample size and K is
the number of models. Each column corresponds to one model. These values
can be calculated approximately using `loo` or by running exact leave-one-out or
K-fold cross-validation.

Details

`loo_model_weights` is a wrapper around the `stacking_weights` and `pseudobma_weights` func-
tions that implements stacking, pseudo-BMA, and pseudo-BMA+ weighting for combining multi-
ple predictive distributions. We can use approximate or exact leave-one-out cross-validation (LOO-
CV) or K-fold CV to estimate the expected log predictive density (ELPD).
The stacking method (method="stacking") combines all models by maximizing the leave-one-out predictive density of the combination distribution. That is, it finds the optimal linear combining weights for maximizing the leave-one-out log score.

The pseudo-BMA method (method="pseudobma") finds the relative weights proportional to the ELPD of each model. However, when method="pseudobma", the default is to also use the Bayesian bootstrap (BB=TRUE), which corresponds to the pseudo-BMA+ method. The Bayesian bootstrap takes into account the uncertainty of finite data points and regularizes the weights away from the extremes of 0 and 1.

In general, we recommend stacking for averaging predictive distributions, while pseudo-BMA+ can serve as a computationally easier alternative.

Value

A numeric vector containing one weight for each model.

References

See Also

- The loo package vignettes for demonstrations.
- loo for details on leave-one-out ELPD estimation.
- constrOptim for the choice of optimization methods and control-parameters.
- relative_eff for computing r_eff.

