Package ‘lrstat’

June 9, 2023

Type Package

Title Power and Sample Size Calculation for Non-Proportional Hazards

Version 0.1.14

Date 2023-06-08

Author Kaifeng Lu

Maintainer Kaifeng Lu <kaifenglu@gmail.com>

License GPL (>= 2)

Imports Rcpp (>= 1.0.9)

LinkingTo Rcpp

Suggests knitr, rmarkdown, testthat (>= 3.0.0), mvtnorm, dplyr, tidyr

VignetteBuilder knitr

RoxygenNote 7.2.3

Encoding UTF-8

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-06-09 04:10:02 UTC

R topics documented:

lrstat-package ... 2
accrual .. 4
lrstat-package

Power and Sample Size Calculation for Non-Proportional Hazards

Description

Performs power and sample size calculation for non-proportional hazards model using the Fleming-Harrington family of weighted log-rank tests.

Details

For proportional hazards, the power is determined by the total number of events and the constant hazard ratio along with information rates and spending functions. For non-proportional hazards, the hazard ratio varies over time and the calendar time plays a key role in determining the mean and variance of the log-rank test score statistic. It requires an iterative algorithm to find the calendar time at which the targeted number of events will be reached for each interim analysis. The lrstat package uses the analytic method in Lu (2021) to find the mean and variance of the weighted log-rank test score statistic at each interim analysis. In addition, the package approximates the variance and covariance matrix of the sequentially calculated log-rank test statistics under the alternative hypothesis with that under the null hypothesis to take advantage of the independent increments structure in Tsiatis (1982) applicable for the Fleming-Harrington family of weighted log-rank tests.

The most useful functions in the package are lrstat, lrpower, lrsamplesize, and lrsim, which calculate the mean and variance of log-rank test score statistic at a sequence of given calendar times.
the power of the log-rank test, the sample size in terms of accrual duration and follow-up duration, and the log-rank test simulation, respectively. The accrual function calculates the number of patients accrued at given calendar times. The caltime function finds the calendar times to reach the targeted number of events. The exitprob function calculates the stagewise exit probabilities for specified boundaries with a varying mean parameter over time based on an adaptation of the recursive integration algorithm described in Chapter 19 of Jennison and Turnbull (2000).

The development of the lrstat package is heavily influenced by the rpact package. We find their function arguments to be self-explanatory. We have used the same names whenever appropriate so that users familiar with the rpact package can learn the lrstat package quickly. However, there are notable differences:

- lrstat uses direct approximation, while rpact uses the Schoenfeld method for log-rank test power and sample size calculation.
- lrstat uses accrualDuration to explicitly set the end of accrual period, while rpact incorporates the end of accrual period in accrualTime.
- lrstat considers the trial a failure at the last stage if the log-rank test cannot reject the null hypothesis up to this stage and cannot stop for futility at an earlier stage.
- the lrsim function uses the variance of the log-rank test score statistic as the information.

Author(s)

Kaifeng Lu, <kaifenglu@gmail.com>

References

Kaifeng Lu. Sample size calculation for logrank test and prediction of number of events over time. Pharm Stat. 2021;20:229-244.

See Also

rpact, gsDesign

Examples

lrpower(kMax = 2, informationRates = c(0.8, 1),
criticalValues = c(2.250, 2.025), accrualIntensity = 20,
piecewiseSurvivalTime = c(0, 6),
lambda1 = c(0.0533, 0.0309), lambda2 = c(0.0533, 0.0533),
gamma1 = 0.00427, gamma2 = 0.00427,
accrualDuration = 22, followupTime = 18)
accrual

Number of enrolled subjects

Description

Obtains the number of subjects enrolled by given calendar times.

Usage

```r
accrual(
  time = NA_real_,
  accrualTime = 0L,
  accrualIntensity = NA_real_,
  accrualDuration = NA_real_
)
```

Arguments

- `time`: A vector of calendar times at which to calculate the number of enrolled subjects.
- `accrualTime`: Accrual time intervals. Must start with 0, e.g., `c(0, 3)` breaks the time axis into 2 accrual intervals: `[0, 3)` and `[3, Inf)`.
- `accrualIntensity`: A vector of accrual intensities. One for each accrual time interval.
- `accrualDuration`: Duration of the enrollment period.

Value

A vector of total number of subjects enrolled by the specified calendar times.

Examples

Example 1: Uniform enrollment with 20 patients per month for 12 months.
```
accrual(time = 3, accrualTime = 0, accrualIntensity = 20, accrualDuration = 12)
```

Example 2: Piecewise accrual, 10 patients per month for the first # 3 months, and 20 patients per month thereafter. Patient recruitment # ends at 12 months for the study.
```
accrual(time = c(2, 9), accrualTime = c(0, 3), accrualIntensity = c(10, 20), accrualDuration = 12)
```
caltime

Calendar times for target number of events

Description

Obtains the calendar times to reach the target number of subjects having an event.

Usage

```r
caltime(
  nevents = NA_real_,
  allocationRatioPlanned = 1,
  accrualTime = 0L,
  accrualIntensity = NA_real_,
  piecewiseSurvivalTime = 0L,
  stratumFraction = 1L,
  lambda1 = NA_real_,
  lambda2 = NA_real_,
  gamma1 = 0L,
  gamma2 = 0L,
  accrualDuration = NA_real_,
  followupTime = NA_real_,
  fixedFollowup = 0L
)
```

Arguments

- **nevents**: A vector of target number of events.
- **allocationRatioPlanned**: Allocation ratio for the active treatment versus control. Defaults to 1 for equal randomization.
- **accrualTime**: Accrual time intervals. Must start with 0, e.g., `c(0, 3)` breaks the time axis into 2 accrual intervals: [0, 3) and [3, Inf).
- **accrualIntensity**: A vector of accrual intensities. One for each accrual time interval.
- **piecewiseSurvivalTime**: A vector that specifies the time intervals for the piecewise exponential survival distribution. Must start with 0, e.g., `c(0, 6)` breaks the time axis into 2 event intervals: [0, 6) and [6, Inf). Defaults to 0 for exponential distribution.
- **stratumFraction**: A vector of stratum fractions that sum to 1. Defaults to 1 for no stratification.
- **lambda1**: A vector of hazard rates for the event in each analysis time interval by stratum for the active treatment group.
- **lambda2**: A vector of hazard rates for the event in each analysis time interval by stratum for the control group.
errorSpent

Error spending functions

Description

Obtains the error spent at the given information fractions for the specified error spending function.

Usage

errorSpent(t, error, sf = "sfOF", sfpar = NA)
exitprob

Arguments

- **t**: A vector of information fractions.
- **error**: Total error to spend.
- **sf**: Spending function. One of the following: "sfOF" for O’Brien-Fleming type spending function, "sfP" for Pocock type spending function, "sfKD" for Kim & DeMets spending function, and "sfHSD" for Hwang, Shi & DeCani spending function. Defaults to "sfOF".
- **sfpar**: Parameter for the spending function. Corresponds to rho for "sfKD" and gamma for "sfHSD".

Value

A vector of errors spent up to the interim look.

Examples

```r
errorSpent(t = 0.5, error = 0.025, sf = "sfOF")
errorSpent(t = c(0.5, 0.75, 1), error = 0.025, sf = "sfHSD", sfpar = -4)
```

exitprob

Stagewise exit probabilities

Description

Obtains the stagewise exit probabilities for both efficacy and futility stopping.

Usage

```r
exitprob(b, a = NA, theta = 0, I = NA)
```

Arguments

- **b**: Upper boundaries on the z-test statistic scale.
- **a**: Lower boundaries on the z-test statistic scale. Defaults to \(c(\text{rep}(-6, k\text{Max}-1), b[k\text{Max}])\) if left unspecified, where \(k\text{Max} = \text{length}(b)\).
- **theta**: Stagewise parameter of interest, e.g., \(-U/V\) for weighted log-rank test, where \(U\) is the mean and \(V\) is the variance of the weighted log-rank test score statistic at each stage. For proportional hazards and conventional log-rank test, use the scalar input, \(\text{theta} = -\log(\text{HR})\). Defaults to 0 corresponding to the null hypothesis.
- **I**: Stagewise cumulative information, e.g., \(V\), the variance of the weighted log-rank test score statistic at each stage. For conventional log-rank test, information can be approximated by \(\phi I (1-\phi) D\), where \(\phi\) is the probability of being allocated to the active arm, and \(D\) is the total number of events at each stage. Defaults to \(\text{seq}(1, k\text{Max})\) if left unspecified.
Value

A list of stagewise exit probabilities: one vector for efficacy stopping probabilities, and the other vector for futility stopping probabilities.

Examples

```r
exitprob(b = c(3.471, 2.454, 2.004), theta = -log(0.6),
         I = c(50, 100, 150)/4)

exitprob(b = c(2.963, 2.359, 2.014),
         a = c(-0.264, 0.599, 2.014),
         theta = c(0.141, 0.204, 0.289),
         I = c(81, 121, 160))
```

fadjpbon
Adjusted p-values for Bonferroni-based graphical approaches

Description

Obtains the adjusted p-values for graphical approaches using weighted Bonferroni tests.

Usage

```r
fadjpbon(w, G, p)
```

Arguments

- `w`: The vector of initial weights for elementary hypotheses.
- `G`: The initial transition matrix.
- `p`: The raw p-values for elementary hypotheses.

Value

A matrix of adjusted p-values.

References

Adjusted p-values for Simes-based graphical approaches

Description
Obtains the adjusted p-values for graphical approaches using weighted Simes tests.

Usage
fadjpsim(wgtmat, p, family)

Arguments
- **wgtmat**: The weight matrix for intersection hypotheses.
- **p**: The raw p-values for elementary hypotheses.
- **family**: The matrix of family indicators for elementary hypotheses.

Value
A matrix of adjusted p-values.

References

Examples
```r
pvalues <- matrix(c(0.01, 0.005, 0.015, 0.022, 0.02, 0.015, 0.010, 0.023),
                  nrow=2, ncol=4, byrow=TRUE)
w <- c(0.5, 0.5, 0, 0)
g <- matrix(c(0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0),
           nrow=4, ncol=4, byrow=TRUE)
fadjpbon(w, g, pvalues)
```
fseqbon

fseqbon

Group sequential trials using Bonferroni-based graphical approaches

Description

Obtains the test results for group sequential trials using graphical approaches based on weighted Bonferroni tests.

