Package ‘lqr’
October 13, 2022

Type Package
Title Robust Linear Quantile Regression
Version 5.0
Date 2022-08-13
Author Christian E. Galarza <chedgala@espol.edu.ec>, Luis Benites <lbenitess@pucp.edu.pe>, Marcelo Bourguignon <m.p.bourguignon@gmail.com>, Victor H. Lachos <hlachos@uconn.edu>
Maintainer Christian E. Galarza <cgalarza88@gmail.com>
Imports graphics, stats, spatstat.geom, numDeriv, MomTrunc, quantreg, MASS
Suggests ald
Description It fits a robust linear quantile regression model using a new family of zero-quantile distributions for the error term. Missing values and censored observations can be handled as well. This family of distribution includes skewed versions of the Normal, Student’s t, Laplace, Slash and Contaminated Normal distribution. It also performs logistic quantile regression for bounded responses as shown in Galarza et.al.(2020) <doi:10.1007/s13571-020-00231-0>. It provides estimates and full inference. It also provides envelopes plots for assessing the fit and confidences bands when several quantiles are provided simultaneously.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2022-08-15 08:30:02 UTC

R topics documented:

 lqr-package .. 2
 ais .. 3
 best.lqr ... 3
 cens.lqr ... 5
 dist.Truncated .. 8
 Egig .. 9
 Log.best.lqr ... 10
Robust Linear Quantile Regression

Description

It fits a robust linear quantile regression model using a new family of zero-quantile distributions for the error term. This family of distribution includes skewed versions of the Normal, Student’s t, Laplace, Slash and Contaminated Normal distribution. It provides estimates and full inference. It also provides envelopes plots for assessing the fit and confidences bands when several quantiles are provided simultaneously. Details of its first version can be found below.

Details

Package: lqr
Type: Package
Version: 1.0
Date: 2015-10-29
License: GPL (>=2)

Author(s)

Christian E. Galarza <<cgalarza88@gmail.com>>, Luis Benites <<lsanchez@ime.usp.br>> and Victor H. Lachos <<hlachos@ime.unicamp.br>>
Maintainer: Christian E. Galarza <<cgalarza88@gmail.com>>

References

See Also

SKD, Log.best.lqr, Log.lqr.best.lqr,lqr, ais
Australian institute of sport data

Description
Data on 102 male and 100 female athletes collected at the Australian Institute of Sport.

Format
This data frame contains the following columns:

- **Sex** (0 = male or 1 = female)
- **Ht** height (cm)
- **Wt** weight (kg)
- **LBM** lean body mass
- **RCC** red cell count
- **WCC** white cell count
- **Hc** Hematocrit
- **Hg** Hemoglobin
- **Ferr** plasma ferritin concentration
- **BMI** body mass index, weight/(height)**2
- **SSF** sum of skin folds
- **Bfat** Percent body fat
- **Label** Case Labels
- **Sport** Sport

References

Best Fit in Robust Linear Quantile Regression

Description
It finds the best fit distribution in robust linear quantile regression model. It adjusts the Normal, Student’s t, Laplace, Slash and Contaminated Normal models. It shows a summary table with the likelihood-based criterion, envelopes plots and the histogram of the residuals with fitted densities for all models. Estimates and full inference are provided for the best model.
Usage

```r
best.lqr(formula, data = NULL, subset = NULL, 
          p = 0.5, precision = 10^-6, 
          criterion = "AIC")
```

Arguments

- **formula**: an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
- **data**: an optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the model. If not found in `data`, the variables are taken from `environment(formula)`.
- **subset**: an optional string specifying a subset of observations to be used in the fitting process. Be aware of the use of double quotes in a proper way when necessary, e.g., in "(sex=='F')".
- **p**: An unique quantile or a set of quantiles related to the quantile regression.
- **precision**: The convergence maximum error permitted. By default is 10^-6.
- **criterion**: Likelihood-based criterion to be used for choosing the best model. It could be `AIC`, `BIC`, `HQ` or `loglik` (log-likelihood). By default `AIC` criterion will be used.

Details

The `best.fit()` function finds the best model only for one quantile. For fitting a grid of quantiles `lqr()` might be used but the distribution must be provided.

Value

For the best model:

- **iter**: number of iterations.
- **criteria**: attained criteria value.
- **beta**: fixed effects estimates.
- **sigma**: scale parameter estimate for the error term.
- **nu**: Estimate of nu parameter detailed above.
- **gamma**: Estimate of gamma parameter detailed above.
- **SE**: Standard Error estimates.
- **table**: Table containing the inference for the fixed effects parameters.
- **loglik**: Log-likelihood value.
- **AIC**: Akaike information criterion.
- **BIC**: Bayesian information criterion.
- **HQ**: Hannan-Quinn information criterion.
- **fitted.values**: vector containing the fitted values.
- **residuals**: vector containing the residuals.
cens.lqr

Author(s)

Christian E. Galarza <<cgalarza88@gmail.com>>, Luis Benites <<lsanchez@ime.usp.br>> and Victor H. Lachos <<hlachos@ime.unicamp.br>>

Maintainer: Christian E. Galarza <<cgalarza88@gmail.com>>

References

See Also

lqr, Log.lqr, Log.best.lqr, dSKD

Examples

```r
data(crabs, package = "MASS")

# Finding the best model for the 3rd quartile based on BIC
best.lqr(BD~FL, data = crabs, p = 0.75, criterion = "BIC")
```

cens.lqr
Skew-t quantile regression for censored and missing data

Description

It fits a linear quantile regression model where the error term is considered to follow an SKT skew-t distribution, that is, the one proposed by Wichitaksorn et.al. (2014). Additionally, the model is capable to deal with missing and interval-censored data at the same time. Degrees of freedom can be either estimated or supplied by the user. It offers estimates and full inference. It also provides envelopes plots and likelihood-based criteria for assessing the fit, as well as fitted and imputed values.

