Package ‘lsm’

October 13, 2022

Type Package

Title Estimation of the log Likelihood of the Saturated Model

Version 0.2.1.2

Date 2022-02-03

Author Humberto Llinas [aut] (<https://orcid.org/0000-0002-2976-5109>),
Omar Fabregas [aut] (<https://orcid.org/0000-0001-6853-6280>),
Jorge Villalba [aut, cre] (<https://orcid.org/0000-0002-2888-9660>)

Maintainer Jorge Villalba <jlvia1191@gmail.com>

Description When the values of the outcome variable Y are either 0 or 1,
the function lsm() calculates the estimation of the log likelihood
in the saturated model.
This model is characterized by Llinas (2006, ISSN:2389-8976) in section 2.3
through the assumptions 1 and 2.
The function LogLik() works (almost perfectly) when the number of independent
variables K is high, but for small K it calculates wrong values in some cases.
For this reason, when Y is dichotomous and the data are grouped in J populations,
it is recommended to use the function lsm() because it works very well for all K.

Depends R (>= 3.5.0)

Imports stats, dplyr (>= 1.0.0), ggplot2 (>= 1.0.0)

Encoding UTF-8

License MIT + file LICENSE

LazyData TRUE

RoxygenNote 7.1.2

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-02-04 03:10:02 UTC

R topics documented:

chdage ... 2
confint.lsm .. 3
chdage

Coronary Heart Disease Study

Description

Coronary Heart Disease Study

Usage

chdage

Format

A data frame with 100 observations on the following 3 variables.

ID identification code
AGE age in years
CHD presence (1) or absence (0) of evidence of significant coronary heart disease

References

Examples

 # data(chdage)
 # maybe str(chdage) ; plot(chdage) ...
Description

Provides a confint method for 1sm objects.

Usage

```r
## S3 method for class '1sm'
confint(object, parm, level = 0.95, ...)
```

Arguments

- `object`: The type of prediction required. The default is on the scale of the linear predictors. The alternative response gives the predicted probabilities.
- `parm`: further arguments passed to or from other methods.
- `level`: The type of prediction required. The default is on the scale of the linear predictors. The alternative response gives the predicted probabilities.
- `...`: further arguments passed to or from other methods.

Details

confint Method for 1sm

The saturated model is characterized by the assumptions 1 and 2 presented in section 2.3 by Llinas (2006, ISSN:2389-8976).

Value

`1sm` returns an object of class "1sm".

An object of class "1sm" is a list containing at least the following components:

- `object`: a 1sm object
- `parm`: parameter
- `level`: confidence levels
- `...`: additional parameters

Author(s)

Jorge Villalba Acevedo [cre, aut], Cartagena-Colombia.
References

Examples

#Hosmer, D. (2013) page 3: Age and coronary Heart Disease (CHD) Status of 20 subjects:
#AGE <- c(20, 23, 25, 25, 26, 26, 28, 28, 29, 30, 30, 30, 30, 30, 30, 30, 30, 32, 33, 33)
#CHD <- c(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)
data <- data.frame (CHD, AGE)
Ela <- lsm(CHD ~ AGE, family = binomial, data)
summary(Ela)

Description

Usage

Format

A data frame with 200 observations on the following 21 variables.

ID a numeric vector
STA a numeric vector
AGE a numeric vector
GENDER a numeric vector
RACE a numeric vector
SER a numeric vector
CAN a numeric vector
CRN a numeric vector
INF a numeric vector
CPR a numeric vector
SYS a numeric vector
HRA a numeric vector
lowbwt

PRE a numeric vector
TYP a numeric vector
FRA a numeric vector
PO2 a numeric vector
PH a numeric vector
PCO a numeric vector
BIC a numeric vector
CRE a numeric vector
LOC a numeric vector

References

Examples
data(icu)
maybe str(icu); plot(icu) ...

<table>
<thead>
<tr>
<th>lowbwt</th>
<th>lowbwt</th>
</tr>
</thead>
</table>

Description
lowbwt

Usage
lowbwt

Format
A data frame with 189 observations on the following 11 variables.