Usage

```r
fseqbon(
  w,
  G,
  alpha = 0.025,
  kMax,
  typeAlphaSpending = NULL,
  parameterAlphaSpending = NULL,
  incidenceMatrix = NULL,
  maxInformation = NULL,
  p,
  information,
  spendingTime = NULL
)
```

Arguments

- `w`: The vector of initial weights for elementary hypotheses.
- `G`: The initial transition matrix.
- `alpha`: The significance level. Defaults to 0.025.
- `kMax`: The maximum number of stages.
- `typeAlphaSpending`: The vector of alpha spending functions. Each element is one of the following: "OF" for O'Brien-Fleming boundaries, "P" for Pocock boundaries, "WT" for Wang & Tsiatis boundaries, "sfOF" for O'Brien-Fleming type spending function, "sfP" for Pocock type spending function, "sfKD" for Kim & DeMets spending function, "sfHSD" for Hwang, Shi & DeCani spending function, and "none" for no early efficacy stopping. Defaults to "sfOF" if not provided.
- `parameterAlphaSpending`: The vector of parameter values for the alpha spending functions. Each element corresponds to the value of Delta for "WT", rho for "sfKD", or gamma for "sfHSD". Defaults to missing if not provided.
- `incidenceMatrix`: The incidence matrix.
- `maxInformation`: The maximum information.
- `p`: The p-values.
- `information`: The information.
- `spendingTime`: The spending time.
incidenceMatrix
The incidence matrix indicating whether the specific hypothesis will be tested
at the given look. The number of columns of incidenceMatrix must be equal to
the maximum number of study looks (kMax). If not provided, defaults to testing
each hypothesis at all study looks.

maxInformation
The vector of target maximum information for each hypothesis. Defaults to a
vector of 1s if not provided.

p
The matrix of raw p-values for each hypothesis by study look.

information
The matrix of observed information for each hypothesis by study look.

spendingTime
The spending time for alpha spending by study look. If not provided, it is the
same as informationRates calculated from information and maxInformation.

Value
A vector to indicate the first look the specific hypothesis is rejected (0 if the hypothesis is not
rejected).

References
Willi Maurer and Frank Bretz. Multiple testing in group sequential trials using graphical ap-

Examples

Case study from Maurer & Bretz (2013)

fseqbon(
 w = c(0.5, 0.5, 0, 0),
 G = matrix(c(0, 0.5, 0.5, 0, 0.5, 0, 0, 0.5, 0, 1, 0, 0, 1, 0, 0, 0),
 nrow=4, ncol=4, byrow=TRUE),
 alpha = 0.025,
 kMax = 3,
 typeAlphaSpending = rep("sfOF", 4),
 maxInformation = rep(1, 4),
 p = matrix(c(0.0062, 0.017, 0.009, 0.13,
 0.0002, 0.0035, 0.002, 0.06),
 nrow=4, ncol=2),
 information = matrix(c(rep(1/3, 4), rep(2/3, 4)),
 nrow=4, ncol=2))
fwgtmat

Weight matrix for all intersection hypotheses

Description

Obtains the weight matrix for all intersection hypotheses.

Usage

fwgtmat(w, G)

Arguments

w
The vector of weights for elementary hypotheses.
G
The transition matrix.

Value

The weight matrix starting with the global null hypothesis.

Examples

w = c(0.5,0.5,0,0)
g = matrix(c(0,0,1,0,0,0,1,0,1,0,1,0,1,0,0,0), nrow=4, ncol=4, byrow=TRUE)
(wgtmat = fwgtmat(w,g))

gGetAccrualDuration

Accrual duration to enroll target number of subjects

Description

Obtains the accrual duration to enroll the target number of subjects.

Usage

getAccrualDuration(
 nsubjects = NA_real_,
 accrualTime = 0L,
 accrualIntensity = NA_real_
)

getBound

Arguments

- **nsubjects**: The vector of target number of subjects.
- **accrualTime**: Accrual time intervals. Must start with 0, e.g., c(0, 3) breaks the time axis into 2 accrual intervals: [0, 3) and [3, Inf).
- **accrualIntensity**: A vector of accrual intensities. One for each accrual time interval.

Value

The vector of accrual duration.

Examples

```r
getAccrualDuration(nsubjects = c(20, 150), accrualTime = c(0, 3),
                   accrualIntensity = c(10, 20))
```

getBound

Get efficacy boundaries for group sequential design

Description

Obtains the efficacy stopping boundaries for a group sequential design.

Usage

```r
getBound(
  k = NA_integer_,
  informationRates = NA_real_,
  alpha = 0.025,
  typeAlphaSpending = "sfOF",
  parameterAlphaSpending = NA_real_,
  userAlphaSpending = NA_real_,
  spendingTime = NA_real_
)
```

Arguments

- **k**: Look number for the current analysis.
- **informationRates**: Information rates up to the current look. Must be increasing and less than or equal to 1.
- **alpha**: The significance level. Defaults to 0.025.
getDesign

Description

Obtains the drift parameter and stopping boundaries for a generic group sequential design assuming a constant treatment effect, or obtains the power given the drift parameter and stopping boundaries.

Usage

```r
getDesign(  
  beta = 0.2,
  drift = NA_real_,
  kMax = 1L,
  informationRates = NA_real_,
  efficacyStopping = NA_integer_,
  futilityStopping = NA_integer_,
  criticalValues = NA_real_,
  alpha = 0.025,
  typeAlphaSpending = "sfOF",
)```

**typeAlphaSpending**

The type of alpha spending. One of the following: "OF" for O'Brien-Fleming boundaries, "P" for Pocock boundaries, "WT" for Wang & Tsiatis boundaries, "sfOF" for O'Brien-Fleming type spending function, "sfP" for Pocock type spending function, "sfKD" for Kim & DeMets spending function, "sfHSD" for Hwang, Shi & DeCani spending function, "user" for user defined spending, and "none" for no early efficacy stopping. Defaults to "sfOF".

**parameterAlphaSpending**

The parameter value for the alpha spending. Corresponds to Delta for "WT", rho for "sfKD", and gamma for "sfHSD".

**userAlphaSpending**

The user defined alpha spending. Cumulative alpha spent up to each stage.

**spendingTime**

A vector of length $k$ for the error spending time at each analysis. Must be increasing and less than or equal to 1. Defaults to missing, in which case, it is the same as `informationRates`.

**Value**

A numeric vector of critical values up to the current look.

**Examples**

```r
getBound(k = 2, informationRates = c(0.5,1),
 alpha = 0.025, typeAlphaSpending = "sfOF")
```
getDesign

parameterAlphaSpending = NA_real_,
userAlphaSpending = NA_real_,
futilityBounds = NA_real_,
typeBetaSpending = "none",
parameterBetaSpending = NA_real_,
userBetaSpending = NA_real_,
spendingTime = NA_real_ )

Arguments

beta Type II error. Defaults to 0.2.
drift Drift parameter, i.e., \((\theta - \theta_0) \sqrt{I_{\text{max}}}\). If drift is provided, then the input beta will be ignored and power will be calculated.
kMax The maximum number of stages.
informationRates The information rates in terms of number of events. Fixed prior to the trial. Defaults to \((1:k_{\text{Max}}) / k_{\text{Max}}\) if left unspecified.
efficacyStopping Indicators of whether efficacy stopping is allowed at each stage. Defaults to true if left unspecified.
futilityStopping Indicators of whether futility stopping is allowed at each stage. Defaults to true if left unspecified.
criticalValues Upper boundaries on the z-test statistic scale for stopping for efficacy.
alpha The significance level. Defaults to 0.025.
typeAlphaSpending The type of alpha spending. One of the following: "OF" for O'Brien-Fleming boundaries, "P" for Pocock boundaries, "WT" for Wang & Tsiatis boundaries, "sfOF" for O'Brien-Fleming type spending function, "sfP" for Pocock type spending function, "sfKD" for Kim & DeMets spending function, "sfHSD" for Hwang, Shi & DeCani spending function, "user" for user defined spending, and "none" for no early efficacy stopping. Defaults to "sfOF".
parameterAlphaSpending The parameter value for the alpha spending. Corresponds to Delta for "WT", rho for "sfKD", and gamma for "sfHSD".
userAlphaSpending The user defined alpha spending. Cumulative alpha spent up to each stage.
futilityBounds Lower boundaries on the z-test statistic scale for stopping for futility at stages 1,..., \(k_{\text{Max}}-1\). Defaults to \(\text{rep}( -6, k_{\text{Max}}-1 )\) if left unspecified.
typeBetaSpending The type of beta spending. One of the following: "sfOF" for O'Brien-Fleming type spending function, "sfP" for Pocock type spending function, "sfKD" for Kim & DeMets spending function, "sfHSD" for Hwang, Shi & DeCani spending function, "user" for user defined spending, and "none" for no early futility stopping. Defaults to "none".
getDurationFromNevents

parameterBetaSpending
The parameter value for the beta spending. Corresponds to rho for "sfKD", and gamma for "sfHSD".

userBetaSpending
The user defined beta spending. Cumulative beta spent up to each stage.

spendingTime
A vector of length kMax for the error spending time at each analysis. Defaults to missing, in which case, it is the same as informationRates.

Value
A list of S3 class design with three components:

* overallResults containing the overall rejection probability, overall significance level, number of stages, drift parameter, and inflation factor (relative to fixed design).

* byStageResults containing information rates, efficacy and futility boundaries on the Z-scale, probability for efficacy and futility stopping at the stage, cumulative probability for efficacy and futility stopping by the stage, cumulative alpha spent, efficacy and futility boundaries on the p-value scale, and whether efficacy and futility stopping are allowed by stage.

* settings containing input parameters such as alpha and beta spending function and parameter values, spendingTime, and calculation target.

Examples

```r
Example 1: obtain the drift parameter given power
getDesign(beta = 0.2,
 kMax = 2,
 informationRates = c(0.5,1),
 alpha = 0.025,
 typeAlphaSpending = "sfOF",
 typeBetaSpending = "sfP")