Usage

```r
cens.lqr(y, x, cc, LL, UL, p = 0.5, nu = NULL, precision = 1e-06, envelope = FALSE)
```
Arguments

- **y**: the response vector of dimension \(n \) where \(n \) is the total of observations. It may contain both missing and censored values represented by NaNs.

- **x**: design matrix for the fixed effects of dimension \(N \times d \) where \(d \) represents the number of fixed effects including the intercept, if considered.

- **cc**: vector of censoring/missing indicators. For each observation it takes 0 if non-censored/missing, 1 if censored/missing.

- **LL**: the vector of lower limits of dimension \(n \times 1 \). See details section.

- **UL**: the vector of upper limits of dimension \(n \times 1 \). See details section.

- **p**: An unique quantile of interest to fit the quantile regression.

- **nu**: It represents the degrees of freedom of the skew-t distribution. When is not provided, we use the MLE.

- **precision**: The convergence maximum error permitted. By default is \(10^{-6} \).

- **envelope**: if TRUE, it will show a confidence envelope for a curve based on bootstrap replicates. It is FALSE by default.

Details

Missing or censored values in the response can be represented imputed as NaNs, since the algorithm only uses the information provided in the lower and upper limits LL and UL. The indicator vector cc must take the value of 1 for these observations.

Censored and missing data

If all lower limits are \(-\infty\), we will be dealing with left-censored data. Besides, if all upper limits are \(\infty\), this is the case of right-censored data. Interval-censoring is considered when both limits are finites. If some observation is missing, we have not information at all, so both limits must be infinites.

Combinations of all cases above are permitted, that is, we may have left-censored, right-censored, interval-censored and missing data at the same time.

Value

- **iter**: number of iterations.

- **criteria**: attained criteria value.

- **beta**: fixed effects estimates.

- **sigma**: scale parameter estimate for the error term.

- **nu**: Estimate of \(\nu \) parameter detailed above.

- **SE**: Standard Error estimates.

- **table**: Table containing the inference for the fixed effects parameters.

- **loglik**: Log-likelihood value.

- **AIC**: Akaike information criterion.

- **BIC**: Bayesian information criterion.

- **HQ**: Hannan-Quinn information criterion.
fitted.values vector containing the fitted values.
imputed.values vector containing the imputed values for censored/missing observations.
residuals vector containing the residuals.

Author(s)

Christian E. Galarza <<chedgala@espol.edu.ec>>, Marcelo Bourguignon <<m.p.bourguignon@gmail.com>> and Victor H. Lachos <<hlachos@ime.unicamp.br>>

Maintainer: Christian E. Galarza <<chedgala@espol.edu.ec>>

References

See Also

lqr.best.lqr,Log.lqr,Log.best.lqr,dSKD

Examples

```r
#Load the data
data(ais)
attach(ais)

#Setting
y<-BMI
x<-cbind(1,LBM,Sex)

cc = rep(0,length(y))
LL = UL = rep(NA,length(y))

#Generating a 5% of interval-censored values
ind = sample(x = c(0,1),size = length(y), replace = TRUE,prob = c(0.95,0.05))
ind1 = (ind == 1)
cc[ind1] = 1
LL[ind1] = y[ind1] - 10
UL[ind1] = y[ind1] + 10
y[ind1] = NA #deleting data

#Fitting the model

# A median regression with unknown degrees of freedom
```
\begin{verbatim}
out = cens.lqr(y,x,cc,LL,UL,p=0.5,nu = NULL,precision = 1e-6,envelope = TRUE)

A first quartile regression with 10 degrees of freedom
out = cens.lqr(y,x,cc,LL,UL,p=0.25,nu = 10,precision = 1e-6,envelope = TRUE)
\end{verbatim}

dist.Truncated

Truncated Distributions

Description

Density, distribution function, quantile function and random generation for truncated distributions.

Usage

\begin{verbatim}
dtrunc(x, spec, a=-Inf, b=Inf, log=FALSE, ...)
extrunc(spec, a=-Inf, b=Inf, ...)
ptrunc(x, spec, a=-Inf, b=Inf, ...)
qtrunc(p, spec, a=-Inf, b=Inf, ...)
rtrunc(n, spec, a=-Inf, b=Inf, ...)
vartrunc(spec, a=-Inf, b=Inf, ...)
\end{verbatim}

Arguments

- `n` : This is a the number of random draws for \texttt{rtrunc}.
- `p` : This is a vector of probabilities.
- `x` : This is a vector to be evaluated.
- `spec` : The base name of a probability distribution is specified here. For example, to estimate the density of a truncated normal distribution, enter \texttt{norm}.
- `a` : This is the lower bound of truncation, which defaults to negative infinity.
- `b` : This is the upper bound of truncation, which defaults to infinity.
- `log` : Logical. If \texttt{log=}TRUE, then the logarithm of the density is returned.
- `...` : Additional arguments to pass.