Examples

```r
## Not run:
### Demonstrating usage after fitting models with RStan
library(rstan)

# generate fake data from N(0,1).
N <- 100
y <- rnorm(N, 0, 1)

# Suppose we have three models: N(-1, sigma), N(0.5, sigma) and N(0.6,sigma).
stan_code <- "
data (  
  int N;
  vector[N] y;
  real mu_fixed;
"
parameters {
  real<lower=0> sigma;
}

model {
  sigma ~ exponential(1);
  y ~ normal(mu_fixed, sigma);
}
generated quantities {
  vector[N] log_lik;
  for (n in 1:N) log_lik[n] = normal_lpdf(y[n] | mu_fixed, sigma);
}

mod <- stan_model(model_code = stan_code)
fit1 <- sampling(mod, data=list(N=N, y=y, mu_fixed=-1))
fit2 <- sampling(mod, data=list(N=N, y=y, mu_fixed=0.5))
fit3 <- sampling(mod, data=list(N=N, y=y, mu_fixed=0.6))
model_list <- list(fit1, fit2, fit3)
log_lik_list <- lapply(model_list, extract_log_lik)

# optional but recommended
r_eff_list <- lapply(model_list, function(x) {
  ll_array <- extract_log_lik(x, merge_chains = FALSE)
  relative_eff(exp(ll_array))
})

# stacking method:
wts1 <- loo_model_weights(
  log_lik_list,
  method = "stacking",
  r_eff_list = r_eff_list,
  optim_control = list(reltol=1e-10)
)
print(wts1)

# can also pass a list of psis_loo objects to avoid recomputing loo
loo_list <- lapply(1:length(log_lik_list), function(j) {
  loo(log_lik_list[[j]], r_eff = r_eff_list[[j]])
})

wts2 <- loo_model_weights(
  loo_list,
  method = "stacking",
  optim_control = list(reltol=1e-10)
)
all.equal(wts1, wts2)

# pseudo-BMA+ method:
set.seed(1414)
loo_model_weights(loo_list, method = "pseudobma")

# pseudo-BMA method (set BB = FALSE):
pareto-k-diagnostic

Diagnostics for Pareto smoothed importance sampling (PSIS)

Description
Print a diagnostic table summarizing the estimated Pareto shape parameters and PSIS effective sample sizes, find the indexes of observations for which the estimated Pareto shape parameter \( k \) is larger than some threshold value, or plot observation indexes vs. diagnostic estimates. The Details section below provides a brief overview of the diagnostics, but we recommend consulting Vehtari, Gelman, and Gabry (2017a, 2017b) for full details.

Usage
pareto_k_table(x)
pareto_k_ids(x, threshold = 0.5)
pareto_k_values(x)
psis_n_eff_values(x)
mces_loo(x, threshold = 0.7)

## S3 method for class 'psis_loo'
plot(x, diagnostic = c("k", "n_eff"), ...,
    label_points = FALSE, main = "PSIS diagnostic plot")

## S3 method for class 'psis'
plot(x, diagnostic = c("k", "n_eff"), ...,
    label_points = FALSE, main = "PSIS diagnostic plot")

Arguments
x An object created by loo or psis.
threshold  For `pareto_k_ids`, `threshold` is the minimum $k$ value to flag (default is 0.5). For `mcse_loo`, if any $k$ estimates are greater than `threshold` the MCSE estimate is returned as NA (default is 0.7).

diagnostic  For the plot method, which diagnostic should be plotted? The options are "k" for Pareto $k$ estimates (the default) or "n_eff" for PSIS effective sample size estimates.

label_points, ...  For the plot method, if `label_points` is TRUE the observation numbers corresponding to any values of $k$ greater than 0.5 will be displayed in the plot. Any arguments specified in ... will be passed to `text` and can be used to control the appearance of the labels.

main  For the plot method, a title for the plot.

Details

The reliability and approximate convergence rate of the PSIS-based estimates can be assessed using the estimates for the shape parameter $k$ of the generalized Pareto distribution:

- If $k < 0.5$ then the distribution of raw importance ratios has finite variance and the central limit theorem holds. However, as $k$ approaches 0.5 the RMSE of plain importance sampling (IS) increases significantly while PSIS has lower RMSE.
- If $0.5 \leq k < 1$ then the variance of the raw importance ratios is infinite, but the mean exists. TIS and PSIS estimates have finite variance by accepting some bias. The convergence of the estimate is slower with increasing $k$. If $k$ is between 0.5 and approximately 0.7 then we observe practically useful convergence rates and Monte Carlo error estimates with PSIS (the bias of TIS increases faster than the bias of PSIS). If $k > 0.7$ we observe impractical convergence rates and unreliable Monte Carlo error estimates.
- If $k \geq 1$ then neither the variance nor the mean of the raw importance ratios exists. The convergence rate is close to zero and bias can be large with practical sample sizes.

If the estimated tail shape parameter $k$ exceeds 0.5, the user should be warned, although in practice we have observed good performance for values of $k$ up to 0.7. (If $k$ is greater than 0.5 then WAIC is also likely to fail, but WAIC lacks its own diagnostic.)

If using PSIS in the context of approximate LOO-CV, even if the PSIS estimate has a finite variance the user should consider sampling directly from $p(\theta^s|y_{-i})$ for any problematic observations $i$, use $K$-fold cross-validation, or use a more robust model. Importance sampling is likely to work less well if the marginal posterior $p(\theta^s|y)$ and LOO posterior $p(\theta^s|y_{-i})$ are much different, which is more likely to happen with a non-robust model and highly influential observations. A robust model may reduce the sensitivity to highly influential observations.

Effective sample size and error estimates:  In the case that we obtain the samples from the proposal distribution via MCMC we can also compute estimates for the Monte Carlo error and the effective sample size for importance sampling, which are more accurate for PSIS than for IS and TIS (see Vehtari et al (2017b) for details). However, the PSIS effective sample size estimate will be **over-optimistic when the estimate of $k$ is greater than 0.7**.

We can also compute estimates for the Monte Carlo error and the effective sample size for importance sampling. However, the PSIS effective sample size estimate will be **over-optimistic when the estimate of $k$ is greater than 0.7**. In the case that we obtain the samples from the proposal
distribution via MCMC, we need to take into account also the relative efficiency of MCMC sampling (see Vehtari et al (2017b) for details). Following the notation in Stan, the PSIS effective sample size is denoted here with \( n_{eff} \), instead of \( S_{eff} \) used by Vehtari et al (2017b).

Value

pareto_k_table returns an object of class "pareto_k_table", which is a matrix with columns "Count", "Proportion", and "Min. \( n_{eff} \)", and has its own print method.

pareto_k_ids returns an integer vector indicating which observations have Pareto \( k \) estimates above threshold.

diagnostic

pareto_k_values returns a vector of the estimated Pareto \( k \) parameters.

psis_n_eff_values returns a vector of the estimated PSIS effective sample sizes.

mcse_loo returns the Monte Carlo standard error (MCSE) estimate for PSIS-LOO. MCSE will be NA if any Pareto \( k \) values are above threshold.

The plot method is called for its side effect and does not return anything. If \( x \) is the result of a call to \texttt{loo} or \texttt{psis} then \texttt{plot(x, diagnostic)} produces a plot of the estimates of the Pareto shape parameters (\texttt{diagnostic = "k"}) or estimates of the PSIS effective sample sizes (\texttt{diagnostic = "n_eff"}).

References


See Also

\texttt{psis} for the implementation of the PSIS algorithm.

print.loo

Print methods

Description

Print methods

Usage