Example 2: obtain power given the drift parameter
getDesign(drift = 3.026,
 kMax = 3,
 informationRates = c(0.5, 0.75, 1),
 alpha = 0.025,
 typeAlphaSpending = "sfOF",
 typeBetaSpending = "sfP")
```

Description
Obtains a range of accrual duration to reach the target number of events.
getDurationFromNevents

Usage

getCodeFromNevents(
  nevents = NA_real_,
  allocationRatioPlanned = 1,
  accrualTime = 0L,
  accrualIntensity = NA_real_,
  piecewiseSurvivalTime = 0L,
  stratumFraction = 1L,
  lambda1 = NA_real_,
  lambda2 = NA_real_,
  gamma1 = 0L,
  gamma2 = 0L,
  followupTime = 18,
  fixedFollowup = 0L,
  npoints = 23L,
  interval = as.numeric(c(0.001, 240))
)

Arguments

nevents The target number of events.

allocationRatioPlanned Allocation ratio for the active treatment versus control. Defaults to 1 for equal randomization.

accrualTime Accrual time intervals. Must start with 0, e.g., c(0, 3) breaks the time axis into 2 accrual intervals: [0, 3) and [3, Inf).

accrualIntensity A vector of accrual intensities. One for each accrual time interval.

piecewiseSurvivalTime A vector that specifies the time intervals for the piecewise exponential survival distribution. Must start with 0, e.g., c(0, 6) breaks the time axis into 2 event intervals: [0, 6) and [6, Inf). Defaults to 0 for exponential distribution.

stratumFraction A vector of stratum fractions that sum to 1. Defaults to 1 for no stratification.

lambda1 A vector of hazard rates for the event in each analysis time interval by stratum for the active treatment group.

lambda2 A vector of hazard rates for the event in each analysis time interval by stratum for the control group.

gamma1 The hazard rate for exponential dropout. A vector of hazard rates for piecewise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for the active treatment group.

gamma2 The hazard rate for exponential dropout. A vector of hazard rates for piecewise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for the control group.

followupTime Follow-up time for the last enrolled subject.

fixedFollowup Whether a fixed follow-up design is used. Defaults to 0 for variable follow-up.
getNeventsFromHazardRatio

npoints         The number of accrual duration time points. Defaults to 23.
interval       The interval to search for the solution of accrualDuration. Defaults to c(0.001, 240).

Value

A data frame of enrollment duration, sample size, and study duration to yield the target number of events.

Examples

# Piecewise accrual, piecewise exponential survivals, and 5% dropout by # the end of 1 year.
getDurationFromNevents(
  nevents = 80, allocationRatioPlanned = 1,
  accrualTime = seq(0, 8),
  accrualIntensity = 26/9*seq(1, 9),
  piecewiseSurvivalTime = c(0, 6),
  stratumFraction = c(0.2, 0.8),
  lambda1 = c(0.0533, 0.0309, 1.5*0.0533, 1.5*0.0309),
  lambda2 = c(0.0533, 0.0533, 1.5*0.0533, 1.5*0.0533),
  gamma1 = -log(1-0.05)/12,
  gamma2 = -log(1-0.05)/12,
  fixedFollowup = FALSE)

getNeventsFromHazardRatio

Get the required number of events from hazard ratios

Description

Obtains the required number of events given the hazard ratios under the null and alternative hypotheses for a group sequential design.

Usage

getNeventsFromHazardRatio(
  beta = 0.2,
  kMax = 1L,
  informationRates = NA_real_,
  efficacyStopping = NA_integer_,
  futilityStopping = NA_integer_,
  criticalValues = NA_real_,
  alpha = 0.025,
  typeAlphaSpending = "sfOF",
  parameterAlphaSpending = NA_real_,
  ...)
getNeventsFromHazardRatio

userAlphaSpending = NA_real_,
futilityBounds = NA_real_,
typeBetaSpending = "none",
parameterBetaSpending = NA_real_,
userBetaSpending = NA_real_,
spendingTime = NA_real_,
hazardRatioH0 = 1,
hazardRatio = 0.5,
allocationRatioPlanned = 1,
rounding = 1L
)

Arguments

beta Type II error. Defaults to 0.2.
kMax The maximum number of stages.
informationRates

The information rates in terms of number of events. Fixed prior to the trial. Defaults to \((1:kMax) / kMax\) if left unspecified.
efficacyStopping

Indicators of whether efficacy stopping is allowed at each stage. Defaults to true if left unspecified.
futilityStopping

Indicators of whether futility stopping is allowed at each stage. Defaults to true if left unspecified.
criticalValues Upper boundaries on the z-test statistic scale for stopping for efficacy.
alpha

The significance level. Defaults to 0.025.
typeAlphaSpending

The type of alpha spending. One of the following: "OF" for O'Brien-Fleming boundaries, "P" for Pocock boundaries, "WT" for Wang & Tsiatis boundaries, "sfOF" for O'Brien-Fleming type spending function, "sfP" for Pocock type spending function, "sfKD" for Kim & DeMets spending function, "sfHSD" for Hwang, Shi & DeCani spending function, "user" for user defined spending, and "none" for no early efficacy stopping. Defaults to "sfOF". parameterAlphaSpending

The parameter value for the alpha spending. Corresponds to Delta for "WT", rho for "sfKD", and gamma for "sfHSD".
userAlphaSpending

The user defined alpha spending. Cumulative alpha spent up to each stage.
futilityBounds

Lower boundaries on the z-test statistic scale for stopping for futility at stages 1, ..., kMax-1. Defaults to \(\text{rep}(-6, kMax-1)\) if left unspecified.
typeBetaSpending

The type of beta spending. One of the following: "sfOF" for O'Brien-Fleming type spending function, "sfP" for Pocock type spending function, "sfKD" for Kim & DeMets spending function, "sfHSD" for Hwang, Shi & DeCani spending function, "user" for user defined spending, and "none" for no early futility stopping. Defaults to "none".
parameterBetaSpending

The parameter value for the beta spending. Corresponds to rho for "sfKD", and gamma for "sfHSD".

userBetaSpending

The user defined beta spending. Cumulative beta spent up to each stage.

spendingTime

A vector of length kMax for the error spending time at each analysis. Defaults to missing, in which case, it is the same as informationRates.

hazardRatioH0

Hazard ratio under the null hypothesis for the active treatment versus control. Defaults to 1 for superiority test.

hazardRatio

Hazard ratio under the alternative hypothesis for the active treatment versus control. Defaults to 0.5.

allocationRatioPlanned

Allocation ratio for the active treatment versus control. Defaults to 1 for equal randomization.

rounding

Whether to round up the number of events. Defaults to 1 for rounding.

Value

The required number of events.

Examples

getNeventsFromHazardRatio(
  beta = 0.2, kMax = 2,
  informationRates = c(0.5,1),
  alpha = 0.025, typeAlphaSpending = "sfOF",
  typeBetaSpending = "sfP",
  hazardRatio = 0.673)

kmest

Stratified difference in milestone survival

Description

Obtains the stratified Kaplan-Meier estimate of milestone survival probabilities and difference in milestone survival at given calendar times and milestone time.

Usage

kmest(
  time = NA_real_,
  milestone = NA_real_,
  allocationRatioPlanned = 1,
  accrualTime = 0L,
  accrualIntensity = NA_real_,


\texttt{kmest}

\begin{verbatim}
piecewiseSurvivalTime = 0L, 
stratumFraction = 1L, 
lambda1 = NA_real_, 
lambda2 = NA_real_, 
gamma1 = 0L, 
gamma2 = 0L, 
accrualDuration = NA_real_, 
followupTime = NA_real_, 
fixedFollowup = 0L, 
umSubintervals = 300L 
)
\end{verbatim}

**Arguments**

- **time**: A vector of calendar times at which to calculate the milestone survival.
- **milestone**: The milestone time at which to calculate the Kaplan-Meier estimate of survival probability.
- **allocationRatioPlanned**: Allocation ratio for the active treatment versus control. Defaults to 1 for equal randomization.
- **accrualTime**: Accrual time intervals. Must start with 0, e.g., \(c(0, 3)\) breaks the time axis into 2 accrual intervals: \([0, 3)\) and \([3, \text{Inf})\).
- **accrualIntensity**: A vector of accrual intensities. One for each accrual time interval.
- **piecewiseSurvivalTime**: A vector that specifies the time intervals for the piecewise exponential survival distribution. Must start with 0, e.g., \(c(0, 6)\) breaks the time axis into 2 event intervals: \([0, 6)\) and \([6, \text{Inf})\). Defaults to 0 for exponential distribution.
- **stratumFraction**: A vector of stratum fractions that sum to 1. Defaults to 1 for no stratification.
- **lambda1**: A vector of hazard rates for the event in each analysis time interval by stratum for the active treatment group.
- **lambda2**: A vector of hazard rates for the event in each analysis time interval by stratum for the control group.
- **gamma1**: The hazard rate for exponential dropout. A vector of hazard rates for piecewise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for the active treatment group.
- **gamma2**: The hazard rate for exponential dropout. A vector of hazard rates for piecewise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for the control group.
- **accrualDuration**: Duration of the enrollment period.
- **followupTime**: Follow-up time for the last enrolled subject.
- **fixedFollowup**: Whether a fixed follow-up design is used. Defaults to 0 for variable follow-up.
numSubintervals

Number of sub-intervals to approximate the mean and variance of the weighted log-rank test score statistic. Defaults to 300. Specify a larger number for better approximation.

Value

A data frame of the number of subjects enrolled, stratified estimate of milestone survival for each treatment group, difference in milestone survival, the associated variances, and the Z test statistic at the specified calendar times.

Examples

# Piecewise accrual, piecewise exponential survivals, and 5% dropout by # the end of 1 year.

kmest(time = c(22, 40), milestone = 18, allocationRatioPlanned = 1, accrualTime = seq(0, 9), accrualIntensity = c(26/9*seq(1, 9), 26), piecewiseSurvivalTime = c(0, 6), stratumFraction = c(0.2, 0.8), lambda1 = c(0.0533, 0.0309, 1.5*0.0533, 1.5*0.0309), lambda2 = c(0.0533, 0.0533, 1.5*0.0533, 1.5*0.0533), gamma1 = -log(1-0.05)/12, gamma2 = -log(1-0.05)/12, accrualDuration = 22, followupTime = 18, fixedFollowup = FALSE)
parameterAlphaSpending = NA_real_,
userAlphaSpending = NA_real_,
utilityBounds = NA_real_,
typeBetaSpending = "none",
parameterBetaSpending = NA_real_,
hazardRatioH0 = 1,
allocationRatioPlanned = 1,
accrualTime = 0L,
accrualIntensity = 20L,
piecewiseSurvivalTime = 0L,
stratumFraction = 1L,
lambda1 = 0.0309,
lambda2 = 0.0533,
gamma1 = 0L,
gamma2 = 0L,
accrualDuration = 11.6,
followupTime = 18,
fixedFollowup = 0L,
rho1 = 0,
rho2 = 0,
umSubintervals = 300L,
estimateHazardRatio = 1L,
typeOfComputation = "direct",
spendingTime = NA_real_,
studyDuration = NA_real_
)

Arguments

kMax          The maximum number of stages.
informationRates  The information rates in terms of number of events. Fixed prior to the trial.
                    Defaults to (1:kMax) / kMax if left unspecified.
efficacyStopping  Indicators of whether efficacy stopping is allowed at each stage. Defaults to true
                    if left unspecified.
futilityStopping  Indicators of whether futility stopping is allowed at each stage. Defaults to true
                    if left unspecified.
criticalValues   Upper boundaries on the z-test statistic scale for stopping for efficacy.
alpha            The significance level. Defaults to 0.025.
typeAlphaSpending The type of alpha spending. One of the following: "OF" for O'Brien-Fleming
                    boundaries, "P" for Pocock boundaries, "WT" for Wang & Tsiatis boundaries,
                    "sfOF" for O'Brien-Fleming type spending function, "sfP" for Pocock type spending
                    function, "sfKD" for Kim & DeMets spending function, "sfHSD" for Hwang,
                    Shi & DeCani spending function, "user" for user defined spending, and "none"
                    for no early efficacy stopping. Defaults to "sfOF".
parameterAlphaSpending
The parameter value for the alpha spending. Corresponds to Delta for "WT",
 rho for "sfKD", and gamma for "sfHSD".

userAlphaSpending