Details

A truncated distribution is a conditional distribution that results from a priori restricting the domain of some other probability distribution. More than merely preventing values outside of truncated bounds, a proper truncated distribution integrates to one within the truncated bounds. In contrast to a truncated distribution, a censored distribution occurs when the probability distribution is still allowed outside of a pre-specified range. Here, distributions are truncated to the interval \([a,b]\), such as \(p(\theta) \in [a,b]\).

The R code of Nadarajah and Kotz (2006) has been modified to work with log-densities. This code was also available in the (extinct) package LaplacesDemon.
Egig

Value

dtrunc gives the density, extrunc gives the expectation, ptrunc gives the distribution function, qtrunc gives the quantile function, rtrunc generates random deviates, and vartrunc gives the variance of the truncated distribution.

References

See Also

lqr, SKD.

Examples

x <- seq(-0.5, 0.5, by = 0.1)
y <- dtrunc(x, "norm", a=-0.5, b=0.5, mean=0, sd=2)

Egig

Moments of the Generalized Inverse Gaussian Distribution

Description

Expected value of X, log(X), 1/X and variance for the generalized inverse gaussian distribution.

This function has been recycled from the ghyp R package.

Usage

Egig(lambda, chi, psi, func = c("x", "logx", "1/x", "var"))

Arguments

lambda A shape and scale and parameter.
chi, psi Shape and scale parameters. Must be positive.
func The transformation function when computing the expected value. x is the expected value (default), log x returns the expected value of the logarithm of x, 1/x returns the expected value of the inverse of x and var returns the variance.

Details

Egig with func = "log x" uses grad from the R package numDeriv. See the package vignette for details regarding the expectation of GIG random variables.

Value

Egig gives the expected value of either x, 1/x, log(x) or the variance if func equals var.
Author(s)

David Luethi and Ester Pantaleo

References

See Also

best.lqr

Examples

Egig(lambda = 10, chi = 1, psi = 1, func = "x")
Egig(lambda = 10, chi = 1, psi = 1, func = "var")
Egig(lambda = 10, chi = 1, psi = 1, func = "1/x")

Description

It performs the logistic transformation in Galarza et.al.(2020) (see references) for estimating quantiles for a bounded response. Once the response is transformed, it uses the best.lqr function.

Usage

Log.best.lqr(formula, data = NULL, subset = NULL,
 p = 0.5, a = 0, b = 1,
 epsilon = 0.001, precision = 10^-6,
 criterion = "AIC")

Arguments

We will detail first the only three arguments that differ from best.lqr function.

b

upper bound for the response (default = 1)

epsilon

a small quantity $\epsilon > 0$ that ensures that the logistic transform is defined for all values of the response.

formula

an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
data

An optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula).

subset

An optional string specifying a subset of observations to be used in the fitting process. Be aware of the use of double quotes in a proper way when necessary, e.g., in "(sex=='F')".

p

An unique quantile or a set of quantiles related to the quantile regression.

precision

The convergence maximum error permitted. By default is 10^{-6}.

criterion

Likelihood-based criterion to be used for choosen the best model. It could be AIC, BIC, HQ or loglik (log-likelihood). By default AIC criterion will be used.

Details

We follow the transformation in Bottai et.al. (2009) defined as

$$h(y) = \text{logit}(y) = \log\left(\frac{y-a}{b-y}\right)$$

that implies

$$Q_y(p) = \frac{b \exp(X \beta) + a}{1 + \exp(X \beta)}$$

where $Q_y(p)$ represents the conditional quantile of the response. Once estimates for the regression coefficients β_p are obtained, inference on $Q_y(p)$ can then be made through the inverse transform above. This equation (as function) is provided in the output. See example.

The interpretation of the regression coefficients is analogous to the interpretation of the coefficients of a logistic regression for binary outcomes.

For example, let x_1 be the gender (male = 0, female=1). Then $\exp(\beta_{0.5,1})$ represents the odds ratio of median score in males vs females, where the odds are defined using the score instead of a probability, $(y-a)/(b-y)$. When the covariate is continous, the respective β coefficient can be interpreted as the increment (or decrement) over the log(odd ratio) when the covariate increases one unit.

Value

For the best model:

- **iter**: number of iterations.
- **criteria**: attained criteria value.
- **beta**: fixed effects estimates.
- **sigma**: scale parameter estimate for the error term.
- **nu**: Estimate of nu parameter detailed above.
- **gamma**: Estimate of gamma parameter detailed above.
- **SE**: Standard Error estimates.
table Table containing the inference for the fixed effects parameters.
loglik Log-likelihood value.
AIC Akaike information criterion.
BIC Bayesian information criterion.
HQ Hannan-Quinn information criterion.
fitted.values vector containing the fitted values.
residuals vector containing the residuals.

Note
When a grid of quantiles is provided, a graphical summary with point estimates and Confidence Intervals for model parameters is shown. Also, the result will be a list of the same dimension where each element corresponds to each quantile as detailed above.