ID a numeric vector
SMOKE a numeric vector
RACE a numeric vector
AGE a numeric vector
LWT a numeric vector
BWT a numeric vector
LOW a numeric vector
PTL a numeric vector
HT a numeric vector
UI a numeric vector
FTV a numeric vector
References

Examples

data(lowbwt)
maybe str(lowbwt) ; plot(lowbwt) ...

lsm Estimation of the log Likelihood of the Saturated Model

Description

When the values of the outcome variable \(Y\) are either 0 or 1, the function \(lsm()\) calculates the estimation of the log likelihood in the saturated model. This model is characterized by Llinas (2006, ISSN:2389-8976) in section 2.3 through the assumptions 1 and 2. If \(Y\) is dichotomous and the data are grouped in \(J\) populations, it is recommended to use the function \(lsm()\) because it works very well for all \(K\).

Usage

\[
\text{lsm(formula, family = binomial, data = environment(formula))}
\]

Arguments

- **formula**: An expression of the form \(y \sim \text{model}\), where \(y\) is the outcome variable (binary or dichotomous: its values are 0 or 1).
- **family**: an optional funtion for example binomial.
- **data**: an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which \(lsm()\) is called.

Details

Estimation of the log Likelihood of the Saturated Model

The saturated model is characterized by the assumptions 1 and 2 presented in section 2.3 by Llinas (2006, ISSN:2389-8976).
Value

`lm` returns an object of class "`lm`".

An object of class "`lm`" is a list containing at least the following components:

- **coefficients**: Vector of coefficients estimations.
- **Std.Error**: Vector of the coefficients’s standard error.
- **ExpB**: Vector with the exponential of the coefficients.
- **Wald**: Value of the Wald statistic.
- **DF**: Degree of freedom for the Chi-squared distribution.
- **P.value**: P-value with the Chi-squared distribution.
- **Log_Lik_Complete**: Estimation of the log likelihood in the complete model.
- **Log_Lik_Null**: Estimation of the log likelihood in the null model.
- **Log_Lik_Logit**: Estimation of the log likelihood in the logistic model.
- **Log_Lik_Saturate**: Estimation of the log likelihood in the saturate model.
- **Populations**: Number of populations in the saturated model.
- **Dev_Null_vs_Logit**: Value of the test statistic (Hypothesis: null vs logistic models).
- **Dev_Logit_vs_Complete**: Value of the test statistic (Hypothesis: logistic vs complete models).
- **Dev_Logit_vs_Saturate**: Value of the test statistic (Hypothesis: logistic vs saturated models).
- **Df_Null_vs_Logit**: Degree of freedom for the test statistic’s distribution (Hypothesis: null vs logistic models).
- **Df_Logit_vs_Complete**: Degree of freedom for the test statistic’s distribution (Hypothesis: logistic vs complete models).
- **Df_Logit_vs_Saturate**: Degree of freedom for the test statistic’s distribution (Hypothesis: Logistic vs saturated models).
- **P.v_Null_vs_Logit**: p-values for the hypothesis test: null vs logistic models.
- **P.v_Logit_vs_Complete**: p-values for the hypothesis test: logistic vs complete models.
- **P.v_Logit_vs_Saturate**: p-values for the hypothesis test: logistic vs saturated models.
- **Logit**: Vector with the log-odds.
- **p_hat**: Vector with the probabilities that the outcome variable takes the value 1, given the jth population.
- **odd**: Vector with the values of the odd in each jth population.
OR Vector with the values of the odd ratio for each coefficient of the variables.

z_j Vector with the values of each Zj (the sum of the observations in the jth population).

n_j Vector with the nj (the number of the observations in each jth population).

p_j Vector with the estimation of each pj (the probability of success in the jth population).

v_j Vector with the variance of the Bernoulli variables in the jth population.

m_j Vector with the expected values of Zj in the jth population.

V_j Vector with the variances of Zj in the jth population.

V Variance and covariance matrix of Z, the vector that contains all the Zj.

S_p Score vector in the saturated model.

I_p Information matrix in the saturated model.