The user defined alpha spending. Cumulative alpha spent up to each stage.

futilityBounds
Lower boundaries on the z-test statistic scale for stopping for futility at stages 1, ...
 kMax-1. Defaults to rep(-6, kMax-1) if left unspecified.

typeBetaSpending
The type of beta spending. One of the following: "sfOF" for O'Brien-Fleming
type spending function, "sfP" for Pocock type spending function, "sfKD" for
Kim & DeMets spending function, "sfHSD" for Hwang, Shi & DeCani spending
function, and "none" for no early futility stopping. Defaults to "none".

parameterBetaSpending
The parameter value for the beta spending. Corresponds to rho for "sfKD", and
gamma for "sfHSD".

hazardRatioH0
Hazard ratio under the null hypothesis for the active treatment versus control.
Defaults to 1 for superiority test.

allocationRatioPlanned
Allocation ratio for the active treatment versus control. Defaults to 1 for equal
randomization.

accrualTime
Accrual time intervals. Must start with 0, e.g., c(0, 3) breaks the time axis into
2 accrual intervals: [0, 3) and [3, Inf).

accrualIntensity
A vector of accrual intensities. One for each accrual time interval.

d piecewiseSurvivalTime
A vector that specifies the time intervals for the piecewise exponential survival
distribution. Must start with 0, e.g., c(0, 6) breaks the time axis into 2 event
intervals: [0, 6) and [6, Inf). Defaults to 0 for exponential distribution.

stratumFraction
A vector of stratum fractions that sum to 1. Defaults to 1 for no stratification.

lambda1
A vector of hazard rates for the event in each analysis time interval by stratum
for the active treatment group.

lambda2
A vector of hazard rates for the event in each analysis time interval by stratum
for the control group.

gamma1
The hazard rate for exponential dropout. A vector of hazard rates for piece-
wise exponential dropout applicable for all strata, or a vector of hazard rates for
dropout in each analysis time interval by stratum for the active treatment group.

gamma2
The hazard rate for exponential dropout. A vector of hazard rates for piece-
wise exponential dropout applicable for all strata, or a vector of hazard rates for
dropout in each analysis time interval by stratum for the control group.

accrualDuration
Duration of the enrollment period.

followupTime
Follow-up time for the last enrolled subject.

fixedFollowup
Whether a fixed follow-up design is used. Defaults to 0 for variable follow-up.
rho1  The first parameter of the Fleming-Harrington family of weighted log-rank test. Defaults to 0 for conventional log-rank test.

rho2  The second parameter of the Fleming-Harrington family of weighted log-rank test. Defaults to 0 for conventional log-rank test.

numSubintervals  Number of sub-intervals to approximate the mean and variance of the weighted log-rank test score statistic. Defaults to 300. Specify a larger number for better approximation.

estimateHazardRatio  Whether to estimate the hazard ratio from weighted Cox regression model and report the stopping boundaries on the hazard ratio scale.

typeOfComputation  Whether to use the direct approximation method or the Schoenfeld method. Defaults to "direct". Can use "Schoenfeld" under proportional hazards and conventional log-rank test.

spendingTime  A vector of length kMax for the error spending time at each analysis. Defaults to missing, in which case, it is the same as informationRates.

studyDuration  Study duration for fixed follow-up design. Defaults to missing, which is to be replaced with the sum of accrualDuration and followupTime. If provided, the value is allowed to be less than the sum of accrualDuration and followupTime.

Value

A list of S3 class lrpower with 3 components:
* overallResults containing the overall rejection probability, overall significance level, maximum and expected number of events, maximum and expected number of dropouts, total and expected number of subjects, maximum and expected study duration, along with input parameters including accrual duration, follow-up duration, whether a fixed follow-up is used, parameters for the FH weights, allocation ratio, number of stages, and hazard ratio under H0.
* byStageResults containing information rates, efficacy and futility boundaries on the Z-scale, probability for efficacy and futility stopping at the stage, cumulative probability for efficacy and futility stopping by the stage, cumulative alpha spent, expected number of events, number of dropouts, number of subjects, and expected study time, efficacy and futility boundaries on the HR scale and on the p-value scale, information for weighted log-rank test, hazard ratio from weighted Cox regression, and whether efficacy and futility stopping are allowed by stage.
* settings containing input parameters such as alpha and beta spending function and parameter values, accrual time, accrual intensity, piecewise survival time, stratum fraction, and hazard rates for survival and dropout by group.

Examples

# Piecewise accrual, piecewise exponential survival, and 5% dropout by the end of 1 year.

lrpower(kMax = 2, informationRates = c(0.8, 1),
    alpha = 0.025, typeAlphaSpending = "sfOF",

allocationRatioPlanned = 1, accrualTime = seq(0, 9),
accrualIntensity = c(26/9*seq(1, 9), 26),
piecewiseSurvivalTime = c(0, 6),
stratumFraction = c(0.2, 0.8),
lambda1 = c(0.0533, 0.0309, 1.5*0.0533, 1.5*0.0309),
lambda2 = c(0.0533, 0.0533, 1.5*0.0533, 1.5*0.0533),
gamma1 = -log(1-0.05)/12,
gamma2 = -log(1-0.05)/12, accrualDuration = 22,
followupTime = 18, fixedFollowup = FALSE)

Description

Obtains the needed accrual duration given power and follow-up time, the needed follow-up time
given power and accrual duration, or the needed absolute accrual rates given power, accrual dura-
tion, follow-up duration, and relative accrual rates in a two-group survival design.

Usage

lrsamplesize(
  beta = 0.2,
  kMax = 1L,
  informationRates = NA_real_,
  efficacyStopping = NA_integer_,
  futilityStopping = NA_integer_,
  criticalValues = NA_real_,
  alpha = 0.025,
  typeAlphaSpending = "sfOF",
  parameterAlphaSpending = NA_real_,
  userAlphaSpending = NA_real_,
  futilityBounds = NA_real_,
  typeBetaSpending = "none",
  parameterBetaSpending = NA_real_,
  userBetaSpending = NA_real_,
  hazardRatioH0 = 1,
  allocationRatioPlanned = 1,
  accrualTime = 0L,
  accrualIntensity = 20L,
piecewiseSurvivalTime = 0L,
stratumFraction = 1L,
lambda1 = 0.0309,
lambda2 = 0.0533,
gamma1 = 0L,
gamma2 = 0L,
accrualDuration = NA_real_,
)
followupTime = 18,
fixedFollowup = 0L,
rho1 = 0,
rho2 = 0,
numSubintervals = 300L,
estimateHazardRatio = 1L,
typeOfComputation = "direct",
interval = as.numeric(c(0.001, 240)),
spendingTime = NA_real_,
rounding = 1L
)

Arguments

beta Type II error. Defaults to 0.2.
kMax The maximum number of stages.
informationRates
  The information rates in terms of number of events. Fixed prior to the trial.
  Defaults to (1:kMax) / kMax if left unspecified.
efficacyStopping
  Indicators of whether efficacy stopping is allowed at each stage. Defaults to true
  if left unspecified.
futilityStopping
  Indicators of whether futility stopping is allowed at each stage. Defaults to true
  if left unspecified.
criticalValues
  Upper boundaries on the z-test statistic scale for stopping for efficacy.
alphaspending
  The significance level. Defaults to 0.025.
typeAlphaSpending
  The type of alpha spending. One of the following: "OF" for O'Brien-Fleming
  boundaries, "P" for Pocock boundaries, "WT" for Wang & Tsiatis boundaries,
  "sfOF" for O'Brien-Fleming type spending function, "sfP" for Pocock type spend-
  ing function, "sfKD" for Kim & DeMets spending function, "sfHSD" for Hwang,
  Shi & DeCani spending function, "user" for user defined spending, and "none"
  for no early efficacy stopping. Defaults to "sfOF".
parameterAlphaSpending
  The parameter value for the alpha spending. Corresponds to Delta for "WT",
  rho for "sfKD", and gamma for "sfHSD".
userAlphaSpending
  The user defined alpha spending. Cumulative alpha spent up to each stage.
futilityBounds
  Lower boundaries on the z-test statistic scale for stopping for futility at stages 1,
  ..., kMax-1. Defaults to rep(-6, kMax-1) if left unspecified.
typeBetaSpending
  The type of beta spending. One of the following: "sfOF" for O'Brien-Fleming
  type spending function, "sfP" for Pocock type spending function, "sfKD" for
  Kim & DeMets spending function, "sfHSD" for Hwang, Shi & DeCani spending
  function, "user" for user defined spending, and "none" for no early futility
  stopping. Defaults to "none".
parameterBetaSpending
   The parameter value for the beta spending. Corresponds to rho for "sfKD", and
gamma for "sfHSD".
userBetaSpending
   The user defined beta spending. Cumulative beta spent up to each stage.
hazardRatioH0
   Hazard ratio under the null hypothesis for the active treatment versus control.
   Defaults to 1 for superiority test.
allocationRatioPlanned
   Allocation ratio for the active treatment versus control. Defaults to 1 for equal
   randomization.
accrualTime
   Accrual time intervals. Must start with 0, e.g., c(0, 3) breaks the time axis into
   2 accrual intervals: [0, 3) and [3, Inf).
accrualIntensity
   A vector of accrual intensities. One for each accrual time interval.
piecewiseSurvivalTime
   A vector that specifies the time intervals for the piecewise exponential survival
distribution. Must start with 0, e.g., c(0, 6) breaks the time axis into 2 event
   intervals: [0, 6) and [6, Inf). Defaults to 0 for exponential distribution.
stratumFraction
   A vector of stratum fractions that sum to 1. Defaults to 1 for no stratification.
lambda1
   A vector of hazard rates for the event in each analysis time interval by stratum
   for the active treatment group.
lambda2
   A vector of hazard rates for the event in each analysis time interval by stratum
   for the control group.
gamma1
   The hazard rate for exponential dropout. A vector of hazard rates for piece-
   wise exponential dropout applicable for all strata, or a vector of hazard rates for
   dropout in each analysis time interval by stratum for the active treatment group.
gamma2
   The hazard rate for exponential dropout. A vector of hazard rates for piece-
   wise exponential dropout applicable for all strata, or a vector of hazard rates for
   dropout in each analysis time interval by stratum for the control group.
accrualDuration
   Duration of the enrollment period.
followupTime
   Follow-up time for the last enrolled subject.
fixedFollowup
   Whether a fixed follow-up design is used. Defaults to 0 for variable follow-up.
rho1
   The first parameter of the Fleming-Harrington family of weighted log-rank test.
   Defaults to 0 for conventional log-rank test.
rho2
   The second parameter of the Fleming-Harrington family of weighted log-rank test.
   Defaults to 0 for conventional log-rank test.
numSubintervals
   Number of sub-intervals to approximate the mean and variance of the weighted
   log-rank test score statistic. Defaults to 300. Specify a larger number for better
   approximation.
estimateHazardRatio
   Whether to estimate the hazard ratio from weighted Cox regression model and
   report the stopping boundaries on the hazard ratio scale.
lrsamplesize

**typeOfComputation**
Whether to use the direct approximation method or the Schoenfeld method. Defaults to "direct". Can use "Schoenfeld" under proportional hazards and conventional log-rank test.

**interval**
The interval to search for the solution of accrualDuration, followupDuration, or the proportionality constant of accrualIntensity. Defaults to c(0.001, 240). Adjustment may be needed for non-monotone relationship with study power.

**spendingTime**
A vector of length kMax for the error spending time at each analysis. Defaults to missing, in which case, it is the same as informationRates.

**rounding**
Whether to round up sample size and events. Defaults to 1 for sample size rounding.

**Value**
A list of S3 class lrpower.

**Examples**