Author(s)
Christian E. Galarza <<cgalarza88@gmail.com>>, Luis Benites <<lsanchez@ime.usp.br>> and Victor H. Lachos <<hlachos@ime.unicamp.br>>
Maintainer: Christian E. Galarza <<cgalarza88@gmail.com>>

References

See Also
Log.lqr, best.lqr, dSKD

Examples

```r
##Load the data
data(resistance)
attach(resistance)

#EXAMPLE 1.1
#Comparing the resistance to death of two types of tumor-cells.
#The response is a score in [0,4].
boxplot(score~type)

#Median logistic quantile regression (Best fit distribution)
```

res = Log.best.lqr(formula = score~type, data = resistance, a=0, b=4)

The odds ratio of median score in type B vs type A
exp(res$beta[2])

Proving that exp(res$beta[2]) is approx median odd ratio
medA = median(score[type=="A"])
medB = median(score[type=="B"])
rateA = (medA - 0)/(4 - medA)
rateB = (medB - 0)/(4 - medB)
odd = rateB/rateA

round(c(exp(res$beta[2]),odd),3) # best fit

EXAMPLE 1.2

############

Comparing the resistance to death depending of dose.

descriptive
plot(dose,score,ylim=c(0,4),col="dark gray");abline(h=c(0,4),lty=2)
dosecat<-cut(dose, 6, ordered = TRUE)
boxplot(score~dosecat,ylim=c(0,4))
abline(h=c(0,4),lty=2)

(Non logistic) Best quantile regression for quantiles
0.05, 0.50 and 0.95
p05 = best.lqr(score~poly(dose,3),data = resistance, p = 0.05)
p50 = best.lqr(score~poly(dose,3),data = resistance, p = 0.50)
p95 = best.lqr(score~poly(dose,3),data = resistance, p = 0.95)
res3 = list(p05,p50,p95)

plot(dose,score,ylim=c(-1,5),col="gray");abline(h=c(0,4),lty=2)
lines(sort(dose), p05$fitted.values[order(dose)], col='red', type='l')
lines(sort(dose), p50$fitted.values[order(dose)], col='blue', type='l')
lines(sort(dose), p95$fitted.values[order(dose)], col='red', type='l')

Using logistic quantile regression for obtaining predictions inside bounds
logp05 = Log.best.lqr(score~poly(dose,3),data = resistance, p = 0.05,b = 4) # a = 0 by default
logp50 = Log.best.lqr(score~poly(dose,3),data = resistance, p = 0.50,b = 4)
logp95 = Log.best.lqr(score~poly(dose,3),data = resistance, p = 0.95,b = 4)
res4 = list(logp05,logp50,logp95)

No more prediction curves out-of-bounds
plot(dose,score,ylim=c(-1,5),col="gray");abline(h=c(0,4),lty=2)
lines(sort(dose), logp05$fitted.values[order(dose)], col='red', type='l')
lines(sort(dose), logp50$fitted.values[order(dose)], col='blue', type='l')
lines(sort(dose), logp95$fitted.values[order(dose)], col='red', type='l')
Robust Logistic Linear Quantile Regression

Description

It performs the logistic transformation in Galarza et al. (2020) (see references) for estimating quantiles for a bounded response. Once the response is transformed, it uses the lqr function.

Usage

```r
Log.lqr(formula, data = NULL, subset = NULL,
        p = 0.5, a = 0, b = 1,
        dist = "normal",
        nu = NULL,
        gamma = NULL,
        precision = 10^-6,
        epsilon = 0.001,
        CI = 0.95,
        silent = FALSE)
```

Arguments

We will detail first the only three arguments that differ from lqr function.

- `lower bound for the response (default = 0)`
- `b`
- `upper bound for the response (default = 1)`
- `epsilon`
- `a` a small quantity $\epsilon > 0$ that ensures that the logistic transform is defined for all values of the response.
- `formula` an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
- `data` an optional data frame, list or environment (or object coercible by `as.data.frame`) containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`.
- `subset` an optional string specifying a subset of observations to be used in the fitting process. Be aware of the use of double quotes in a proper way when necessary, e.g., in "(sex == 'F')".
- `p` An unique quantile or a set of quantiles related to the quantile regression.
- `dist` represents the distribution to be used for the error term. The values are `normal` for Normal distribution, `t` for Student’s t distribution, `laplace` for Laplace distribution, `slash` for Slash distribution and `cont` for the Contaminated normal distribution.
- `nu` It represents the degrees of freedom when `dist = t`. For the Slash distribution (`dist = slash`) it is a shape parameter $\nu > 0$. For the Contaminated Normal distribution, ν is the parameter that represents the percentage of outliers. When is not provided, we use the MLE.
Log.lqr

gamma It represents a scale factor for the contaminated normal distribution. When is not provided, we use the MLE.

precision The convergence maximum error permitted. By default is 10^-6.

CI Confidence to be used for the Confidence Interval when a grid of quantiles is provided. Default = 0.95.

silent if FALSE (by default), the function prints some output.

Details

We follow the transformation in Bottai et.al. (2009) defined as

\[h(y) = \logit(y) = \log \left(\frac{y - a}{b - y} \right) \]

that implies

\[Q_y(p) = \frac{b \exp(X\beta) + a}{1 + \exp(X\beta)} \]

where \(Q_y(p) \) represents the conditional quantile of the response. Once estimates for the regression coefficients \(\beta \) are obtained, inference on \(Q_y(p) \) can then be made through the inverse transform above. This equation (as function) is provided in the output. See example.

The interpretation of the regression coefficients is analogous to the interpretation of the coefficients of a logistic regression for binary outcomes.

For example, let \(x_1 \) be the gender (male = 0, female=1). Then \(\exp(\beta_{0,1}) \) represents the odds ratio of median score in males vs females, where the odds are defined using the score instead of a probability, \((y - a)/(b - y) \). When the covariate is continuous, the respective \(\beta \) coefficient can be interpreted as the increment (or decrement) over the log(odds ratio) when the covariate increases one unit.