Zast_j Vector with the values of the standardized variable of Zj.

mcov Variance and covariance matrix for coefficient estimates.

mcor Correlation matrix for coefficient estimates.

Esm Estimates in the saturated model.

Elm Estimates in the logistic model.

Author(s)
Humberto Llinas Solano [aut], Universidad del Norte, Barranquilla-Colombia \ Omar Fabregas Cera [aut], Universidad del Norte, Barranquilla-Colombia \ Jorge Villalba Acevedo [cre, aut], Universidad Tecnológica de Bolívar, Cartagena-Colombia.

References

Examples
Hosmer, D. (2013) page 3: Age and coronary Heart Disease (CHD) Status of 20 subjects:

#library(lsm)

#AGE <- c(20,23,24,25,26,26,28,28,29,30,30,30,30,30,30,30,30,32,33,33)
#CHD <- c(0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0)

#data <- data.frame (CHD, AGE)
#lsm(CHD ~ AGE , family=binomial, data)

For more ease, use the following notation.
predict.lsm

predict.lsm

Predict Method for lsm Objects

Description

Obtains predictions from a fitted lsm object.

Usage

S3 method for class 'lsm'
predict(
 object,
 newdata,
 type = c("link", "response", "odd"),
 interval = c("none", "confidence", "prediction", "odd"),
 level = 0.95,
 ...
)

Arguments

object A fitted object of class lsm.
newdata Optionally, a data frame in which to look for variables with which to predict. If omitted, the fitted linear predictors are used.
type The type of prediction required. The default is on the scale of the linear predictors. The alternative response gives the predicted probabilities.
interval gives the
level gives the
... further arguments passed to or from other methods.

Details

Predict Method for lsm Fits

Value

A vector or matrix of predictions. following components:

<table>
<thead>
<tr>
<th>pros</th>
<th>pros</th>
</tr>
</thead>
</table>

Description

pros

Usage

pros

Format

A data frame with 380 observations on the following 9 variables.

ID a numeric vector
CAPSULE a numeric vector
AGE a numeric vector
RACE a numeric vector
DPROS a numeric vector
DCAPS a numeric vector
PSA a numeric vector
VOL a numeric vector
GLEASON a numeric vector

References

Examples

data(pros)
maybe str(pros) ; plot(pros) ...
Summary Method for lsm Objects

Description

Provides a summary method for lsm objects.

Usage

```r
## S3 method for class 'lsm'
summary(object, ...)
```

Arguments

- `object`: An expression of the form `y ~ model`, where `y` is the outcome variable (binary or dichotomous: its values are 0 or 1).
- `...`: further arguments passed to or from other methods.

Details

summary Method for lsm

The saturated model is characterized by the assumptions 1 and 2 presented in section 2.3 by Llinas (2006, ISSN:2389-8976).

Value

An object of class "lsm" is a list containing at least the following components:

- `object`: a lsm object
- `...`: additional parameters

Author(s)

Jorge Villalba Acevedo [cre, aut], Cartagena-Colombia.

References

Examples

#Hosmer, D. (2013) page 3: Age and coronary Heart Disease (CHD) Status of 20 subjects:
#AGE <- c(20, 23, 25, 25, 26, 26, 28, 29, 30, 30, 30, 30, 30, 30, 30, 32, 33, 33)
#CHD <- c(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)
data <- data.frame (CHD, AGE)
Ela <- lsm(CHD ~ AGE, family = binomial, data)
summary(Ela)

Description

The data was collected by applying a survey to a sample of university students.