```r
Piecewise accrual, piecewise exponential survival, and 5% dropout by # the end of 1 year.

Example 1: Obtains accrual duration given power and follow-up duration
lrsamplesize(beta = 0.2, kMax = 2,
 informationRates = c(0.8, 1),
 alpha = 0.025, typeAlphaSpending = "sfOF",
 accrualTime = seq(0, 9),
 accrualIntensity = c(26/9*seq(1, 9), 26),
 piecewiseSurvivalTime = c(0, 6),
 stratumFraction = c(0.2, 0.8),
 lambda1 = c(0.0533, 0.0309, 1.5*0.0533, 1.5*0.0309),
 lambda2 = c(0.0533, 0.0533, 1.5*0.0533, 1.5*0.0533),
 gamma1 = -log(1-0.05)/12,
 gamma2 = -log(1-0.05)/12,
 accrualDuration = NA,
 followupTime = 18, fixedFollowup = FALSE)

Example 2: Obtains follow-up duration given power and accrual duration
lrsamplesize(beta = 0.2, kMax = 2,
 informationRates = c(0.8, 1),
 alpha = 0.025, typeAlphaSpending = "sfOF",
 accrualTime = seq(0, 9),
 accrualIntensity = c(26/9*seq(1, 9), 26),
 piecewiseSurvivalTime = c(0, 6),
 stratumFraction = c(0.2, 0.8),
 lambda1 = c(0.0533, 0.0309, 1.5*0.0533, 1.5*0.0309),
 lambda2 = c(0.0533, 0.0533, 1.5*0.0533, 1.5*0.0533),
 gamma1 = -log(1-0.05)/12,
 gamma2 = -log(1-0.05)/12,
 accrualDuration = NA,
 followupTime = 18, fixedFollowup = FALSE)
```
Example 3: Obtains absolute accrual intensity given power, accrual duration, follow-up duration, and relative accrual intensity

```r
lrsamplesize(beta = 0.2, kMax = 2,
 informationRates = c(0.8, 1),
 alpha = 0.025, typeAlphaSpending = "sfOF",
 accrualTime = seq(0, 9),
 accrualIntensity = c(26/9*seq(1, 9), 26),
 piecewiseSurvivalTime = c(0, 6),
 stratumFraction = c(0.2, 0.8),
 lambda1 = c(0.0533, 0.0309, 1.5*0.0533, 1.5*0.0309),
 lambda2 = c(0.0533, 0.0533, 1.5*0.0533, 1.5*0.0533),
 gamma1 = -log(1-0.05)/12,
 gamma2 = -log(1-0.05)/12,
 accrualDuration = 22,
 followupTime = 18, fixedFollowup = FALSE)
```

Example 4: Non-inferiority trial with fixed follow-up and superiority alternative

```r
lrsamplesize(beta = 0.1,
 kMax = 3,
 alpha = 0.025,
 typeAlphaSpending = "sfOF",
 hazardRatioH0 = 1.1,
 accrualTime = c(0, 6),
 accrualIntensity = c(1000, 1500),
 lambda1 = log(2)/48*0.95,
 lambda2 = log(2)/48,
 gamma1 = -log(1-0.08)/12,
 gamma2 = -log(1-0.08)/12,
 accrualDuration = NA,
 followupTime = 18,
 fixedFollowup = 1,
 typeOfComputation = "Schoenfeld")
```

---

**lrsim**  
Log-rank test simulation

### Description

Performs simulation for two-arm group sequential trials based on weighted log-rank test.
Usage

```r
lrsim(
 kMax = NA_integer_,
 informationTime = NA_real_,
 criticalValues = NA_real_,
 futilityBounds = NA_real_,
 hazardRatioH0 = 1,
 allocation1 = 1L,
 allocation2 = 1L,
 accrualTime = 0L,
 accrualIntensity = NA_real_,
 piecewiseSurvivalTime = 0L,
 stratumFraction = 1L,
 lambda1 = NA_real_,
 lambda2 = NA_real_,
 gamma1 = 0L,
 gamma2 = 0L,
 accrualDuration = NA_real_,
 followupTime = NA_real_,
 fixedFollowup = 0L,
 rho1 = 0,
 rho2 = 0,
 plannedEvents = NA_integer_,
 plannedTime = NA_real_,
 maxNumberOfIterations = 1000L,
 maxNumberOfRawDatasetsPerStage = 0L,
 seed = NA_integer_
)
```

Arguments

- **kMax**
  The maximum number of stages.

- **informationTime**
  Information time in terms of variance of weighted log-rank test score statistic under the null hypothesis. Same as `informationRates` in terms of number of events for the conventional log-rank test. Use `caltime` and `lrstat` to derive the information time for weighted log-rank tests. Fixed prior to the trial. If left unspecified, it defaults to `plannedEvents / plannedEvents[kMax]` when `plannedEvents` is provided and to `plannedTime / plannedTime[kMax]` otherwise.

- **criticalValues**
  Upper boundaries on the z-test statistic scale for stopping for efficacy.

- **futilityBounds**
  Lower boundaries on the z-test statistic scale for stopping for futility at stages 1, ..., `kMax-1`. Defaults to `rep(-6, kMax-1)` if left unspecified.

- **hazardRatioH0**
  Hazard ratio under the null hypothesis for the active treatment versus control. Defaults to 1 for superiority test.

- **allocation1**
  Number of subjects in the active treatment group in a randomization block. Defaults to 1 for equal randomization.
allocation2  Number of subjects in the control group in a randomization block. Defaults to 1 for equal randomization.

accrualTime  Accrual time intervals. Must start with 0, e.g., c(0, 3) breaks the time axis into 2 accrual intervals: [0, 3) and [3, Inf).

accrualIntensity  A vector of accrual intensities. One for each accrual time interval.

piecewiseSurvivalTime  A vector that specifies the time intervals for the piecewise exponential survival distribution. Must start with 0, e.g., c(0, 6) breaks the time axis into 2 event intervals: [0, 6) and [6, Inf). Defaults to 0 for exponential distribution.

stratumFraction  A vector of stratum fractions that sum to 1. Defaults to 1 for no stratification.

lambda1  A vector of hazard rates for the event in each analysis time interval by stratum for the active treatment group.

lambda2  A vector of hazard rates for the event in each analysis time interval by stratum for the control group.

gamma1  The hazard rate for exponential dropout. A vector of hazard rates for piecewise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for the active treatment group.

gamma2  The hazard rate for exponential dropout. A vector of hazard rates for piecewise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for the control group.

accrualDuration  Duration of the enrollment period.

followupTime  Follow-up time for the last enrolled subject.

fixedFollowup  Whether a fixed follow-up design is used. Defaults to 0 for variable follow-up.

rho1  The first parameter of the Fleming-Harrington family of weighted log-rank test. Defaults to 0 for conventional log-rank test.

rho2  The second parameter of the Fleming-Harrington family of weighted log-rank test. Defaults to 0 for conventional log-rank test.

plannedEvents  The planned cumulative total number of events at each stage.

plannedTime  The calendar times for the analyses. To use calendar time to plan the analyses, plannedEvents should be missing.

maxNumberOfIterations  The number of simulation iterations. Defaults to 1000.

maxNumberOfRawDatasetsPerStage  The number of raw datasets per stage to extract. Defaults to 1.

seed  The seed to reproduce the simulation results. The computer clock will be used if left unspecified.

Value

A list of S3 class lrsim with 3 components:
overview is a list containing incremental and cumulative efficacy and futility stopping probabilities by stage, expected number of events, number of dropouts, number of subjects, analysis time by stage, overall rejection probability, overall expected number of events, number of dropouts, number of subjects, study duration, hazard ratio under H0, and whether the analyses are planned based on the number of events or calendar time.

sumdata is a data frame of summary data by stage for each iteration, containing at which stage the trial stops, whether the target number of events is achieved, the analysis time, number of accrued subjects overall and by treatment group, number of events overall and by treatment group, number of dropouts overall and by treatment group, numerator and variance of weighted log-rank score statistic, log-rank test Z-statistic, and whether the trial stops for efficacy or futility at the stage.

rawdata (exists if maxNumberOfRawDatasetsPerStage is a positive integer) is a data frame for subject-level data for selected replications, containing the subject number, arrival time, stratum, treatment group, survival time, dropout time, observation time when the trial stops, time under observation, and event and dropout indicators.

Examples

# Example 1: analyses based on number of events