Value

iter number of iterations.
criteria attained criteria value.
beta fixed effects estimates.
sigma scale parameter estimate for the error term.
nu Estimate of nu parameter detailed above.
gamma Estimate of gamma parameter detailed above.
SE Standard Error estimates.
table Table containing the inference for the fixed effects parameters.
loglik Log-likelihood value.
AIC Akaike information criterion.
BIC Bayesian information criterion.
HQ Hannan-Quinn information criterion.
fitted.values vector containing the fitted values.
residuals vector containing the residuals.
Note

When a grid of quantiles is provided, a graphical summary with point estimates and Confidence Intervals for model parameters is shown. Also, the result will be a list of the same dimension where each element corresponds to each quantile as detailed above.

Author(s)

Christian E. Galarza <cgalarza88@gmail.com>, Luis Benites <lsanchez@ime.usp.br> and Victor H. Lachos <hlachos@ime.unicamp.br>

Maintainer: Christian E. Galarza <cgalarza88@gmail.com>

References

See Also

Log.best.lqr, best.lqr, dSKD

Examples

```r
# Load the data
data(resistance)
attach(resistance)

#EXAMPLE 1.1

# Comparing the resistance to death of two types of tumor-cells.
# The response is a score in [0,4].
boxplot(score~type,ylab="score",xlab="type")

# Student's median logistic quantile regression
res = Log.lqr(score~type,data = resistance,a=0,b=4,dist="t")

# The odds ratio of median score in type B vs type A
exp(res$beta[2])

# Proving that exp(res$beta[2]) is approx median odd ratio
medA = median(score[type=="A"])
medB = median(score[type=="B"])
rateA = (medA - 0)/(4 - medA)
rateB = (medB - 0)/(4 - medB)
odd = rateB/rateA
```
round(c(exp(res$beta[2]),odd),3)

#EXAMPLE 1.2
############
#Comparing the resistance to death depending of dose.
#descriptive
plot(dose,score,ylim=c(0,4),col="dark gray");abline(h=c(0,4),lty=2)
dosecat<cut(dose, 6, ordered = TRUE)
boxplot(score~dosecat,ylim=c(0,4))
abline(h=c(0,4),lty=2)

#(Non logistic) Best quantile regression for quantiles
0.05, 0.50 and 0.95
p05 = best.lqr(score~poly(dose,3),data = resistance,p = 0.05)
p50 = best.lqr(score~poly(dose,3),data = resistance,p = 0.50)
p95 = best.lqr(score~poly(dose,3),data = resistance,p = 0.95)
res3 = list(p05,p50,p95)

plot(dose,score,ylim=c(-1,5),col="gray");abline(h=c(0,4),lty=2)
lines(sort(dose), p05$fitted.values[order(dose)], col="red", type="l")
lines(sort(dose), p50$fitted.values[order(dose)], col="blue", type="l")
lines(sort(dose), p95$fitted.values[order(dose)], col="red", type="l")

#Using Student's t logistic quantile regression for obtaining preditypeBions inside bounds
logp05 = Log.lqr(score~poly(dose,3),data = resistance,p = 0.05,b = 4,dist = "t") #a = 0 by default
logp50 = Log.lqr(score~poly(dose,3),data = resistance,p = 0.50,b = 4,dist = "t")
logp95 = Log.lqr(score~poly(dose,3),data = resistance,p = 0.95,b = 4,dist = "t")
res4 = list(logp05,logp50,logp95)

#No more predited curves out-of-bounds
plot(dose,score,ylim=c(-1,5),col="gray");abline(h=c(0,4),lty=2)
lines(sort(dose), logp05$fitted.values[order(dose)], col="red", type="l")
lines(sort(dose), logp50$fitted.values[order(dose)], col="blue", type="l")
lines(sort(dose), logp95$fitted.values[order(dose)], col="red", type="l")

#EXAMPLE 1.3
############
#A full model using dose and type for a grid of quantiles
res5 = Log.lqr(formula = score ~ poly(dose,3)*type,data = resistance,
a = 0,b = 4,
p = seq(from = 0.05,to = 0.95,by = 0.05),dist = "t",
silent = TRUE)

#A nice plot
if(TRUE){
par(mfrow=c(1,2))
typeB = (resistance$type == "B")

plot(dose,score,
 ylim=c(0,4),
 col=c(8*typeB + 1*!typeB),main="Type A")
abline(h=c(0,4),lty=2)
lines(sort(dose[!typeB]),
 res5[[2]]$fitted.values[!typeB][order(dose[!typeB])],
 col='red')
lines(sort(dose[!typeB]),
 res5[[5]]$fitted.values[!typeB][order(dose[!typeB])],
 col='green')
lines(sort(dose[!typeB]),
 res5[[10]]$fitted.values[!typeB][order(dose[!typeB])],
 col='blue',lwd=2)
lines(sort(dose[!typeB]),
 res5[[15]]$fitted.values[!typeB][order(dose[!typeB])],
 col='green')
lines(sort(dose[!typeB]),
 res5[[18]]$fitted.values[!typeB][order(dose[!typeB])],
 col='red')

plot(dose,score,
 ylim=c(0,4),
 col=c(1*typeB + 8*!typeB),main="Type B")
abline(h=c(0,4),lty=2)
lines(sort(dose[typeB]),
 res5[[2]]$fitted.values[typeB][order(dose[typeB])],
 col='red')
lines(sort(dose[typeB]),
 res5[[5]]$fitted.values[typeB][order(dose[typeB])],
 col='green')
lines(sort(dose[typeB]),
 res5[[10]]$fitted.values[typeB][order(dose[typeB])],
 col='blue',lwd=2)
lines(sort(dose[typeB]),
 res5[[15]]$fitted.values[typeB][order(dose[typeB])],
 col='green')
lines(sort(dose[typeB]),
 res5[[18]]$fitted.values[typeB][order(dose[typeB])],
 col='red')
}
Robust Linear Quantile Regression

Description

It fits a robust linear quantile regression model using a new family of zero-quantile distributions for the error term. This family of distribution includes skewed versions of the Normal, Student’s t, Laplace, Slash and Contaminated Normal distribution. It provides estimates and full inference. It also provides envelopes plots for assessing the fit and confidences bands when several quantiles are provided simultaneously.