```r
S3 method for class 'loo'
print(x, digits = 1, ...)

S3 method for class 'waic'
print(x, digits = 1, ...)
```
### S3 method for class 'psis_loo'
print(x, digits = 1, plot_k = FALSE, ...)

### S3 method for class 'psis'
print(x, digits = 1, plot_k = FALSE, ...)

**Arguments**

- **x**
  - An object returned by `loo`, `psis`, or `waic`.
- **digits**
  - An integer passed to `round`.
- **...**
  - Arguments passed to `plot.psis_loo` if `plot_k` is TRUE.
- **plot_k**
  - Logical. If TRUE the estimates of the Pareto shape parameter $k$ are plotted. Ignored if $x$ was generated by `waic`. To just plot $k$ without printing use the `plot` method.

**Value**

- `x`, invisibly.

**See Also**

- `pareto_k-diagnostic`

---

**psis**

*Pareto smoothed importance sampling (PSIS)*

**Description**

Implementation of Pareto smoothed importance sampling (PSIS), a method for stabilizing importance ratios. The version of PSIS implemented here corresponds to the algorithm presented in Vehtari, Gelman and Gabry (2017b). For PSIS diagnostics see the `pareto-k-diagnostic` page.

**Usage**

```r
psis(log_ratios, ...)

S3 method for class 'array'
psis(log_ratios, ..., r_eff = NULL,
cores = getOption("mc.cores", 1))

S3 method for class 'matrix'
psis(log_ratios, ..., r_eff = NULL,
cores = getOption("mc.cores", 1))