```r
sim1 = lrsim(KMax = 2, informationTime = c(0.5, 1),
criticalValues = c(2.797, 1.977),
accrualIntensity = 11,
lambda1 = 0.018, lambda2 = 0.030,
accrualDuration = 12,
plannedEvents = c(60, 120),
maxNumberOfIterations = 1000,
maxNumberOfRawDatasetsPerStage = 1,
seed = 314159)
```

# summary statistics
sim1

# summary for each simulated data set
head(sim1$sumdata)

# raw data for selected replication
head(sim1$rawdata)

# Example 2: analyses based on calendar time have similar power

```r
sim2 = lrsim(KMax = 2, informationTime = c(0.5, 1),
criticalValues = c(2.797, 1.977),
accrualIntensity = 11,
lambda1 = 0.018, lambda2 = 0.030,
accrualDuration = 12,
plannedTime = c(31.9, 113.2),
maxNumberOfIterations = 1000,
maxNumberOfRawDatasetsPerStage = 1,
seed = 314159)
```
# summary statistics
sim2

# summary for each simulated data set
head(sim2$sumdata)

---

**lrsim2e**  
*Log-rank test simulation for two endpoints and two arms*

**Description**

Performs simulation for two-endpoint two-arm group sequential trials based on weighted log-rank test. The first \( k_{Maxe1} \) looks are driven by the total number of PFS events in two arms combined, and the subsequent looks are driven by the total number of OS events in two arms combined. Alternatively, the analyses can be planned to occur at specified calendar times.

**Usage**

```r
lrsim2e(
 kMax = NA_integer_,
 kMaxe1 = NA_integer_,
 hazardRatioH0e1 = 1,
 hazardRatioH0e2 = 1,
 allocation1 = 1L,
 allocation2 = 1L,
 accrualTime = 0L,
 accrualIntensity = NA_real_,
 piecewiseSurvivalTime = 0L,
 stratumFraction = 1L,
 rho = 0,
 lambda1e1 = NA_real_,
 lambda2e1 = NA_real_,
 lambda1e2 = NA_real_,
 lambda2e2 = NA_real_,
 gamma1e1 = 0L,
 gamma2e1 = 0L,
 gamma1e2 = 0L,
 gamma2e2 = 0L,
 accrualDuration = NA_real_,
 followupTime = NA_real_,
 fixedFollowup = 0L,
 rho1 = 0,
 rho2 = 0,
 plannedEvents = NA_integer_,
 plannedTime = NA_real_,
 maxNumberOfIterations = 1000L,
)```
maxNumberOfRawDatasetsPerStage = 0L,
seed = NA_integer_
)

Arguments

kMax The maximum number of stages.
kMaxe1 Number of stages with timing determined by PFS events. Ranges from 0 (none) to kMax.
hazardRatioH0e1 Hazard ratio under the null hypothesis for the active treatment vs control for endpoint 1 (PFS). Defaults to 1 for superiority test.
hazardRatioH0e2 Hazard ratio under the null hypothesis for the active treatment vs control for endpoint 2 (OS). Defaults to 1 for superiority test.
allocation1 Number of subjects in the treatment group in a randomization block. Defaults to 1 for equal randomization.
allocation2 Number of subjects in the control group in a randomization block. Defaults to 1 for equal randomization.
accrualTime Accrual time intervals. Must start with 0, e.g., c(0, 3) breaks the time axis into 2 accrual intervals: [0, 3) and [3, Inf).
accrualIntensity A vector of accrual intensities. One for each accrual time interval.
piecewiseSurvivalTime A vector that specifies the time intervals for the piecewise exponential survival distribution. Must start with 0, e.g., c(0, 6) breaks the time axis into 2 event intervals: [0, 6) and [6, Inf). Defaults to 0 for exponential distribution.
stratumFraction A vector of stratum fractions that sum to 1. Defaults to 1 for no stratification.
rho The correlation coefficient for the standard bivariate normal random variables used to generate time to disease progression and time to death using the inverse CDF method.
lambda1e1 A vector of hazard rates for the event in each analysis time interval by stratum for the treatment group and endpoint 1 (PFS).
lambda2e1 A vector of hazard rates for the event in each analysis time interval by stratum for the control group and endpoint 1 (PFS).
lambda1e2 A vector of hazard rates for the event in each analysis time interval by stratum for the treatment group and endpoint 2 (OS).
lambda2e2 A vector of hazard rates for the event in each analysis time interval by stratum for the control group and endpoint 2 (OS).
gamma1e1 The hazard rate for exponential dropout, a vector of hazard rates for piecewise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for the treatment group and endpoint 1 (PFS).
gamma2e1 The hazard rate for exponential dropout, a vector of hazard rates for piecewise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for the control group and endpoint 1 (PFS).

gamma1e2 The hazard rate for exponential dropout, a vector of hazard rates for piecewise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for the treatment group and endpoint 1 (PFS).

gamma2e2 The hazard rate for exponential dropout, a vector of hazard rates for piecewise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for the control group and endpoint 2 (OS).

accrualDuration Duration of the enrollment period.

followupTime Follow-up time for the last enrolled subject.

fixedFollowup Whether a fixed follow-up design is used. Defaults to 0 for variable follow-up.

rho1 The first parameter of the Fleming-Harrington family of weighted log-rank test. Defaults to 0 for conventional log-rank test.

rho2 The second parameter of the Fleming-Harrington family of weighted log-rank test. Defaults to 0 for conventional log-rank test.

plannedEvents The planned cumulative total number of PFS events at Look 1 to Look kMaxe1 and the planned cumulative total number of OS events at Look kMaxe1+1 to Look kMax.

plannedTime The calendar times for the analyses. To use calendar time to plan the analyses, plannedEvents should be missing.

maxNumberOfIterations The number of simulation iterations. Defaults to 1000.

maxNumberOfRawDatasetsPerStage The number of raw datasets per stage to extract. Defaults to 1.

seed The seed to reproduce the simulation results. The computer clock will be used if left unspecified.

Value

A list with 2 components:

* `sumdata` is a data frame of summary data by stage for each iteration, containing the analysis time, number of accrued subjects overall and by treatment group, and number of events overall and by treatment group, number of dropouts overall and by treatment group, and log-rank test statistic by endpoint.

* `rawdata` (exists if `maxNumberOfRawDatasetsPerStage` is a positive integer) is a data frame for subject-level data for selected replications, containing the stage number, subject number, arrival time, stratum, treatment group, observation time, and survival time, dropout time, time under observation, and event and dropout indicators for each endpoint.
Examples

```r
sim1 = lrsim2e(
  kMax = 3,
  kMaxe1 = 2,
  allocation1 = 2,
  allocation2 = 1,
  accrualTime = c(0, 8),
  accrualIntensity = c(10, 28),
  piecewiseSurvivalTime = 0,
  rho = 0,
  lambda1e1 = log(2)/12*0.60,
  lambda2e1 = log(2)/12,
  lambda1e2 = log(2)/30*0.65,
  lambda2e2 = log(2)/30,
  accrualDuration = 20.143,
  plannedEvents = c(186, 259, 183),
  maxNumberOfIterations = 1000,
  maxNumberOfRawDatasetsPerStage = 1,
  seed = 314159)

head(sim1$sumdata)
head(sim1$rawdata)
```

Description

Performs simulation for two-endpoint three-arm group sequential trials based on weighted log-rank test. The first `kMaxe1` looks are driven by the total number of PFS events in Arm A and Arm C combined, and the subsequent looks are driven by the total number of OS events in Arm A and Arm C combined. Alternatively, the analyses can be planned to occur at specified calendar times.