Usage

```r
lqr(formula, data = NULL, subset = NULL,
    p = 0.5, dist = "normal",
    nu = NULL, gamma = NULL,
    precision = 10^-6, envelope = FALSE,
    CI = 0.95, silent = FALSE)
```

#lqr(y~x, data, p = 0.5, dist = "normal")
#lqr(y~x, data, p = 0.5, dist = "t")
#lqr(y~x, data, p = 0.5, dist = "laplace")
#lqr(y~x, data, p = 0.5, dist = "slash")
#lqr(y~x, data, p = 0.5, dist = "cont")

#lqr(y~x, p = c(0.25, 0.50, 0.75), dist = "normal")

Arguments

- **formula**: an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
- **data**: an optional data frame, list or environment (or object coercible by `as.data.frame`) containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`.
- **subset**: an optional string specifying a subset of observations to be used in the fitting process. Be aware of the use of double quotes in a proper way when necessary, e.g., in "(sex='F')".
- **p**: An unique quantile or a set of quantiles related to the quantile regression.
- **dist**: represents the distribution to be used for the error term. The values are `normal` for Normal distribution, `t` for Student’s t distribution, `laplace` for Laplace distribution, `slash` for Slash distribution and `cont` for the Contaminated normal distribution.
It represents the degrees of freedom when \(\text{dist} = t \). For the Slash distribution \(\text{dist} = \text{slash} \) it is a shape parameter \(\nu > 0 \). For the Contaminated Normal distribution, \(\nu \) is the parameter that represents the percentage of outliers. When is not provided, we use the MLE.

gamma:
It represents a scale factor for the contaminated normal distribution. When is not provided, we use the MLE.

precision:
The convergence maximum error permitted. By default is \(10^{-6} \).

envelope:
if TRUE, it will show a confidence envelope for a curve based on bootstrap replicates. By default it is TRUE when just one quantile is provided. If a grid of quantiles is provided it will be FALSE by default.

CI:
Confidence to be used for the Confidence Interval when a grid of quantiles is provided. Default = 0.95.

silent:
if FALSE (by default), the function prints some output.

Details
When a grid of quantiles is provided, a graphical summary with point estimates and Confidence Intervals for model parameters is shown.

Value

<table>
<thead>
<tr>
<th>iter</th>
<th>number of iterations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>criteria</td>
<td>attained criteria value.</td>
</tr>
<tr>
<td>beta</td>
<td>fixed effects estimates.</td>
</tr>
<tr>
<td>sigma</td>
<td>scale parameter estimate for the error term.</td>
</tr>
<tr>
<td>nu</td>
<td>Estimate of nu parameter detailed above.</td>
</tr>
<tr>
<td>gamma</td>
<td>Estimate of gamma parameter detailed above.</td>
</tr>
<tr>
<td>SE</td>
<td>Standard Error estimates.</td>
</tr>
<tr>
<td>table</td>
<td>Table containing the inference for the fixed effects parameters.</td>
</tr>
<tr>
<td>loglik</td>
<td>Log-likelihood value.</td>
</tr>
<tr>
<td>AIC</td>
<td>Akaike information criterion.</td>
</tr>
<tr>
<td>BIC</td>
<td>Bayesian information criterion.</td>
</tr>
<tr>
<td>HQ</td>
<td>Hannan-Quinn information criterion.</td>
</tr>
<tr>
<td>fitted.values</td>
<td>vector containing the fitted values.</td>
</tr>
<tr>
<td>residuals</td>
<td>vector containing the residuals.</td>
</tr>
</tbody>
</table>

Note
If a grid of quantiles is provided, the result will be a list of the same dimension where each element corresponds to each quantile as detailed above.
Author(s)

Christian E. Galarza <<cgalarza88@gmail.com>>, Luis Benites <<lsanchez@ime.usp.br>> and Victor H. Lachos <<hlachos@ime.unicamp.br>>

Maintainer: Christian E. Galarza <<cgalarza88@gmail.com>>

References

See Also

cens.lqr, best.lqr, Log.lqr, Log.best.lqr, dSKD

Examples

#Example 1

##Load the data
data(ais)
attach(ais)

Fitting a median regression with Normal errors (by default)

modelF = lqr(BMI~LBM,data = ais,subset = "(Sex==1)"
modelM = lqr(BMI~LBM,data = ais,subset = "(Sex==0)"

plot(LBM,BMI,col=Sex*2+1,
 xlab="Lean Body Mass",
 ylab="Body4 Mass Index",
 main="Quantile Regression")

abline(a = modelF$beta[1],b = modelF$beta[2],lwd=2,col=3)
abline(a = modelM$beta[1],b = modelM$beta[2],lwd=2,col=1)
legend(x = "topleft",legend = c("Male","Female"),lwd = 2,col = c(1,3))