Default S3 method:
psis(log_ratios, ..., r_eff = NULL)
```
## S3 method for class 'psis'
weights(object, ..., log = TRUE, normalize = TRUE)

is.psis(x)

### Arguments

- **log_ratios**: An array, matrix, or vector of importance ratios on the log scale (for PSIS-LOO these are negative log-likelihood values). See the Methods (by class) section below for a detailed description of how to specify the inputs for each method.

- **...**: Arguments passed on to the various methods.

- **r_eff**: Vector of relative effective sample size estimates containing one element per observation. The values provided should be the relative effective sample sizes of 1/exp(log_ratios) (i.e., 1/ratios). This is related to the relative efficiency of estimating the normalizing term in self-normalizing importance sampling. If r_eff is not provided then the reported PSIS effective sample sizes and Monte Carlo error estimates will be over-optimistic. See the relative_eff helper function for computing r_eff. If using psis with draws of the log_ratios not obtained from MCMC then the warning message thrown when not specifying r_eff can be disabled by setting r_eff to NA.

- **cores**: The number of cores to use for parallelization. This defaults to the option mc.cores which can be set for an entire R session by options(mc.cores = NUMBER). The old option loo.cores is now deprecated but will be given precedence over mc.cores until loo.cores is removed in a future release. **As of version 2.0.0 the default is now 1 core if mc.cores is not set, but we recommend using as many (or close to as many) cores as possible.** Note for Windows 10 users: it is recommended to avoid using the .Rprofile file to set mc.cores (using the cores argument or setting mc.cores interactively or in a script is fine).

- **object**: For the weights method, an object returned by psis (a list with class "psis").

- **log**: For the weights method, should the weights be returned on the log scale? Defaults to TRUE.

- **normalize**: For the weights method, should the weights be normalized? Defaults to TRUE.

- **x**: For is.psis, an object to check.

### Value

The psis methods return an object of class "psis", which is a named list with the following components:

- **log_weights**: Vector or matrix of smoothed (and truncated) but unnormalized log weights. To get normalized weights use the weights method provided for objects of class "psis".

- **diagnostics**: A named list containing two vectors:
  - **pareto_k**: Estimates of the shape parameter $k$ of the generalized Pareto distribution. See the pareto-k-diagnostic page for details.
  - **n_eff**: PSIS effective sample size estimates.

Objects of class "psis" also have the following attributes:
norm_const_log  Vector of precomputed values of colLogSumExps(log_weights) that are used internally by the weights method to normalize the log weights.
tail_len  Vector of tail lengths used for fitting the generalized Pareto distribution.
r_eff  If specified, the user’s r_eff argument.
dims  Integer vector of length 2 containing S (posterior sample size) and N (number of observations).

The weights method returns an object with the same dimensions as the log_weights component of the "psis" object. The normalize and log arguments control whether the returned weights are normalized and whether or not to return them on the log scale.

Methods (by class)

• array: An I by C by N array, where I is the number of MCMC iterations per chain, C is the number of chains, and N is the number of data points.
• matrix: An S by N matrix, where S is the size of the posterior sample (with all chains merged) and N is the number of data points.
• default: A vector of length S (posterior sample size).

References


See Also

• loo for approximate LOO-CV using PSIS.
• pareto-k-diagnostic for PSIS diagnostics.

Examples

log_ratios <- -1 * example_loglik_array()  
r_eff <- relative_eff(exp(-log_ratios))  
psis_result <- psis(log_ratios, r_eff = r_eff)  
str(psis_result)  
plot(psis_result)

# extract smoothed weights
lw <- weights(psis_result)  # default args are log=TRUE, normalize=TRUE
ulw <- weights(psis_result, normalize=FALSE)  # unnormalized log-weights

w <- weights(psis_result, log=FALSE)  # normalized weights (not log-weights)
uw <- weights(psis_result, log=FALSE, normalize = FALSE)  # unnormalized weights
psislw

Pareto smoothed importance sampling (deprecated, old version)

Description

As of version 2.0.0 this function is deprecated. Please use the psis function for the new PSIS algorithm.

Usage

psislw(lw, wcp = 0.2, wtrunc = 3/4, cores = getOption("mc.cores", 1),
llfun = NULL, llargs = NULL, ...)

Arguments

lw A matrix or vector of log weights. For computing LOO, \( \text{lw} = -\log \text{_lik} \),
the negative of an \( S \) (simulations) by \( N \) (data points) pointwise log-likelihood matrix.

wcp The proportion of importance weights to use for the generalized Pareto fit. The
100*wcp% largest weights are used as the sample from which to estimate the
parameters of the generalized Pareto distribution.

wtrunc For truncating very large weights to \( S^{\text{wtrunc}} \). Set to zero for no truncation.

cores The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores = NUMBER),
the old option loo.cores is now deprecated but will be given precedence over
mc.cores until it is removed. As of version 2.0.0, the default is now 1 core if
mc.cores is not set, but we recommend using as many (or close to as many)
cores as possible.

llfun, llargs See loo.function.

... Ignored when psislw is called directly. The ... is only used internally when
psislw is called by the loo function.

Value

A named list with components lw_smooth (modified log weights) and pareto_k (estimated general-
ized Pareto shape parameter(s) k).

References

one-out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432. doi:10.1007/s11222-

See Also

`pareto-k-diagnostic` for PSIS diagnostics.

---

relative_eff

Convenience function for computing relative efficiencies

Description

relative_eff computes the the MCMC effective sample size divided by the total sample size.

Usage

relative_eff(x, ...)

## Default S3 method:
relative_eff(x, chain_id, ...)

## S3 method for class 'matrix'
relative_eff(x, chain_id, ...,
    cores = getOption("mc.cores", 1))

## S3 method for class 'array'
relative_eff(x, ..., cores = getOption("mc.cores", 1))

## S3 method for class 'function'
relative_eff(x, chain_id, ...,
    cores = getOption("mc.cores", 1), data = NULL, draws = NULL)

Arguments

x A vector, matrix, 3-D array, or function. See the Methods (by class) section below for details on the shape of x. For use with the `loo` function, the values in x (or generated by x if x is a function) should be likelihood values (i.e., `exp(log_lik)`, not on the log scale). For generic use with `psis`, the values in x should be the reciprocal of the importance ratios (i.e., `exp(-log_ratios)`).

chain_id A vector of length `NROW(x)` containing MCMC chain indexes for each each row of x (if a matrix) or each value in x (if a vector). No chain_id is needed if x is a 3-D array. If there are C chains then valid chain indexes are values in 1:C.

cores The number of cores to use for parallelization.

data, draws, ... Same as for the `loo` function method.

Value

A vector of relative effective sample sizes.
Methods (by class)

- **default**: A vector of length $S$ (posterior sample size).
- **matrix**: An $S$ by $N$ matrix, where $S$ is the size of the posterior sample (with all chains merged) and $N$ is the number of data points.
- **array**: An $I$ by $C$ by $N$ array, where $I$ is the number of MCMC iterations per chain, $C$ is the number of chains, and $N$ is the number of data points.
- **function**: A function $f$ that takes arguments $data_i$ and $draws$ and returns a vector containing the log-likelihood for a single observation $i$ evaluated at each posterior draw. The function should be written such that, for each observation $i$ in $1:N$, evaluating $f(data_i = data[i,,, drop=FALSE], draws = draws)$ results in a vector of length $S$ (size of posterior sample). The log-likelihood function can also have additional arguments but $data_i$ and $draws$ are required.

If using the function method then the arguments $data$ and $draws$ must also be specified in the call to `loo`:

- **data**: A data frame or matrix containing the data (e.g. observed outcome and predictors) needed to compute the pointwise log-likelihood. For each observation $i$, the $i$th row of data will be passed to the $data_i$ argument of the log-likelihood function.
- **draws**: An object containing the posterior draws for any parameters needed to compute the pointwise log-likelihood. Unlike data, which is indexed by observation, for each observation the entire object draws will be passed to the $draws$ argument of the log-likelihood function.
- **...** can be used to pass additional arguments to your log-likelihood function. These arguments are used like the $draws$ argument in that they are recycled for each observation.

Examples

