Package ‘lotri’

March 20, 2023

Title A Simple Way to Specify Symmetric, Block Diagonal Matrices

Version 0.4.3

Maintainer Matthew L. Fidler <matthew.fidler@gmail.com>

Description Provides a simple mechanism to specify a symmetric block
diagonal matrices (often used for covariance matrices). This is based
on the domain specific language implemented in 'nlmixr2' but expanded
to create matrices in R generally instead of specifying parts of
matrices to estimate.

License GPL (>= 2)

URL https://github.com/nlmixr2/lotri

BugReports https://github.com/nlmixr2/lotri/issues

Depends R (>= 3.4.0)

Imports crayon, methods, stats, utils

Suggests ggplot2, knitr, Matrix, microbenchmark, rmarkdown, testthat

VignetteBuilder knitr

Biarch true

Config/testthat/edition 3

Encoding UTF-8

NeedsCompilation yes

RoxygenNote 7.2.0

Language en-US

Author Matthew L. Fidler [aut, cre] (<https://orcid.org/0000-0001-8538-6691>)

Repository CRAN

Date/Publication 2023-03-20 18:20:12 UTC
R topics documented:

as.lotri ... 2
lotri ... 3
lotriDataFrameToLotriExpression 5
lotriEst ... 6
lotriMat .. 7
lotriMatInv .. 8
lotriSep ... 9

Index

<table>
<thead>
<tr>
<th>as.lotri</th>
</tr>
</thead>
<tbody>
<tr>
<td>As lower triangular matrix</td>
</tr>
</tbody>
</table>

Description

As lower triangular matrix

Usage

as.lotri(x, ..., default = "")

S3 method for class 'matrix'
as.lotri(x, ..., default = "")

S3 method for class 'data.frame'
as.lotri(x, ..., default = "")

Default S3 method:
as.lotri(x, ..., default = "")

Arguments

x Matrix or other data frame
... Other factors
default Is the default factor when no conditioning is implemented.

Value

Lower triangular matrix

Author(s)

Matthew Fidler
Description

Easily Specify block-diagonal matrices with lower triangular info

Usage

lotri(x, ..., envir = parent.frame(), default = "id")

Arguments

x list, matrix or expression, see details
...
other arguments treated as a list that will be concatenated then reapplied to this function.
envir the environment in which expr is to be evaluated. May also be NULL, a list, a data frame, a pairlist or an integer as specified to sys.call.
default Is the default factor when no conditioning is implemented.

Details

This can take an R matrix, a list including matrices or expressions, or expressions
Expressions can take the form
name ~ estimate
Or the lower triangular matrix when "adding" the names
name1 + name2 ~ c(est1, est2, est3)
The matrices are concatenated into a block diagonal matrix, like bdiag, but allows expressions to specify matrices easier.

Value
	named symmetric matrix useful in ‘rxode2()’ simulations (and perhaps elsewhere)

Author(s)

Matthew L Fidler

Examples

A few ways to specify the same matrix
lotri({et2 + et3 + et4 ~ c(40,
 0.1, 20,
 0.1, 0.1, 30))

lotri(x, ..., envir = parent.frame(), default = "id")
You do not need to enclose in {}
```
lotri(et2 + et3 + et4 ~ c(40,
   0.1, 20,
   0.1, 0.1, 30),
   et5 ~ 6)
```
But if you do enclose in {}, you can use
multi-line matrix specifications:
```
lotri({et2 + et3 + et4 ~ c(40,
   0.1, 20,
   0.1, 0.1, 30)
   et5 ~ 6})
```
You can also add lists or actual R matrices as in this example:
```
lotri(list(et2 + et3 + et4 ~ c(40,
   0.1, 20,
   0.1, 0.1, 30),
   matrix(1,dimnames=list("et5","et5")))
```
Overall this is a flexible way to specify symmetric block
diagonal matrices.
For rxode2, you may also condition based on different levels of
nesting with lotri; Here is an example:
```
mat <- lotri(lotri(iov.Ka ~ 0.5,
   iov.Cl ~ 0.6),
   lotri(occ.Ka ~ 0.5,
   occ.Cl ~ 0.6) | occ(lower=4,nu=3))
```
you may access features of the matrix simply by `$` that is
```
mat$lower # Shows the lower bound for each condition
mat$lower$occ # shows the lower bound for the occasion variable
```
Note that `lower` fills in defaults for parameters. This is true
for `upper` true; In fact when accessing this the defaults
are put into the list
```
mat$upper
```
However all other values return NULL if they are not present like
```
mat$lotri
```
And values that are specified once are only returned on one list:
```
mat$nu
lotriDataFrameToLotriExpression

Convert a lotri data frame to a lotri expression

Usage

lotriDataFrameToLotriExpression(data, useIni = FALSE)

Arguments

data
lotri data frame

useIni
Use ‘ini’ instead of ‘lotri’ in the expression

Value
expression of the lotri syntax equivalent to the data.frame provided

Author(s)
Matthew L. Fidler

Examples

x <- lotri(
  tka <- 0.45; label("Log Ka")
  tcl <- 1; label("Log Cl")
  tv <- 3.45; label("Log V")
  eta.ka ~ 0.6
def.err <- 0.7
})

df <- as.data.frame(x)
lotriDataToLotriExpression(df)

# You may also call as.expression directly from the lotri object
as.expression(x)

---

**lotriEst**

*Extract or remove lotri estimate data frame from lotri object*

### Description

Extract or remove lotri estimate data frame from lotri object

### Usage