#COMPARING SOME MODELS for median regression

modelN = lqr(BMI~LBM,dist = "normal")
modelT = lqr(BMI~LBM,dist = "t")
modelL = lqr(BMI~LBM,dist = "laplace")

#Comparing AIC criteria

modelN$AIC;modelT$AIC;modelL$AIC

#This could be automatically done using best.lqr()

best.model = best.lqr(BMI~LBM,data = ais,
 p = 0.75, #third quartile
criterion = "AIC")
Let's use a grid of quantiles (no output)
modelfull = lqr(BMI~LBM,data = ais,
 p = seq(from = 0.10,to = 0.90,by = 0.05),
 dist = "normal",silent = TRUE)

Plotting quantiles 0.10, 0.25, 0.50, 0.75 and 0.90
if(TRUE)
{
 plot(LBM,BMI,xlab = "Lean Body Mass"
 ,ylab = "Body Mass Index", main = "Quantile Regression",pch=16)
 colvec = c(2,2,3,3,4)
 imodel = c(1,17,4,14,9)
 for(i in 1:5){
 abline(a = modelfull[[imodel[i]]]$beta[1],
 b = modelfull[[imodel[i]]]$beta[2],
 lwd=2,col=colvec[i])
 }
 legend(x = "topleft",
 legend = rev(c("0.10","0.25","0.50","0.75","0.90")),
 lwd = 2,col = c(2,3,4,3,2))
}

Example 2
Load the data
data(crabs,package = "MASS")
attach(crabs)

Fitting a median regression with Normal errors (by default) # Note the double quotes
crabsF = lqr(BD~FL,data = crabs,subset = "(sex=="F")")

Fitting a median regression with Normal errors (by default) # Note the double quotes
crabsM = lqr(BD~FL,data = crabs,subset = "(sex=="M")")

if(TRUE){
 plot(FL,BD,col=as.numeric(sex)+1,
 xlab="Frontal lobe size",ylab="Body depth",main="Quantile Regression")
 abline(a = crabsF$beta[1],b = crabsF$beta[2],lwd=2,col=2)
 abline(a = crabsM$beta[1],b = crabsM$beta[2],lwd=2,col=3)
 legend(x = "topleft",legend = c("Male","Female"),
 lwd = 2,col = c(3,2))
}

Median regression for different distributions
modelN = lqr(BD~FL,dist = "normal")
modelT = lqr(BD~FL,dist = "t")
modelL = lqr(BD~FL,dist = "laplace")
modelS = lqr(BD~FL,dist = "slash")
modelC = lqr(BD~FL,dist = "cont")

Comparing AIC criterias
modelN$AIC;modelT$AIC;modelL$AIC;modelS$AIC;modelC$AIC
best model based on BIC
best.lqr(BD~FL,criterion = "BIC")

Let's use a grid of quantiles for the Student's t distribution
modelfull = lqr(BD~FL,data = crabs,
 p = seq(from = 0.10,to = 0.90,by = 0.05),
 dist = "t") # silent = FALSE

Plotting quantiles 0.10,0.25,0.50,0.75 and 0.90
if(TRUE){
 plot(FL,BD,xlab = "Frontal lobe size",
 ylab = "Body depth", main = "Quantile Regression",pch=16)
 colvec = c(2,2,3,3,4)
 imodel = c(1,17,4,14,9)
 for(i in 1:5){
 abline(a = modelfull[[imodel[i]]]$beta[1],
 b = modelfull[[imodel[i]]]$beta[2],
 lwd=2,col=colvec[i])
 }
 legend(x = "topleft",
 legend = rev(c("0.10","0.25","0.50","0.75","0.90")),
 lwd = 2,col = c(2,3,4,3,2))
}

resistance

Tumor-cell resistance to death

Description

Artificial dataset. The experiment consists in measure the resistance to death of two types of tumor-cells over different doses of a experimental drug. The data was created considering a null intercept and a cubic polinomial for the dose.

Format

This data frame contains the following columns:

- **dose** Quantity of dose of an experimental drug.
- **type** Type of tumor-cell. Type A and B.
- **score** Bounded response between 0 and 4.

Details

This dataset was generated in order to be fitted with a logistic quantile regression since the response is bounded.
Description

Density, distribution function, quantile function and random generation for a Skew Family Distribution useful for quantile regression. This family of distribution includes skewed versions of the Normal, Student’s t, Laplace, Slash and Contaminated Normal distribution, all with location parameter equal to μ, scale parameter σ and skewness parameter p.

Usage

- `dSKD(y, mu = 0, sigma = 1, p = 0.5, dist = "normal", nu = "", gamma = ")`
- `pSKD(q, mu = 0, sigma = 1, p = 0.5, dist = "normal", nu = "", gamma = ", lower.tail = TRUE)`
- `qSKD(prob, mu = 0, sigma = 1, p = 0.5, dist = "normal", nu = ", gamma = "", lower.tail = TRUE)`
- `rSKD(n, mu = 0, sigma = 1, p = 0.5, dist = "normal", nu = ", gamma = ")`

Arguments

- `y, q` vector of quantiles.
- `prob` vector of probabilities.
- `n` number of observations.
- `mu` location parameter.
- `sigma` scale parameter.
- `p` skewness parameter.
- `dist` represents the distribution to be used for the error term. The values are `normal` for Normal distribution, `t` for Student’s t distribution, `laplace` for Laplace distribution, `slash` for Slash distribution and `cont` for the Contaminated normal distribution.
- `nu` It represents the degrees of freedom when `dist = t`. For the Slash distribution (`dist = slash`) it is a shape parameter $\nu > 0$. For the Contaminated Normal distribution, ν is the parameter that represents the percentage of outliers. When is not provided, we use the MLE.
- `gamma` It represents a scale factor for the contaminated normal distribution. When is not provided, we use the MLE.
- `lower.tail` logical; if TRUE (default), probabilities are $P[X \leq x]$ otherwise, $P[X > x]$.