Usage

```r
lrsim2e3a(
  kMax = NA_integer_,
  kMaxe1 = NA_integer_,
  hazardRatioH013e1 = 1,
  hazardRatioH023e1 = 1,
  hazardRatioH012e1 = 1,
  hazardRatioH013e2 = 1,
  hazardRatioH023e2 = 1,
  hazardRatioH012e2 = 1,
  allocation1 = 1L,
  allocation2 = 1L,
```
allocation3 = 1L,
accrualTime = 0L,
accrualIntensity = NA_real_,
piecewiseSurvivalTime = 0L,
stratumFraction = 1L,
rho = 0,
lambda1e1 = NA_real_,
lambda2e1 = NA_real_,
lambda3e1 = NA_real_,
lambda1e2 = NA_real_,
lambda2e2 = NA_real_,
lambda3e2 = NA_real_,
gamma1e1 = 0L,
gamma2e1 = 0L,
gamma3e1 = 0L,
gamma1e2 = 0L,
gamma2e2 = 0L,
gamma3e2 = 0L,
accrualDuration = NA_real_,
followupTime = NA_real_,
fixedFollowup = 0L,
rho1 = 0,
rho2 = 0,
plannedEvents = NA_integer_,
plannedTime = NA_real_,
maxNumberOfIterations = 1000L,
maxNumberOfRawDatasetsPerStage = 0L,
seed = NA_integer_
)

Arguments

kMax
The maximum number of stages.
kMaxe1
Number of stages with timing determined by PFS events. Ranges from 0 (none) to kMax.
hazardRatioH013e1
Hazard ratio under the null hypothesis for arm 1 vs arm 3 for endpoint 1 (PFS). Defaults to 1 for superiority test.
hazardRatioH023e1
Hazard ratio under the null hypothesis for arm 2 vs arm 3 for endpoint 1 (PFS). Defaults to 1 for superiority test.
hazardRatioH012e1
Hazard ratio under the null hypothesis for arm 1 vs arm 2 for endpoint 1 (PFS). Defaults to 1 for superiority test.
hazardRatioH013e2
Hazard ratio under the null hypothesis for arm 1 vs arm 3 for endpoint 2 (OS). Defaults to 1 for superiority test.
hazardRatioH02e2
Hazard ratio under the null hypothesis for arm 2 vs arm 3 for endpoint 2 (OS).
Defaults to 1 for superiority test.

hazardRatioH012e2
Hazard ratio under the null hypothesis for arm 1 vs arm 2 for endpoint 2 (OS).
Defaults to 1 for superiority test.

allocation1
Number of subjects in Arm A in a randomization block. Defaults to 1 for equal
randomization.

allocation2
Number of subjects in Arm B in a randomization block. Defaults to 1 for equal
randomization.

allocation3
Number of subjects in Arm C in a randomization block. Defaults to 1 for equal
randomization.

accrualTime
Accrual time intervals. Must start with 0, e.g., c(0, 3) breaks the time axis into
2 accrual intervals: [0, 3) and [3, Inf).

accrualIntensity
A vector of accrual intensities. One for each accrual time interval.

piecewiseSurvivalTime
A vector that specifies the time intervals for the piecewise exponential survival
distribution. Must start with 0, e.g., c(0, 6) breaks the time axis into 2 event
intervals: [0, 6) and [6, Inf). Defaults to 0 for exponential distribution.

stratumFraction
A vector of stratum fractions that sum to 1. Defaults to 1 for no stratification.

rho
The correlation coefficient for the standard bivariate normal random variables
used to generate time to disease progression and time to death using the inverse
CDF method.

lambda1e1
A vector of hazard rates for the event in each analysis time interval by stratum
for arm 1 and endpoint 1 (PFS).

lambda2e1
A vector of hazard rates for the event in each analysis time interval by stratum
for arm 2 and endpoint 1 (PFS).

lambda3e1
A vector of hazard rates for the event in each analysis time interval by stratum
for arm 3 and endpoint 1 (PFS).

lambda1e2
A vector of hazard rates for the event in each analysis time interval by stratum
for arm 1 and endpoint 2 (OS).

lambda2e2
A vector of hazard rates for the event in each analysis time interval by stratum
for arm 2 and endpoint 2 (OS).

lambda3e2
A vector of hazard rates for the event in each analysis time interval by stratum
for arm 3 and endpoint 2 (OS).

gamma1e1
The hazard rate for exponential dropout. A vector of hazard rates for piece-
wise exponential dropout applicable for all strata, or a vector of hazard rates
for dropout in each analysis time interval by stratum for arm 1 and endpoint 1
(PFS).

gamma2e1
The hazard rate for exponential dropout. A vector of hazard rates for piece-
wise exponential dropout applicable for all strata, or a vector of hazard rates
for dropout in each analysis time interval by stratum for arm 2 and endpoint 1
(PFS).
The hazard rate for exponential dropout. A vector of hazard rates for piecewise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for arm 3 and endpoint 1 (PFS).

The hazard rate for exponential dropout. A vector of hazard rates for piecewise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for arm 1 and endpoint 2 (OS).

The hazard rate for exponential dropout. A vector of hazard rates for piecewise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for arm 2 and endpoint 2 (OS).

The hazard rate for exponential dropout. A vector of hazard rates for piecewise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for arm 3 and endpoint 2 (OS).

Duration of the enrollment period.

Follow-up time for the last enrolled subject.

Whether a fixed follow-up design is used. Defaults to 0 for variable follow-up.

The first parameter of the Fleming-Harrington family of weighted log-rank test. Defaults to 0 for conventional log-rank test.

The second parameter of the Fleming-Harrington family of weighted log-rank test. Defaults to 0 for conventional log-rank test.

The planned cumulative total number of PFS events at Look 1 to Look kMax to Look kMax for Arms A and C combined and the planned cumulative total number of OS events at Look kMax+1 to Look kMax for Arms A and C combined.

The calendar times for the analyses. To use calendar time to plan the analyses, plannedEvents should be missing.

The number of simulation iterations. Defaults to 1000.

The number of raw datasets per stage to extract. Defaults to 1.

The seed to reproduce the simulation results. The computer clock will be used if left unspecified.

Value

A list with 2 components:

* sumdata is a data frame of summary data by stage for each iteration, containing the analysis time, number of accrued subjects overall and by treatment group, number of events overall and by treatment group, number of dropouts overall and by treatment group, and log-rank test statistic for each comparison by endpoint.

* rawdata (exists if maxNumberOfRawDatasetsPerStage is a positive integer) is a data frame for subject-level data for selected replications, containing the stage number, subject number, arrival time, stratum, treatment group, observation time, survival time, dropout time, time under observation, and event and dropout indicators for each endpoint.
Examples

```r
sim1 = lrsim2e3a(
  kMax = 3,
  kMaxe1 = 2,
  allocation1 = 2,
  allocation2 = 2,
  allocation3 = 1,
  accrualTime = c(0, 8),
  accrualIntensity = c(10, 28),
  piecewiseSurvivalTime = 0,
  rho = 0,
  lambda1e1 = log(2)/12*0.60,
  lambda2e1 = log(2)/12*0.70,
  lambda3e1 = log(2)/12,
  lambda1e2 = log(2)/30*0.65,
  lambda2e2 = log(2)/30*0.75,
  lambda3e2 = log(2)/30,
  accrualDuration = 30.143,
  plannedEvents = c(186, 259, 183),
  maxNumberOfIterations = 1000,
  maxNumberOfRawDatasetsPerStage = 1,
  seed = 314159)
head(sim1$sumdata)
head(sim1$rawdata)
```

lrsim3a

Log-rank test simulation for three arms

Description

Performs simulation for three-arm group sequential trials based on weighted log-rank test. The looks are driven by the total number of events in Arm A and Arm C combined. Alternatively, the analyses can be planned to occur at specified calendar times.

Usage

```r
lrsim3a(
  kMax = NA_integer_,
  hazardRatioH013 = 1,
  hazardRatioH023 = 1,
  hazardRatioH012 = 1,
  allocation1 = 1L,
  allocation2 = 1L,
  allocation3 = 1L,
  accrualTime = 0L,
  accrualIntensity = NA_real_,
```
piecewiseSurvivalTime = 0L,
stratumFraction = 1L,
lambda1 = NA_real_,
lambda2 = NA_real_,
lambda3 = NA_real_,
gamma1 = 0L,
gamma2 = 0L,
gamma3 = 0L,
accrualDuration = NA_real_,
followupTime = NA_real_,
fixedFollowup = 0L,
rho1 = 0,
rho2 = 0,
plannedEvents = NA_integer_,
plannedTime = NA_real_,
maxNumberOfIterations = 1000L,
maxNumberOfRawDatasetsPerStage = 0L,
seed = NA_integer_)

Arguments

kMax
The maximum number of stages.
hazardRatioH013
Hazard ratio under the null hypothesis for arm 1 versus arm 3. Defaults to 1 for
superiority test.
hazardRatioH023
Hazard ratio under the null hypothesis for arm 2 versus arm 3. Defaults to 1 for
superiority test.
hazardRatioH012
Hazard ratio under the null hypothesis for arm 1 versus arm 2. Defaults to 1 for
superiority test.
allocation1
Number of subjects in Arm A in a randomization block. Defaults to 1 for equal
randomization.
allocation2
Number of subjects in Arm B in a randomization block. Defaults to 1 for equal
randomization.
allocation3
Number of subjects in Arm C in a randomization block. Defaults to 1 for equal
randomization.
accrualTime
Accrual time intervals. Must start with 0, e.g., c(0, 3) breaks the time axis into
2 accrual intervals: [0, 3) and [3, Inf).
accrualIntensity
A vector of accrual intensities. One for each accrual time interval.

piecewiseSurvivalTime
A vector that specifies the time intervals for the piecewise exponential survival
distribution. Must start with 0, e.g., c(0, 6) breaks the time axis into 2 event
intervals: [0, 6) and [6, Inf). Defaults to 0 for exponential distribution.
stratumFraction
A vector of stratum fractions that sum to 1. Defaults to 1 for no stratification.

lambda1
A vector of hazard rates for the event in each analysis time interval by stratum for arm 1.

lambda2
A vector of hazard rates for the event in each analysis time interval by stratum for arm 2.

lambda3
A vector of hazard rates for the event in each analysis time interval by stratum for arm 3.

gamma1
The hazard rate for exponential dropout. A vector of hazard rates for piece-wise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for arm 1.

gamma2
The hazard rate for exponential dropout. A vector of hazard rates for piece-wise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for arm 2.

gamma3
The hazard rate for exponential dropout. A vector of hazard rates for piece-wise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for arm 3.

accrualDuration
Duration of the enrollment period.

followupTime
Follow-up time for the last enrolled subject.

fixedFollowup
Whether a fixed follow-up design is used. Defaults to 0 for variable follow-up.

rho1
The first parameter of the Fleming-Harrington family of weighted log-rank test. Defaults to 0 for conventional log-rank test.

rho2
The second parameter of the Fleming-Harrington family of weighted log-rank test. Defaults to 0 for conventional log-rank test.

plannedEvents
The planned cumulative total number of events at Look 1 to Look kMax for Arms A and C combined.

plannedTime
The calendar times for the analyses. To use calendar time to plan the analyses, plannedEvents should be missing.

maxNumberOfIterations
The number of simulation iterations. Defaults to 1000.

maxNumberOfRawDatasetsPerStage
The number of raw datasets per stage to extract. Defaults to 1.

seed
The seed to reproduce the simulation results. The computer clock will be used if left unspecified.