```r
llarr <- example_loglik_array()
llmat <- example_loglik_matrix()
dim(llarr)
dim(llmat)
rel_n_eff_1 <- relative_eff(exp(llarr))
rel_n_eff_2 <- relative_eff(exp(llmat), chain_id = rep(1:2, each = 500))
all.equal(rel_n_eff_1, rel_n_eff_2)
```

waic

Widely applicable information criterion (WAIC)

Description

The `waic` methods can be used to compute WAIC from the pointwise log-likelihood. However, we recommend LOO-CV using PSIS (as implemented by the `loo` function) because PSIS provides useful diagnostics and effective sample size and Monte Carlo estimates.
Usage

waic(x, ...)

## S3 method for class 'array'
waic(x, ...)

## S3 method for class 'matrix'
waic(x, ...)

## S3 method for class 'function'
waic(x, ..., data = NULL, draws = NULL)

is.waic(x)

Arguments

x A log-likelihood array, matrix, or function. See the Methods (by class) section below for a detailed description of how to specify the inputs for each method.
draws, data, ...

For the function method only. See the Methods (by class) section below for details on these arguments.

Value

A named list (of class c("waic", "loo")) with components:

estimates A matrix with two columns ("Estimate", "SE") and three rows ("elpd_waic", "p_waic", "waic"). This contains point estimates and standard errors of the expected log pointwise predictive density (elpd_waic), the effective number of parameters (p_waic) and the LOO information criterion waic (which is just -2 * elpd_waic, i.e., converted to deviance scale).

pointwise A matrix with three columns (and number of rows equal to the number of observations) containing the pointwise contributions of each of the above measures (elpd_waic, p_waic, waic).

Methods (by class)

• array: An I by C by N array, where I is the number of MCMC iterations per chain, C is the number of chains, and N is the number of data points.

• matrix: An S by N matrix, where S is the size of the posterior sample (with all chains merged) and N is the number of data points.

• function: A function f that takes arguments data_i and draws and returns a vector containing the log-likelihood for a single observation i evaluated at each posterior draw. The function should be written such that, for each observation i in 1:N, evaluating f(data_i = data[i, , drop=FALSE], draws = draws) results in a vector of length S (size of posterior sample). The log-likelihood function can also have additional arguments but data_i and draws are required.

If using the function method then the arguments data and draws must also be specified in the call to loo:
waic

- **data**: A data frame or matrix containing the data (e.g. observed outcome and predictors) needed to compute the pointwise log-likelihood. For each observation \( i \), the \( i \)th row of data will be passed to the `data_i` argument of the log-likelihood function.

- **draws**: An object containing the posterior draws for any parameters needed to compute the pointwise log-likelihood. Unlike data, which is indexed by observation, for each observation the entire object `draws` will be passed to the `draws` argument of the log-likelihood function.

- The ... can be used to pass additional arguments to your log-likelihood function. These arguments are used like the `draws` argument in that they are recycled for each observation.

**See Also**

- `loo` for approximate LOO-CV.
- `compare` for comparing models on LOOIC or WAIC.

**Examples**