Details

If `mu`, `sigma`, `p` or `dist` are not specified they assume the default values of 0, 1, 0.5 and `normal`, respectively, belonging to the Symmetric Standard Normal Distribution denoted by $SKN(0, 1, 0.5)$.

The scale parameter σ must be positive and non zero. The skew parameter p must be between zero and one ($0 < p < 1$).

This family of distributions generalize the skew distributions in Wichitaksorn et al. (2014) as an scale mixture of skew normal distribution. Also the Three-Parameter Asymmetric Laplace Distribution defined in Koenker and Machado (1999) is a special case.

Value

dSKD gives the density, pSKD gives the distribution function, qSKD gives the quantile function, and rSKD generates a random sample.

The length of the result is determined by n for rSKD, and is the maximum of the lengths of the numerical arguments for the other functions dSKD, pSKD and qSKD.

Note

The numerical arguments other than n are recycled to the length of the result.

Author(s)

Christian E. Galarza <<cgalarza88@gmail.com>>, Luis Benites <<lsanchez@ime.usp.br>> and Victor H. Lachos <<hlachos@ime.unicamp.br>>

Maintainer: Christian E. Galarza <<cgalarza88@gmail.com>>

References

See Also

lqr,ais

Examples

```r
## Let's plot (Normal Vs. Student-t's with 4 df)
## Density
sseq = seq(15,65,length.out = 1000)
dens = dSKD(y=sseq,mu=50,sigma=3,p=0.75)
plot(sseq,dens,type="l",lwd=2,col="red",xlab="x",ylab="f(x)", main="Normal Vs. t(4) densities")
dens2 = dSKD(y=sseq,mu=50,sigma=3,p=0.75,dist="t",nu=4)
lines(sseq,dens2,type="l",lwd=2,col="blue",lty=2)

## Distribution Function
df = pSKD(q=sseq,mu=50,sigma=3,p=0.75,dist = "laplace")
plot(sseq,df,type="l",lwd=2,col="blue",xlab="x",ylab="F(x)", main="Laplace Distribution function")
abline(h=1,lty=2)
```
Inverse Distribution Function

```r
prob = seq(0.001,0.999,length.out = 1000)
idf = qSKD(prob=prob,mu=50,sigma=3,p=0.25,dist="cont",nu=0.3,gamma=0.1) # 1 min approx
plot(prob,idf,type="l",lwd=2,col="gray30",xlab="x",ylab=expression(F^{-1}(x)))
title(main="Skew Cont. Normal Inverse Distribution function")
abline(v=c(0,1),lty=2)
```

Random Sample Histogram
```r
sample = rSKD(n=20000,mu=50,sigma=3,p=0.2,dist="slash",nu=3)
seqq2 = seq(25,100,length.out = 1000)
dens3 = dSKD(y=seqq2,mu=50,sigma=3,p=0.2,dist="slash",nu=3)
hist(sample,breaks = 70,freq = FALSE,ylim=c(0,1.05*max(dens3,na.rm = TRUE)),main="")
title(main="Histogram and True density")
lines(seqq2,dens3,col="blue",lwd=2)
```
Index

* Distribution
 dist.Truncated, 8
* bounded
 Log.best.lqr, 10
 Log.lqr, 14
 lqr-package, 2
* datasets
 ais, 3
 resistance, 23
* distribution
 Egig, 9
 SKD, 24
* generalized gaussian
 Egig, 9
* logistic
 Log.best.lqr, 10
 Log.lqr, 14
 lqr-package, 2
* package
 best.lqr, 3
 cens.lqr, 5
 lqr, 19
 lqr-package, 2
 SKD, 24
* quantile
 best.lqr, 3
 cens.lqr, 5
 Log.best.lqr, 10
 Log.lqr, 14
 lqr, 19
 lqr-package, 2
 SKD, 24
* regression
 best.lqr, 3
 cens.lqr, 5
 Log.best.lqr, 10
 Log.lqr, 14
 lqr, 19
 lqr-package, 2

* skewed
 lqr-package, 2
* skew
 best.lqr, 3
 cens.lqr, 5
 Log.best.lqr, 10
 Log.lqr, 14
 lqr, 19
 SKD, 24
 ais, 2, 3, 25
 best.lqr, 2, 3, 7, 10, 12, 16, 21
 cens.lqr, 5, 21
 dist.Truncated, 8
 dSKD, 5, 7, 12, 16, 21
 dSKD (SKD), 24
 dtrunc (dist.Truncated), 8
 Egig, 9
 extrunc (dist.Truncated), 8
 grad, 9
 Log.best.lqr, 2, 5, 7, 10, 16, 21
 Log.lqr, 2, 5, 7, 12, 14, 21
 lqr, 2, 5, 7, 9, 19, 25
 lqr-package, 2
 pSKD (SKD), 24
 ptrunc (dist.Truncated), 8
 qSKD (SKD), 24
 qtrunc (dist.Truncated), 8
 resistance, 23
 rSKD (SKD), 24
 rtrunc (dist.Truncated), 8
 SKD, 2, 9, 24
 vartrunc (dist.Truncated), 8

27