Value

A list with 2 components:

* sumdata is a data frame of summary data by stage for each iteration, containing the analysis time, number of accrued subjects overall and by treatment group, number of events overall and by treatment group, number of dropouts overall and by treatment group, and log-rank test statistic for each comparison.
rawdata (exists if maxNumberOfRawDatasetsPerStage is a positive integer) is a data frame for subject-level data for selected replications, containing the stage number, subject number, arrival time, stratum, treatment group, observation time, survival time, dropout time, time under observation, and event and dropout indicators.

Examples

```
sim1 = lrsim3a(
    kMax = 3,
    allocation1 = 2,
    allocation2 = 2,
    allocation3 = 1,
    accrualTime = c(0, 8),
    accrualIntensity = c(10, 28),
    piecewiseSurvivalTime = 0,
    lambda1 = log(2)/12*0.60,
    lambda2 = log(2)/12*0.70,
    lambda3 = log(2)/12,
    accrualDuration = 30.143,
    plannedEvents = c(186, 259, 295),
    maxNumberOfIterations = 1000,
    maxNumberOfRawDatasetsPerStage = 1,
    seed = 314159)

head(sim1$sumdata)
head(sim1$rawdata)
```

\[
\text{lrstat} \quad \text{Number of subjects having an event and log-rank statistics}
\]

Description

Obtains the number of subjects accrued, number of events and number of dropouts in each group, mean and variance of weighted log-rank score statistic, estimated hazard ratio from weighted Cox regression and variance of log hazard ratio estimate at given calendar times.

Usage

```
lrstat(
    time = NA_real_,
    hazardRatioH0 = 1,
    allocationRatioPlanned = 1,
    accrualTime = 0L,
    accrualIntensity = NA_real_,
    piecewiseSurvivalTime = 0L,
    stratumFraction = 1L,
    lambda1 = NA_real_,
```
Irsstat

\[
\begin{align*}
\text{lambda2} &= \text{NA_real_}, \\
\text{gamma1} &= 0L, \\
\text{gamma2} &= 0L, \\
\text{accrualDuration} &= \text{NA_real_}, \\
\text{followupTime} &= \text{NA_real_}, \\
\text{fixedFollowup} &= 0L, \\
\rho1 &= 0, \\
\rho2 &= 0, \\
\text{numSubintervals} &= 300L, \\
\text{predictEventOnly} &= 0L
\end{align*}
\]

Arguments

time
A vector of calendar times at which to calculate the number of events and the mean and variance of log-rank test score statistic.

hazardRatioH0
Hazard ratio under the null hypothesis for the active treatment versus control. Defaults to 1 for superiority test.

allocationRatioPlanned
Allocation ratio for the active treatment versus control. Defaults to 1 for equal randomization.

accrualTime
Accrual time intervals. Must start with 0, e.g., \(c(0, 3)\) breaks the time axis into 2 accrual intervals: \([0, 3)\) and \([3, \infty)\).

accrualIntensity
A vector of accrual intensities. One for each accrual time interval.

piecewiseSurvivalTime
A vector that specifies the time intervals for the piecewise exponential survival distribution. Must start with 0, e.g., \(c(0, 6)\) breaks the time axis into 2 event intervals: \([0, 6)\) and \([6, \infty)\). Defaults to 0 for exponential distribution.

stratumFraction
A vector of stratum fractions that sum to 1. Defaults to 1 for no stratification.

lambda1
A vector of hazard rates for the event in each analysis time interval by stratum for the active treatment group.

lambda2
A vector of hazard rates for the event in each analysis time interval by stratum for the control group.

gamma1
The hazard rate for exponential dropout. A vector of hazard rates for piecewise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for the active treatment group.

gamma2
The hazard rate for exponential dropout. A vector of hazard rates for piecewise exponential dropout applicable for all strata, or a vector of hazard rates for dropout in each analysis time interval by stratum for the control group.

accrualDuration
Duration of the enrollment period.

followupTime
Follow-up time for the last enrolled subject.

fixedFollowup
Whether a fixed follow-up design is used. Defaults to 0 for variable follow-up.
rho1 The first parameter of the Fleming-Harrington family of weighted log-rank test. Defaults to 0 for conventional log-rank test.

rho2 The second parameter of the Fleming-Harrington family of weighted log-rank test. Defaults to 0 for conventional log-rank test.

numSubintervals Number of sub-intervals to approximate the mean and variance of the weighted log-rank test score statistic. Defaults to 300. Specify a larger number for better approximation.

predictEventOnly Whether to predict the number of events only. Defaults to 0 for obtaining log-rank score statistic mean and variance. Set predictEventOnly = 1 for predicting the number of events only. Set predictEventOnly = 2 for predicting the number of events, calculating the mean and variance of log-rank score statistic, and calculating the estimated hazard ratio and variance of log hazard ratio.

Value

A data frame of the number of subjects enrolled, the number of subjects having an event overall and in each group, the number of subjects who drop out overall and in each group, the mean and variance of weighted log-rank score statistic, the estimated hazard ratio from weighted Cox regression, and variance of the log hazard ratio estimate at the specified calendar times.

Examples

Piecewise accrual, piecewise exponential survivals, and 5% dropout by the end of 1 year.

lrstat(time = c(22, 40), allocationRatioPlanned = 1,
 accrualTime = seq(0, 9),
 accrualIntensity = c(26/9*seq(1, 9), 26),
 piecewiseSurvivalTime = c(0, 6),
 stratumFraction = c(0.2, 0.8),
 lambda1 = c(0.0533, 0.0309, 1.5*0.0533, 1.5*0.0309),
 lambda2 = c(0.0533, 0.0533, 1.5*0.0533, 1.5*0.0533),
 gamma1 = -log(1-0.05)/12,
 gamma2 = -log(1-0.05)/12,
 accrualDuration = 22,
 followupTime = 18, fixedFollowup = FALSE)

qtpwexp Quantile function of truncated piecewise exponential distribution

Description

Obtains the quantile of a piecewise exponential distribution given that it exceeds a specified lower bound.
repeatedPValue

Usage

qtpwexp(
probability,
piecewiseSurvivalTime = 0,
lambda = 0.0578,
lowerBound = 0
)

Arguments

probability The scalar probability corresponding to the quantile.
piecewiseSurvivalTime A vector that specifies the time intervals for the piecewise exponential survival distribution. Must start with 0, e.g., c(0, 6) breaks the time axis into 2 event intervals: [0, 6) and [6, Inf). Defaults to 0 for exponential distribution.
lambda A vector of hazard rates for the event. One for each analysis time interval.
lowerBound The left truncation time point for the survival time. Defaults to 0 for no truncation.

Value

The quantile x such that P(X > x \mid X > lowerBound) = 1 - probability.

Examples

qtpwexp(probability = c(0.3, 0.5), piecewiseSurvivalTime = c(0, 6, 9, 15),
lambda = c(0.025, 0.04, 0.015, 0.007))

repeatedPValue Repeated p-values for group sequential design

Description

Obtains the repeated p-values for a group sequential design.

Usage

repeatedPValue(
 kMax,
 typeAlphaSpending = "sfOF",
 parameterAlphaSpending = NA,
 maxInformation = 1,
 p,
 information,
 spendingTime = NULL
)
Arguments

kMax The maximum number of stages.

typeAlphaSpending The type of alpha spending. One of the following: "OF" for O'Brien-Fleming boundaries, "P" for Pocock boundaries, "WT" for Wang & Tsiatis boundaries, "sfOF" for O'Brien-Fleming type spending function, "sfP" for Pocock type spending function, "sfKD" for Kim & DeMets spending function, "sfHSD" for Hwang, Shi & DeCani spending function, "user" for user defined spending, and "none" for no early efficacy stopping. Defaults to "sfOF".

parameterAlphaSpending The parameter value for the alpha spending. Corresponds to Delta for "WT", rho for "sfKD", and gamma for "sfHSD".

maxInformation The target maximum information. Defaults to 1, in which case, information represents InformationRates.

p The raw p-values at look 1 to look k. It can be a matrix with k columns for k <= kMax.

information The observed information by look. It can be a matrix with k columns.

spendingTime The error spending time at each analysis, must be increasing and less than or equal to 1. Defaults to NULL, in which case, it is the same as InformationRates derived from information and maxInformation. It can be a matrix with k columns.

Value

The repeated p-values at look 1 to look k.

Examples

Example 1: InformationRates different from spendingTime
repeatedPValue(kMax = 3, typeAlphaSpending = "sfOF", maxInformation = 800, p = c(0.2, 0.15, 0.1), information = c(529, 700, 800), spendingTime = c(0.6271186, 0.8305085, 1))

Example 2: Maurer & Bretz (2013), current look is not the last look
repeatedPValue(kMax = 3, typeAlphaSpending = "sfOF", p = matrix(c(0.0062, 0.017, 0.009, 0.13, 0.0002, 0.0035, 0.002, 0.06), nrow=4, ncol=2), information = c(1/3, 2/3))
updateGraph

Update graph for graphical approaches

Description

Updates the weights and transition matrix for graphical approaches.

Usage

updateGraph(w, G, I, j)

Arguments

w The current vector of weights for elementary hypotheses.
G The current transition matrix.
I The set of indices for yet to be rejected hypotheses.
j The hypothesis to remove from index set I.

Value

A list containing the new vector of weights and the new transition matrix for the graph, and the new set of indices of yet to be rejected hypotheses.

Examples

updateGraph(w = c(0.5, 0.5, 0, 0),
 G = matrix(c(0, 0.5, 0.5, 0, 0.5, 0, 0, 0.5,
 0, 1, 0, 0, 1, 0, 0, 0),
 nrow=4, ncol=4, byrow=TRUE),
 I = c(1, 2, 3, 4),
 j = 1)
Index

accrual, 4

caltime, 5

errorSpent, 6

exitprob, 7

fadjpb0n, 8
fadjpsim, 9
fseqb0n, 10
fwgtmat, 12

getAccrualDuration, 12
getBound, 13
getDesign, 14
getDurationFromNevents, 16
getNeventsFromHazardRatio, 18

kmest, 20

lrpower, 22
lrsamplesize, 26
lrsim, 30
lrsim2e, 34
lrsim2e3a, 37
lrsim3a, 41
lrstat, 44
lrstat-package, 2

qtpwexp, 46

repeatedPValue, 47

updateGraph, 49