```r
Array and matrix methods
LLarr <- example_loglik_array()
dim(LLarr)

LLmat <- example_loglik_matrix()
dim(LLmat)

waic_arr <- waic(LLarr)
waic_mat <- waic(LLmat)
identical(waic_arr, waic_mat)

Not run:
log_lik1 <- extract_log_lik(stanfit1)
log_lik2 <- extract_log_lik(stanfit2)
(waic1 <- waic(log_lik1))
(waic2 <- waic(log_lik2))
print(compare(waic1, waic2), digits = 2)
```

## End(Not run)
Index

attributes, 29
compare, 4, 15, 35
constrOptim, 22, 23
E_loo, 7, 13
e_example_loglik_array, 5
e_example_loglik_matrix
  (example_loglik_array), 5
extract_log_lik, 6
factor, 11
gpdfit, 9
isNkfold (kfoldMgeneric), 10
isNloos (loos), 12
isNpsis (psis), 28
isNpsis_loo (loos), 12
isNwaic (waics), 21
psislw, 31
relative_eff, 12, 22, 23, 29, 32
round, 28
shape parameter(s) k, 31
stacking_weights (loo_model_weights), 21
text, 26
waic, 4, 28, 33
weights.psis (psis), 28

Pareto k, 7
pareto-k-diagnostic, 15, 25, 28
pareto_k_ids (pareto-k-diagnostic), 25
pareto_k_table (pareto-k-diagnostic), 25
pareto_k_values (pareto-k-diagnostic), 25
plot.loo (pareto-k-diagnostic), 25
plot.psis (pareto-k-diagnostic), 25
plot.psis_loo, 28
plot.psis_loo (pareto-k-diagnostic), 25
print.compare.loo (loo_compare), 19
print.loo, 27
print.psis (print.loo), 27
print.psis_loo (print.loo), 27
print.waic (print.loo), 27
pseudobma_weights (loo_model_weights), 21
PSIS, 7
psis, 2, 7, 9, 13–15, 22, 25, 27, 28, 28, 31, 32
psis_n_eff_values
  (pareto-k-diagnostic), 25
psislw, 31

Kline (loos-datasets), 17
loo, 2, 4, 12, 21–23, 25, 27, 28, 30–33, 35
loo-datasets, 17
loo-glossary, 17
loo-package, 2
loo.function, 31
loo_compare, 4, 19
loo_i (loos), 12
loo_model_weights, 2, 21
mcse_loo (pareto-k-diagnostic), 25
milk (loos-datasets), 17