Usage

survey

Format

A data frame (tibble) with 800 observations and 66 variables, which are described below:

Observation Student.
ID Identification code.
Gender Gender of the student, 1 = Female; 2 = Male.
Like What do you do most often in your free time? 1 = Network (Check social networks); 2 = TV (Watch TV).
Age Age of the student (in years), Numeric vector from 12.0 to 30.0
Smoke Do you smoke? 0 = No; 1 = Yes.
Height Height of the student (in meters), Numeric vector from 1.50 to 1.90.
Weight Weight of the student (in kilograms), numeric vector from 49 to 120.
BMI Body mass index of the student (kg/m^2), numeric vector from 14 to 54.
School Type of school students come from, 1 = Private; 2 = Public.
SES Socio-economic stratus of the student, 1 = Low; 2 = Medium; 3 = High.
Enrollment What was your type funding to study at the university? 1 = Credit; 2 = Scholarship; 3 = Savings.
Score Percentage of success in a certain test, numeric vector from 0 to 100%
MotherHeight Height of the mother of the student (in meters), numeric vector 1 = Short; 2 = Normal; 3 = Tall.
MotherAge Age of the mother of the student (in years), numeric vector from 39 to 89.
MotherCHD Has your mother had coronary heart disease? 0 = No; 1 = Yes.
FatherHeight Height of the father of the student (in meters), numeric vector 1 = Short; 2 = Normal; 3 = Tall.
FatherAge Age of the father of the student (in years), numeric vector from 39 to 89
FatherCHD Has your father had coronary heart disease, 1 = No; 2 = Yes.
Status Student’s academic status at the end of the previous semester, 1 = Distinguished; 2 = Normal; 3 = Regular.
SemAcum Average of all final grades in the previous semester, numeric vector from 0.0 to 5.0
Exam1 First exam taken last semester, numeric vector from 0.0 to 5.0
Exam2 Second exam taken last semester, numeric vector from 0.0 to 5.0
Exam3 Third exam taken last semester, numeric vector from 0.0 to 5.0
Exam4 Last exam taken last semester, numeric vector from 0.0 to 5.0
ExamAcum Sum of the four exams mentioned above, numeric vector from 0.0 to 5.0
Definitive Average of the four exams mentioned above, numeric vector from 0.0 to 5.0
Expense Average of your monthly expenses (in 10 thousand Colombian pesos), numeric vector from 23.0 to 90.0
Income Father’s monthly income (in millions of Colombian pesos), numeric vector from 1.0 to 3.0
Gas Value paid for gas service in the last month (in thousands of Colombian pesos), numeric vector from 15.0 to 28.0
Course What type of virtual classes do you prefer? 1 = Virtual; 2 = Face-to-face.
Law Opinion on a law, 1 = In disagreement; 2 = Agree
Economic How was your family’s economy during the pandemic? 1 = Bad; 2 = Regular; 3 = Good.
Race Does the student belong to an ethnic group? 1 = None; 2 = Ethnic
Region Region of the country where the student comes from, 1 = North; 2 = Center; 3 = South.
EMO1 During this period of preventative isolation, you frequently become nervous or restless for no reason, 1 = Never, 2 = Rarely; 3 = Almost always; 4 = Always.
EMO2 During this period of preventative isolation, you are often irritable, 1 = Never, 2 = Rarely; 3 = Almost always; 4 = Always.
EMO3 During this period of preventative isolation, you are often sad or despondent, 1 = Never, 2 = Rarely; 3 = Almost always; 4 = Always.
EMO4 During this period of preventative isolation, you are often easily frightened, 1 = Never, 2 = Rarely; 3 = Almost always; 4 = Always.
EMO5 During this period of preventative isolation, you often have trouble thinking clearly, 1 = Never, 2 = Rarely; 3 = Almost always; 4 = Always.
GOAL1 I am concerned that I may not be able to understand the contents of my subjects this semester as thoroughly as I would like, 1 = Strongly agree; 2 = Disagree; 3 = Undecided; 4 = Agree; 5 = Strongly agree.
GOAL2 It is important for me to do better than other students in my subjects this semester, 1 = Strongly agree; 2 = Disagree; 3 = Undecided; 4 = Agree; 5 = Strongly agree.
GOAL3 I am concerned that I may not learn all that I can learn in my subjects this semester, 1 = Strongly agree; 2 = Disagree; 3 = Undecided; 4 = Agree; 5 = Strongly agree.
survey