```r
lotriEst(x, drop = FALSE)
```

### Arguments

- `x`  
  lotri object

- `drop`  
  boolean indicating if the lotri estimate should be dropped

### Value

data frame with estimates or NULL if there is not a data.frame attached

### Examples

```r
fix1 <- lotri({
 a <- c(0, 1); backTransform("exp"); label("a label")
 b <- c(0, 1, 2)
 c <- fix(1)
 d <- fix(0, 1, 2)
 e <- c(0, 1, 2, fixed)
 f+g ~ c(1,
 0.5, 1)
})

Extract the attached lotri estimate data frame
lotriEst(fix1)

Remove the attached lotri estimate data frame
lotriEst(fix1, drop=TRUE)
```
lotriMat

Create a matrix from a list of matrices

Description

This creates a named banded symmetric matrix from a list of named symmetric matrices.

Usage

lotriMat(matList, format = NULL, start = 1L)

Arguments

- **matList**: list of symmetric named matrices
- **format**: The format of dimension names when a sub-matrix is repeated. The format will be called with the dimension number, so "ETA[%d]" would represent "ETA[1]", "ETA[2]", etc
- **start**: The number the counter of each repeated dimension should start.

Value

Named symmetric block diagonal matrix based on concatenating the list of matrices together

Author(s)

Matthew Fidler

Examples

```r
testList <- list(lotri({et2 + et3 + et4 ~ c(40, 0.1, 20, 0.1, 0.1, 30)}),
 lotri(et5 ~ 6))
testList

lotriMat(testList)
```

# Another option is to repeat a matrix a number of times. This # can be done with list(matrix, # times to repeat).

# In the example below, the first matrix is repeated 3 times
testList <- list(list(lotri({et2 + et3 + et4 ~ c(40, 0.1, 20, 0.1, 0.1, 30)}),
                          3),
                lotri(et5 ~ 6))
lotriMatInv

Converts a matrix into a list of block matrices

Description
Converts a matrix into a list of block matrices

Usage
lotriMatInv(mat)

Arguments
mat Matrix to convert to a list of block matrices

Details
This is the inverse of ‘lotriMat()’

Value
A list of block matrixes

Author(s)
Matthew Fidler

Examples

# Create a block matrix using ‘lotri()’
mat <- lotri({
a+b ~ c(1,
   0.5, 1)
c ~ 1
})

lotriMatInv(testList)
# Notice that the dimension names ‘et2’, ‘et3’ and ‘et4’ are
# repeated.

# Another option is to name the dimensions. For example it could
# be ‘ETA[1]’, ‘ETA[2]’, etc by using the ‘format’ option:

lotriMat(testList, "ETA[%d]")
# Or could start with ETA[2]:
lotriMat(testList, "ETA[%d]", 2)
lotriSep

```r
d + e ~ c(1,
 0.5, 1)
})

print(mat)

now convert t a list of matrices
mat2 <- lotriMatInv(mat)
print(mat2)

Of course you can convert it back to a full matrix:
mat3 <- lotriMat(mat2)
print(mat3)
```

---

**lotriSep**

*Separate a lotri matrix into above and below lotri matrices*

**Description**

This is used for creating nesting simulations in ‘rxode2()’ and may not be useful for external function calls.

**Usage**

```r
lotriSep(x, above, below, aboveStart = 1L, belowStart = 1L)
```

**Arguments**

- **x**: lotri matrix
- **above**: Named integer vector listing variability above the id level. Each element lists the number of population differences in the whole data-set (as integer)
- **below**: Named integer vector listing variability below the id level. Each element lists the number of items below the individual level. For example with 3 occasions per individual you could use ‘c(occ=3L)’
- **aboveStart**: Add the attribute of where THETA[#] will be added
- **belowStart**: Add the attribute of where ETA[#] will be added

**Value**

List of two lotri matrices

**Author(s)**

Matthew Fidler
Examples

\[
\omega \leftarrow \text{lotri}(\text{lotri}(\text{eta.Cl} \sim 0.1, \\
 eta.Ka \sim 0.1) \mid \text{id}(\text{nu}=100), \\
 \text{lotri}(\text{eye.Cl} \sim 0.05, \\
 \text{eye.Ka} \sim 0.05) \mid \text{eye}(\text{nu}=50), \\
 \text{lotri}(\text{iov.Cl} \sim 0.01, \\
 \text{iov.Ka} \sim 0.01) \mid \text{occ}(\text{nu}=200), \\
 \text{lotri}(\text{inv.Cl} \sim 0.02, \\
 \text{inv.Ka} \sim 0.02) \mid \text{inv}(\text{nu}=10))
\]

\text{lotriSep}(\omega, \text{above}=c(\text{inv}=10L), \text{below}=c(\text{eye}=2L, \text{occ}=4L))
Index

as.lotri, 2
bdiag, 3
environment, 3
lotri, 3
lotriDataFrameToLotriExpression, 5
lotriEst, 6
lotriMat, 7
lotriMatInv, 8
lotriSep, 9

sys.call, 3