Pre_STAT1 I like statistics, 1 = Strongly agree; 2 = Disagree; 3 = Undecided; 4 = Agree; 5 = Strongly agree.
Pre_STAT2 I don’t focus when I make problems statistics, 1 = Strongly agree; 2 = Disagree; 3 = Undecided; 4 = Agree; 5 = Strongly agree.
Pre_STAT3 I don’t understand statistics much because of my way of thinking, 1 = Strongly agree; 2 = Disagree; 3 = Undecided; 4 = Agree; 5 = Strongly agree.
Pre_STAT4 I use statistics in everyday life, 1 = Strongly agree; 2 = Disagree; 3 = Undecided; 4 = Agree; 5 = Strongly agree.
Post_STAT1 I like statistics, 1 = Strongly agree; 2 = Disagree; 3 = Undecided; 4 = Agree; 5 = Strongly agree.
Post_STAT2 I don’t focus when I make problems statistics, 1 = Strongly agree; 2 = Disagree; 3 = Undecided; 4 = Agree; 5 = Strongly agree.
Post_STAT3 I don’t understand statistics much because of my way of thinking, 1 = Strongly agree; 2 = Disagree; 3 = Undecided; 4 = Agree; 5 = Strongly agree.
Post_STAT4 I use statistics in everyday life, 1 = Strongly agree; 2 = Disagree; 3 = Undecided; 4 = Agree; 5 = Strongly agree.
Pre_IDARE1 I feel calm, 1=Nothing; 2= Little; 3= Quite a bit; 4= A lot.
Pre_IDARE2 I feel safe, 1=Nothing; 2= Little; 3= Quite a bit; 4= A lot.
Pre_IDARE3 I feel nervous, 1=Nothing; 2= Little; 3= Quite a bit; 4= A lot.
Pre_IDARE4 I’m stressed, 1=Nothing; 2= Little; 3= Quite a bit; 4= A lot.
Pre_IDARE5 I am comfortable, 1=Nothing; 2= Little; 3= Quite a bit; 4= A lot.
Post_IDARE1 I feel calm, 1=Nothing; 2= Little; 3= Quite a bit; 4= A lot.
Post_IDARE2 I feel safe, 1=Nothing; 2= Little; 3= Quite a bit; 4= A lot.
Post_IDARE3 I feel nervous, 1=Nothing; 2= Little; 3= Quite a bit; 4= A lot.
Post_IDARE4 I’m stressed, 1=Nothing; 2= Little; 3= Quite a bit; 4= A lot.
Post_IDARE5 I am comfortable, 1=Nothing; 2= Little; 3= Quite a bit; 4= A lot.
PSICO1 I feel good, 1=Almost never; 2= Sometimes; 3= Frequently; 4= Almost always.
PSICO2 I get tired quickly, 1=Almost never; 2= Sometimes; 3= Frequently; 4= Almost always.
PSICO3 I feel like crying, 1=Almost never; 2= Sometimes; 3= Frequently; 4= Almost always.
PSICO4 I would like to be as happy as others seem to be, 1=Almost never; 2= Sometimes; 3= Frequently; 4= Almost always.
PSICO5 I lose opportunities for not being able to decide quickly, 1=Almost never; 2= Sometimes; 3= Frequently; 4= Almost always.

Details

survey

Examples

data(survey)
maybe str(survey) ; plot(survey) ...
Description

uis

Usage

uis

Format

A data frame with 575 observations on the following 9 variables.

- `ID` a numeric vector
- `AGE` a numeric vector
- `BECK` a numeric vector
- `IVHX` a numeric vector
- `NDRUGTX` a numeric vector
- `RACE` a numeric vector
- `TREAT` a numeric vector
- `SITE` a numeric vector
- `DFREE` a numeric vector

References

Examples

```r
# data(uis)
# maybe str(uis) ; plot(uis) ...
```
Index

* **cedage**
 chdage, 2

* **data**
 icu, 4
 pros, 10
 survey, 12
 uis, 15

* **lowbwt**
 lowbwt, 5

chdage, 2
confint.lsm, 3

icu, 4

lowbwt, 5
lsm, 6

predict.lsm, 9
pros, 10

summary.lsm, 11
survey, 12

uis, 15